石墨烯报告
- 格式:ppt
- 大小:2.76 MB
- 文档页数:40
石墨烯调研报告(石墨烯纤维应用)1.新型功能纤维石墨烯纤维的柔性使其可以被编织成各种宏观自支撑的编织物(图3)或掺到棉纺织物中,具有良好的导电性以用在电子纺织物上。
同时可以根据需要制成各种特殊形状的器件,如可伸缩的弹簧,透明、导电复合膜等。
因为石墨烯纤维具有很好的导电性和高的弹性,可以用在柔性导线上。
Gao 等证明银掺杂石墨烯纤维可拉伸150%。
即便在通电情况下,伸缩过程也不会对纤维结构造成破坏。
2.石墨烯纤维驱动器能够快速、可逆地响应环境刺激,并具有形状可控能力的智能材料日益受到关注。
以石墨烯为基础的材料显示出很多适合于驱动器的性能。
与碳纤维相比,石墨烯纤维弹性好,易编织,质量轻并且更容易被修饰的特点。
这使得石墨烯纤维在非传统的柔性器件中具有更大的应用优势。
最近,制成了具有双层结构的石墨烯/聚吡咯(PPy)电化学纤维驱动器。
用其可制成多臂的镊子和网状驱动器,这些驱动器将在生物研究等领域有很大的应用前景。
Qu课题组用激光定位还原氧化石墨烯纤维的方法制成了石墨烯/氧化石墨烯(G/GO)不对称纤维。
G/GO 纤维对湿度非常敏感。
在潮湿环境中显示出复杂的、可控的并能按预期发展的形变。
进而用G/GO纤维可以制作概念性的新型纤维行走机器人,可以在两个载玻片之间移动。
原理上,这个概念型机器人的行走速度可以通过调整相对湿度的交替周期和器件的长度来加快。
3.石墨烯纤维马达常规的石墨烯纤维中,石墨烯片往往沿着纤维方向排列。
将刚纺出的氧化石墨烯纤维水凝胶进行旋转加工,就获得螺旋的石墨烯纤维,见图4(a)。
由于含氧官能团的存在,在一定湿度下,氧化石墨烯发生水分子的吸附与脱附现象,造成石墨烯层间可逆的膨胀与收缩,从而诱发纤维的旋转运动,成为石墨烯马达。
因此,当相对湿度交替变化时,螺旋型氧化石墨烯纤维能够发生可逆的旋转,见图4(b)。
最大旋转速度可达到5190 r·min-1。
这种扭转石墨烯纤维(TGF)可以用作新型的湿度开关。
石墨烯调研报告(石墨烯量子点)零维的石墨烯量子点(grapheme quantum dots, GQDs),由于其尺寸在10nm以下,同二维的石墨烯纳米片和一维的石墨烯纳米带相比,表现出更强的量子限域效应和边界效应,因此,在许多领域如太阳能光电器件,生物医药,发光二极管和传感器等有着更加诱人的应用前景。
GQDs的制备GQDs具有特殊的结构和独特的光学性质,即有量子点的光学性质又有氧化石墨烯特殊的结构特征。
GQDs的粒径大多在10 nm左右,厚度只有0.5到1.0 nm,表面含有羟基、羰基、羧基基团,使得其具有良好的水溶性。
GQDs的制备方法有自上而下法(top-down)与自下而上法(bottom-up)两种。
top-down 法指将大片的石墨烯母体氧化切割成尺寸较小的石墨烯纳米片,经进一步剪切成GODs,主要有水热法、电化学法和化学剥离碳纤维法。
水热法是制备GQDs最为常见的一种方法,先将氧化石墨烯在氮气保护下热还原为GNSs,接着将GNSs置于混酸(混酸体积比VH2SO4/VHNO3 =1:3)中超声氧化,再将氧化的GNSs置于高压反应釜中200℃热切割。
反应机理如图3所示,Pan等采用该方法化学切割石墨烯制备GQDs,其径主要分布在5-14 nm,并发现量子点在紫外区有较强光学吸收,吸收峰尾部扩展到可见区。
