典型电气二次回路识图
- 格式:docx
- 大小:10.48 MB
- 文档页数:14
图文分享电工必须知道的30个电气二次回路图“蓝色字”直流母线电压监视装置电路图直流母线电压监视装置主要是反映直流电源电压的高低。
KV1是低电压监视继电器,正常电压KV1励磁,其常闭触点断开,当电压降低到整定值时, KV1失磁,其常闭触点闭合, HP1光字牌亮,发出音响信号。
KV2是过电压继电器,正常电压时KV2失磁,其常开触点在断开位置,当电压过高超过整定值时KV2励磁,其常开触点闭合,HP2光字牌亮,发出音响信号。
图1直流母线电压监视装置电路图直流绝缘监视装置接线图图2是常用的绝缘监察装置接线图,正常时,电压表1PV开路,而使ST1的触点5-7、9-11(ST1的1-3、2-4断开)与ST2的触点9-11接通,投入接地继电器KA。
当正极或负极绝缘下降到一定值时,电桥不平衡使KA动作,经KM而发出信号(若正、负极对地的绝缘电阻相等时,不管绝缘下降多少,KA不可能动作,就不能发出信号,这是其缺点)。
此时,可用2PV进行检查,确定是哪一极的绝缘下降(测“+”对地时,ST2的2-1、6-5接通;测“-”对地时,ST2的1-4、5-8接通。
正常时,母线电压表转换开关ST2的2-1、5-8、9-11接通,电压表2PV可测正、负母线间电压,指示为220V),若正极对地绝缘下降,则投ST1 I档,其触点1-3、13-14接通,调节R3至电桥平衡电压表1PV指示为零伏;再将ST1投至II档,此时其触点2-4、14-15接通,即可从1PV上读出直流系统的对地总绝缘电阻值。
若为负极对地绝缘下降,则先将ST1放在II档,调节3R至电桥平衡,再将ST1投至I档,读出直流系统的对地总绝缘电阻值。
假如正极发生接地,则正极对地电压等于零。
而负极对地指示为220V,反之当负极发生接地时,情况与之相反。
电压表1PV用作测量直流系统的总绝缘电阻,盘面上画有电阻刻度。
由于在这种绝缘监察装置中有一个人工接地点,为防其它继电器误动,要求电流继电器KA有足够大的电阻值,一般选30kΩ,而其启动电流为1.4mA,当任一极绝缘电阻下降到20 kΩ时,即能发出信号。
如何看懂二次回路图?69页PPT分享给大家,打印什么是一次电路?什么是二次电路?首先,我们要知道发电厂和变电所的电气设备分为一次设备和二次设备。
一次设备是构成电力系统的主体,它是直接生产、输送和分配电能的高电压,大电流的设备。
又称主设备。
包括发电机、电力变压器、断路器、隔离开关、输电线路,母线,电流互感器,电压互感器和避雷器等。
一次接线又称电气主接线,主接线是将一次设备按照一定的功能要求,互相连接而成的电路。
二次设备是指对一次设备进行监察,控制,测量,调整和保护的低压设备,又称辅助设备,它包括控制,信号,测量监察,同期,继电保护装置。
安全自动装置和操作电源等设备。
二次电路的组成二次电路对一次设备的工作进行监视、控制、测量、调节和保护。
它的特殊作用决定了它所采用的保护原件不同。
二次电路所配置的仪器如:测量仪表、继电器、控制和信号元件,自动装置、继电保护装置、电流、电压互感器等,按一定的要求连接在一起所构成电气回路。
二次回路的分类A、按电源性质分:交流电流回路:由电流互感器(CT)二次侧供电给测量仪表及继电器的电流线圈等所有电流元件的全部回路。
交流电压回路:由电压互感器(PT)二次侧及三相五柱电压互感器开口三角经升压变压器转换为220V供电给测量仪表及继电器等所有电压线圈以及信号电源等。
直流回路:使用所变输出经变压、整流后的直流电源。
蓄电池---适用于大、中型变、配电所,投资成本高,占地面积大。
