3.1.2 龙格-库塔法
3. 计算所有变量的第三个RK系数向量
k3
k4
x h k 0 1 1 0.1 0.1 0.0975 k k 3 13 A 10 12 k23 x20 2 k22 2 0.5 0 2 1.95 1.96125
3.1.2 龙格-库塔法
t0 0, x0 1
2 k1 f (0, x0 ) x0 1
h h h 2 k 2 f ( , x0 k1 ) ( x0 ) 0.9025 2 2 2 h h h 2 k3 f ( , x0 k 2 ) ( x0 0.9025 ) 0.9118 2 2 2
h t2 0.2 , x2 x1 (k1 2k2 2k3 k4 ) 0.8333 6
h t10 1 , x10 x9 (k1 2k 2 2k3 k 4 ) 0.5000 6
3.1.2 龙格-库塔法
四、矩阵分析法(RK4解状态方程)
二阶、单步、显式
3.1.2 龙格-库塔法
一、龙格-库塔(Runge-Kutta)积分算法思路 间接利用泰勒展开式。用在若干个点上函数值
f(t,y) 的线性组合来代替高阶导数项,既可以避免计
算高阶导数,又可以提高数值计算精度。
3.1.2 龙格-库塔法
二、二阶Runge-Kutta法
xn 1 xn hk2 k1 f (tn , xn ) h h k2 f (tn , xn k1 ) 2 2
显式算法:计算 xn+1 时,没有用到 tn 时刻以后的状态或输入。