光致发光光谱一般是宽峰并且与激发波长有关,当激发波长从300到407 nm变化,发射峰向长波方向移动,激发波长为60nm时,量子点发出明亮的蓝色光,此时发射峰最强。
图3. 水热法制备GQDs反应机理Fig. 3 mechanism for the preparation of GQDs by hydrothermal methodJin等采用两步法,先用水热法制备出GQDs,再将聚乙二醇二胺修饰到GQDs 上。
该法制备的胺功能化的石墨烯量子点可通过功能化物的迁移效应有效地调节石墨烯量子点的光致发光性能。
第1篇一、实验背景石墨作为一种重要的碳质材料,在工业、科研等领域具有广泛的应用。
本实验旨在通过对石墨样品的分析,了解其化学组成、结构特性以及相关性能,为石墨的进一步研究和应用提供数据支持。
二、实验目的1. 确定石墨样品的化学组成。
2. 分析石墨的结构特性。
3. 评估石墨的性能指标。
4. 探讨石墨的制备方法和应用前景。
三、实验方法本实验主要采用以下方法进行石墨分析:1. 化学分析方法:通过X射线荧光光谱(XRF)和原子吸收光谱(AAS)等手段,对石墨样品进行化学组成分析。
2. 结构分析方法:采用X射线衍射(XRD)和扫描电子显微镜(SEM)等手段,对石墨的结构特性进行分析。
3. 性能分析方法:通过电学测试、力学测试等方法,评估石墨的性能指标。
4. 制备方法研究:探讨不同制备方法对石墨性能的影响。
四、实验结果与分析1. 化学组成分析:XRF和AAS结果表明,石墨样品主要由碳元素组成,并含有少量杂质,如硅、铝、铁等。
2. 结构特性分析:XRD和SEM结果表明,石墨样品具有良好的层状结构,层间距约为0.34纳米。
石墨烯层间存在少量缺陷,如石墨烯层间的空隙、石墨烯层内的杂质等。
3. 性能指标分析:电学测试结果显示,石墨样品的电阻率为0.05Ω·m,导电性能良好。
力学测试结果显示,石墨样品的弯曲强度为150MPa,具有良好的力学性能。
4. 制备方法研究:通过对比不同制备方法制备的石墨样品,发现微机械剥离法制备的石墨样品具有更好的结构特性和性能。
五、实验结论1. 本实验成功地对石墨样品进行了化学组成、结构特性和性能指标分析。
2. 石墨样品具有良好的层状结构,层间距约为0.34纳米,并含有少量杂质。
3. 石墨样品具有良好的导电性能和力学性能。
4. 微机械剥离法制备的石墨样品具有更好的结构特性和性能。
六、实验讨论1. 本实验采用多种分析方法对石墨样品进行了全面分析,为石墨的进一步研究和应用提供了数据支持。
2024年石墨烯报告研究•石墨烯概述与基本特性•2024年石墨烯市场现状及趋势分析•石墨烯在能源领域应用研究进展•石墨烯在生物医学中应用前景探讨目•石墨烯在复合材料中增强作用研究•挑战、机遇与政策建议录石墨烯概述与基本特01性石墨烯定义及结构石墨烯定义石墨烯是一种由单层碳原子以sp2杂化方式形成的二维材料,具有蜂窝状晶格结构。
结构特点石墨烯的每个碳原子通过σ键与相邻的三个碳原子连接,形成稳定的六边形结构;剩余的π电子形成离域大π键,赋予石墨烯优异的电学和热学性能。
电学性能石墨烯具有零带隙半导体特性,载流子迁移率高,电导率高。
热学性能石墨烯具有极高的热导率,优于大多数已知材料。
力学性能石墨烯的强度极高,是已知材料中强度最高的之一。
化学稳定性石墨烯具有较高的化学稳定性,但在特定条件下可发生化学反应。
基本物理和化学特性利用胶带反复剥离石墨片层,得到单层或多层石墨烯。