B、按用途区分:测量回路、继电保护回路、开关控制及信号回路、断路器和隔离开关的电气闭锁回路、操作电源回路。
操动回路:包括从操动(作)电源到断路器分、合闸线圈之间的所有有关元件,如:熔断器、控制开关、中间继电器的触点和线圈、接线端子等。
信号回路:包括光字牌回路、音响回路(警铃、电笛),是由信号继电器及保护元件到中央信号盘或由操动机构到中央信号盘。
二次回路识图表明二次回路的图称为二次回路图。
二次回路以国家规定的通用图形符号和文字符号表示二次设备的互相连接关系。
断路器控制、信号电路图读图实例如图1为电磁操作灯光监视的断路器控制、信号电路图。
图1 电磁操作灯光监视的断路器控制、信号电路图图中SA为TW2-Z-1a、4、6a、40、20、20/F8型控制开关;KCF为防跳继电器;KM为合闸接触器;YC、YT为合、跳闸线圈。
控制、信号回路动作过程如下:1.断路器的手动控制合闸前,断路器处于“跳闸”位置,控制开关SA置于“跳闸后”位置。
正电源经SA11—10→绿灯HG→断路器辅助触点QF→接触器KM至负电源形成通路,绿灯HG 发平光。
此时KM线圈两端虽有一定电压,但由于HG内附加电阻的分压作用,不足使KM动作。
在合闸回路完好的情况下,将SA置于“预备合闸”位置,HG经SA9—10触点接至闪光母线Ml00(+)上,HG闪光,此时可提醒运行人员核对操作对象是否有误,核对无误后,将SA置于“合闸”位置,SA5—8触点接通,KM线圈通电,其常开触点闭合,接通合闸线圈回路,使合闸线圈YC带电,由操作机构使断路器QF合闸,QF辅助常闭触点断开,绿灯熄灭。
合闸完成后,SA自动复归至“合闸后”位置,正电源经SA16—13触点→红灯HR →QF辅助常开触点→跳闸线圈YT至负电源形成通路。
红灯HR发平光。
同理由于HR 内附加电阻的分压作用,不足使YT动作。
手动跳闸操作时,先将SA置于“预备跳闸”位置,HR经SAl3—14接至Ml00(十)上,HR闪光。
核对操作无误后,再将SA置于“跳闸”位置,SA6—7触点接通,YT线圈通电,经操作机构使断路器跳闸。
跳闸后,QF辅助常开触点断开,HR熄灭SA自动复归至“跳闸后”位置,绿灯HG发平光。
2.断路器的自动控制当自动重合闸装置动作,触点K1闭合后,SA5—8触点被短接,KM通电动作,起动YC,使QF合闸。
此时,SA仍在“跳闸后”位置,Ml00(十)经SAl4—15触点→HR →QF辅助常开触点→YT至负电源形成通路,红灯HR闪光。
所以,SA位于“跳闸后”的水平位置,若HR闪光,表明QF己经合闸。
典型电气二次回路识图 Document number:PBGCG-0857-BTDO-0089-PTT1998
断路器控制回路图
控制回路是二次回路的重要组成部分,电气设备的种类和型号多种多样,控制回路的接线方式也很多,但其基本原理是相似的。
这里以某变电站控制回路图为例,简要说明看图的基本方法。
完整的二次回路原理图一般由四张图构成:原理图—端子图—端子图—原理图。
完整的控制回路图一般包括操作箱接点联系图—保护屏端子图—汇控柜端子图—断路器控制回路图。
按照上述顺序联接。
下面逐一进行说明:
1、操作箱接点联系图
我们以A相合闸回路为例来简要说明一下识图方法(图1)。
图1 A相合闸回路
先来看图上的两种端子:
是箱端子,位于保护装置后侧,
是屏端子,一般位于保护屏后两侧,固定在保护屏上。
图的左边为装置的逻辑回路,右侧相对于逻辑回路标有继电装置的种类及回路名称。
如图中根据回路名称,我们可以快速找到A 相合闸回路,其中包括跳位监视回路、合闸回路、防跳回路。
