《数学史》绪论
- 格式:ppt
- 大小:803.00 KB
- 文档页数:51
第一部分数学史第一章数学的起源和远古数学文献1.计数意识的起源。
数学的起源和人类文明的起源几乎是同步的。
恩格斯在《反杜林论》中指出:“和其他各门科学一样,数学是从人的需要中产生的,如丈量土地和测量容积,计算时间和制造器械。
”“数”的概念萌发于早期人类对事物的计数,结绳与书契可能是所有早期文明中最主要的计数方法。
随着文字的出现,人类开始用一些文字符号按照一定的规则表记数字,这些规则就是进位制和符号布列方式,它们是记数法的要素。
在世界各地文明中,形成了各自独特的数字符号体系和记数方法,例如:简单分群数系、乘法分群数系、字码数系、定位数系(位值制)等。
我们今天通常使用的记数方式就是10进制定位系统,与其它记数方法相比,它在计算上有明显的优势,被誉为人类社会进步的基础。
2.埃及的两种主要的数学纸草书、埃及数制,埃及几何的突出成就。
著名的古埃及纸草书有两份,这两份纸草书都直接书写着数学内容,一份叫“莫斯科纸草书”,大约出自公元前1850年左右,它包括25个数学问题。
这份纸草书于1893年被俄国人戈兰尼采夫买得,也称之为“戈兰尼采夫纸草书”,现藏于莫斯科美术博物馆。
另一份叫“莱因特纸草书”,大约成书于公元前1650年左右,开头写有“获知一切奥秘的指南”的字样,接着是作者阿默士从更早的文献中抄下来的85个数学问题。
这份纸草书于1858年被苏格兰人莱因特购得,后为英国博物馆收藏。
这两份纸草书是我们研究古埃及数学的重要资料,其内容丰富,记述了古埃及的记数法,整数四则运算,单位分数的独特用法,试位法,求几何图形的面积、体积问题,以及数学在生产、生活实践中的应用问题。
埃及数制:据史料记载,早在公元前4000年左右,埃及就有了象形文字,在这种文字中他们以10为基数进行记数。
这些文字是用单独的图画来表示一个数的,1是垂直的木棍,10是放牛用的弯曲工具,102是一端卷起的测量绳,103是一朵莲花,104是竖着的手指,105是小鸟,106是举起双手受惊的人,107是太阳。
《数学史概论》教学大纲课程编号:024ZX002课程名称(中文):数学史概论课程名称(英文):学分:3 总学时:54 实验学时:适应专业:数学与应用数学(选修)先修课程:数学分析,高等代数,概率统计一、课程的性质和任务数学史是师范本科数学专业必修的重要基础课程之一。
任何一门科学都有它自己的产生和发展的历史,数学史就是研究数学的发生、发展过程及其规律的一门学科。
它主要讨论的是数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。
数学是非常古老而又有着巨大发展潜力的科学,其历史的足迹也就更漫长而艰辛。
数学的每一阶段性成果都有着它的产生背景:为何提出,如何解决,如何进一步改进。
这其中体现的思想方法或思维过程对数学专业的学生,甚至是对教师来说,无论是知识的丰富,还是其创造能力的发挥都是重要的。
讲授本课程要贯彻“夯实基础,拓宽视野,培养能力,提高素质”的教育方针,依据“有用、有效、先进”的教改指导原则,对原教材要进行彻底清理,重点放在培养学生的实践能力和创新能力上,同时深刻理解本课程与初等数学的内在联系以指导中学数学的教学。
二、课程基本要求数学史研究的主要对象是历史上的数学成果和影响数学发展的各种因素,如“数学年代”;数学各分支内部发展规律;数学家列传;数学思想方法的历史考察;数学论文杂志和数学经典著作的述评。
该课程要培养学生辩证唯物主义观点,使学生了解数学思想的形成过程,并指导当前的工作,要培养学生学习兴趣,要充分发挥数学史的教育功能。
通过本课程的学习要求学生掌握数学史的分期阶段,对数学的发展各时期有一个大致的了解;了解数学的起源与早期发展;了解古希腊数学对世界数学发展产生的积极影响;要求学生基本掌握中国数学史的分期及各时期的主要数学家与成果,特别是西方数学传入后,中西数学合流产生的影响,较为详细地了解中国现代数学发展概要。
基本掌握外国数学史的分期及各时期的主要成果;要详细了解数学史上的三次危机,掌握代数学、分析学、几何学的主要发展历程以及在这些发展过程中近代哪些数学家起了决定性的作用;了解数学与社会发展、经济发展、文化发展的关系。
数学史概论随着原始社会开始的慢慢发展,人类为了更好的生存,出于对计数、天文、度量甚至是贸易的需求,数学开始起步。
据史料记载,数学的起源有着很很悠久的历史,已知最古老的数学工具是发现于斯威士兰列朋波山的列朋波骨,大约是公元前35,000年的遗物。
它是一支狒狒的腓骨,上面被刻意切割出29个不同的缺口,使用计数妇女及跟踪妇女的月经周期。
相似的文物也在非洲和法国被出现,大约有35,000至20,000年之久,都与量化时间有关。
在我国,儒家就要求学生掌握的六种基本才能:礼、乐、射、御、书、数。
出自《周礼·保氏》:“养国子以道,乃教之六艺:一曰五礼,二曰六乐,三曰五射,四曰五驭,五曰六书,六曰九数。
” 这就是所说的“通五经贯六艺”的“六艺”。
其中,六艺即六经,谓《易》、《书》、《诗》、《礼》、《乐》、《春秋》。
六艺现代解释,包括“礼、乐、射、御、书、数”等六种技艺。
所以我国对数学的研究,在十四世纪以前一直被视为是世界上最发达的国家。
出现过许多杰出数学家,取得了很多辉煌成就。
然而在十六世纪之后,由于各种复杂的社会和政治问题,我国的数学研究便开始停滞,然而世界上很多快速发展的国家,对于数学的研究却发展迅猛。
正如美国的数学史家M.克莱因曾经说过:“一个时代的总的特征很大程度上与这个时代的数学活动密切相关。
这种关系在我们这个时代尤为明显”。
像意大利、德国、英国等国家有大量的数学定理、公式被发现和证明,引领和奠基着社会的快速发展。
数学发展具有阶段性,因此研究者根据一定的原则把数学史分成若干时期。
学术界通常将数学发展划分为以下五个时期:数学萌芽期(公元前600年以前)、初等数学时期(公元前600年至17世纪中叶)、变量数学时期(17世纪中叶至19世纪20年代)、近代数学时期(19世纪20年代至第二次世界大战)、现代数学时期(20世纪40年代以来)。
在漫长的数学发展史中,涌现了很多伟大的数学家,他们用最为简单的数学语言和公式描述了一个个深刻而又复杂的社会现象和思维概念。