跳位监视回路从正电源101通过4D62屏端子接至4n76箱端子,通过跳闸位置继电器TWJa接至4n44,并引至屏端子4D168,从屏端子通过电缆连接至断路器操作机构箱。
图中的7A为回路编号(功能相同的回路在不同型号的设备中都有统一编号,比如合闸回路的编号一般为7,跳闸回路编号一般为37)。
合闸回路的启动靠手动合闸继电器SHJ或重合闸继电器ZHJ,手合命令发出后启动SHJ,重合闸命令发出后启动ZHJ,然而合闸命令只是一个脉冲,保证合闸回路导通直至断路器合上的是合闸保持继电器HBJa。
SHJ或ZHJ发出合闸脉冲后,HBJa线圈励磁,启动合闸回路的HBJa长开接点,这时合闸回路靠HBJa接点继续导通,直至A相合闸成功,机构箱内的合闸回路断开,HBJa线圈失磁,HBJa长开触点才断开,切断合闸回路。
图中1TBJa为跳跃闭锁继电器,它有两个线圈,一个是电流启动线圈,串联在跳闸回路中,以便当继电保护装置动作于跳闸时,使1TBJa可靠的启动。
一个是防跳回路中的电压保持线圈,其主要作用是在继电器动作后能可靠地自保持。
直到SHJ或ZHJ返回,
1TBJa的电压线圈失电为止,1TBJa继电器复归。
使用1TBJa与
2TBJa这两组接点是为了增加回路的可靠性。
2、保护屏端子图
端子图是表示屏与屏之间电缆的连接和屏上设备连接情况的图纸(图2)。
图2 保护屏端子图
端子排上的4D等为端子排编号.以端子排4D为例,其中间编号1、2、3…167、168、169…为端子排的顺序号。
端子排4D左侧的标号,是到屏内各设备的编号,如4D169左侧的4n161,表示到屏上装的设备标号为4n的装置的第161号接线柱(图3)。
图3
同样,屏上设备4n的第161号编号接线柱也应标有到端子排的标号,即4D169(图4)。
图4
端子排4D右侧标明了引出电缆的去向。
如4D168接的是回路
7A,用编号为120A的电缆与B、C相合闸回路7B、7C一同引出至本线路机构箱(图5)。
图5
3、汇控柜端子图
图6 汇控柜端子图
在汇控柜端子图上(图6),我们找到“至本线路光纤电流差动保护柜”的电缆,电缆编号为120A,和保护屏端子图后的电缆编号一致。
顺着电缆找到端子排接线柱I2-1,I2-2,I2-3,也分别标明合闸回路编号7A,7B,7C,我们仍然以A相为例,I2-1引至10A02。
4、断路器控制回路
图7 断路器控制回路
断路器控制回路中绘制的是控制回路图中汇控柜及机构箱内的部分(图7)。
我们先把图中的各部件简要作一下说明。
图中的43R1为就地/远方把手(图8),选择操作方式是远方还是就地。
SRCA为合闸线圈的辅助电阻,其作用是分流,防止合闸线圈因电流过大而烧毁。
CB1A 为断路器的辅助触点(图9)。
CCA 为合闸线圈(图10)。
63Q3X1,63Q3X2为油压力接点,63G1X1为SF6压力接点,保证油压和SF6压力在正常范围内才能接通回路。
图8 就地/远方把手
图9 断路器的辅助触点
图10 跳合闸线圈
图11 油压力接点
根据图7中上部的回路名称合闸回路(7A),找到10A02,接至断路器远控/近控把手43R1。
图7中的CB1-1A,CYA接点为汇控柜内的远方防跳回路,但因为我们一般情况下都是使用操作箱内的防跳回路,此远方防跳回路并没有接入。
当操作把手打至远动位置时,标有“远”的接点闭合,“就”接点打开,合闸命令从10A02接点前的操作箱传过来。
当操作把手打至“就地”位置时,标有“就”的接点闭合,“远”的接点打开,合闸命令电源取自101(PS21)经43R1的就地接点接至合闸按钮。
按下合闸按钮,图中“合”接点闭合,接通合闸回路。
刀闸控制回路:
图12 刀闸控制回路
电动刀闸的分合依靠电机的正转或反转。
如果刀闸操作回路中的操作电源是直流,电机的正转、反转通过正负极的正接和反接实现,如果操作电源是交流,电机的正转、反转通过A/B/C三相的相序排列不同来实现,但其接通的基本原理都是相同的。
图12中的电机M为交直流两用电机,在本处使用直流电源。
我们来看看电机操作电源的正负极是如何导通带动电机旋转的(此处的正转/反转是相对而言,并无统一标准)。
电机M正转时,其D2端接正极,D1端接负极。
电源正极B3通过KE1的长开接点33/34接至电机M的D2端,再从M的D1端引出,依次通过KE1的长开接点23/24,KA1的长闭接点71/72导通至负极N。
可以看出来,电机正转的条件是合闸辅助继电器KE1线圈励磁,分闸辅助继电器KA1线圈失磁。
电机反转时,电机D1端应接通正极,D2端应接通负极,这时候电源正极B3通过KA1的长开接点 33/34接至电机M的D1端,再从D2端引出,依次通过KE1的长闭接点71/72,KA1的长开接点23/24导通至负极N。
电机反转的条件是分闸辅助继电器KA1线圈励磁,合闸辅助继电器KE1线圈失磁。
线圈KE1,KA1的导通和失电在刀闸的控制回路中实现。
以合闸操作为例,合闸操作时,KE1线圈需励磁,即合闸回路需导通。
KA1的51/52接点因线圈KA1处于失磁状态闭合,刀闸行程开关SF1在刀闸分位时闭合,当满足刀闸操作的逻辑条件时,逻辑接点K15闭合。
遥控或现场操作由远控/近控转换开关SA1实现,当通过K1接点给出合闸脉冲时,线圈KE1励磁,KE1的自保持接点43/44闭合,保证KE1处于励磁状态,直到刀闸合到位之后行程开关SF1的常闭接点断开,切断合闸回路。
刀闸的分闸回路可参照合闸回路分析。
合闸线圈KE1和分闸线圈KA1通过KE1的51/52接点和
KA1的51/52接点互相闭锁,防止两线圈同时励磁。
断路器失灵保护
失灵保护的启动
失灵保护一般由线路保护中的失灵辅助装置提供失灵启动接点。
图13 失灵启动回路
从图13中可以看出线路的失灵启动接点闭合的条件:
1、有故障电流存在,即SLA,SLB,SLC,或SL2-2长开接点闭合;
2、A/B/C相启动失灵压板1LP9,1LP10,1LP11和三相启动失灵压板8LP3投入;
3、断路器的跳闸出口接点TJA ,TJB,TJC或三跳出口接点
TJQ/TJR闭合。
以上三条件满足,启动该断路器所连母线的失灵出口逻辑。
以PB-2B母差保护为例,母差失灵出口回路如图14所示:
从开关保护装置接入的失灵启动接点通过刀闸位置判断,第一延时跳开母联开关,第二延时经母差的复压闭锁开入接点跳相应母线上的所有设备。
图14 母差失灵出口回路
液压机构储能回路
图15 液压机构储能回路
当液压机构的压力降低时,靠油泵压力打压储能。
如图15所示,油泵运转的条件为KM1,KM2线圈的长开接点闭合。
那么我们来看一下KM1,KM2线圈的励磁条件。
在油泵的启动和停止回路中,包括压力继电器PSY的常闭接点1/2,常开接点7/8,及时间继电器KT的常闭接点55/56。
当压力不高于28时,PSY1/2的常闭接点闭合,保证油泵油压保持在安全范围。
当压力值降低至25时,PSY7/8的长开接点闭合,油泵开始打
复压闭锁
跳闸线路
短延时
失灵启动
I母刀闸位置
II母刀闸位置
长延时
跳母联
跳母线
压,当压力值达到26时,PSY7/8的长开接点打开,油泵停止打压。
当压力接点都导通时,KT时间继电器线圈励磁,其常闭接点经180S延时后打开,切断打压回路。