机械剥离法在高温下,利用含碳气体在金属基底上分解生成石墨烯。
化学气相沉积法(CVD )通过化学方法将石墨氧化成氧化石墨,再还原成石墨烯。
氧化还原法利用溶剂与石墨之间的相互作用力,将石墨剥离成单层或多层石墨烯。
液相剥离法制备方法简介石墨烯可用于制造高速、高灵敏度的电子器件,如晶体管、传感器等。
电子器件能源存储与转换复合材料生物医学石墨烯可用于制造高性能的电池、超级电容器等能源存储器件,以及燃料电池等能源转换器件。
石墨烯可与其他材料复合,提高复合材料的力学、电学、热学等性能。
石墨烯可用于生物医学领域,如生物成像、药物输送、组织工程等。
应用领域概览2024年石墨烯市场02现状及趋势分析全球市场规模与增长趋势市场规模根据研究数据,2024年全球石墨烯市场规模已达到数十亿美元,并且呈现出快速增长的态势。
增长趋势随着石墨烯制备技术的不断成熟和应用的不断拓展,预计未来几年全球石墨烯市场将继续保持高速增长,年复合增长率有望达到20%以上。
中国作为全球最大的石墨烯生产国,中国在石墨烯领域的研究、开发和产业化方面取得了显著进展,已形成了完整的产业链和庞大的市场规模。
石墨烯研究报告石墨烯是一种由碳原子薄层构成的材料,具有许多独特的物理和化学性质,使其在电子学、电磁学、力学和光学领域中展现出重要的应用前景。
近年来,石墨烯的研究迅速发展,在各个领域中都取得了重要的成果和突破。
一、最新石墨烯研究成果1.提高石墨烯量子化合成效率的新方法石墨烯量子化合成是一种利用金属催化剂在气相中将碳原子聚集成石墨烯的方法。
由于石墨烯的高表面能和化学惰性,使其在制备过程中难以控制,从而导致反应产物不确定、量子化合成效率低下等问题。
为了解决这个问题,研究人员提出了一种新的方法——在反应过程中加入适量的乙烯,可以有效提高石墨烯的量子化合成效率。
根据发表在ACS Nano上的最新研究论文,使用这种新方法制备的石墨烯,结晶度更高、结构更完整,并具有更好的导电性能和可控性。
2.石墨烯在DNA纳米电子学中的应用DNA纳米电子学是一种与基因组学、纳米技术和电子学相关的交叉学科领域。
最近,研究人员发现,石墨烯可以用于制备DNA纳米电子学中的电极、传感器和探针等。
这是因为石墨烯具有高度可调控的电导性和相对稳定的生物相容性。
关于这一点,Research Fellow Krishnan Shrikanth博士在接受媒体采访时表示,“我们的研究解决了DNA转录的可控和准确性问题,同时也展现出石墨烯在基因测序、基因诊断和纳米药物递送中的潜力。
”3.利用石墨烯改善水氧化还原反应效率的新途径水氧化还原反应是一种非常重要的电化学反应,具有广泛的应用领域,如能源、环境和化学生产等。
由于石墨烯具有高表面积、良好的电化学特性和生物相容性等独特性质,近年来被广泛应用于水氧化还原反应中。
最近,研究人员发现,通过控制石墨烯与金属离子的相互作用,可以实现更高效的水氧化还原反应。
这种新途径将在开发新型电化学催化剂和改进电池和燃料电池等重要应用方面具有重要的作用。
二、石墨烯的应用前景石墨烯在电子学、电磁学、力学和光学领域中具有重要的应用前景,其中一些可能打破传统技术的局限。
石墨烯调研报告〔石墨烯纤维〕碳纤维因其质量轻、机械强度大及性能稳定的特点在生活中被广泛使用。
但仍存在本钱高,脆性高等缺点。
石墨烯是一种由碳原子构成的单层蜂窝状构造的材料,是其他维度碳材料的构造根底。
石墨烯具有很多独特的性质,如高电子迁移率、高导热系数、良好的弹性和刚度等。
因此,将石墨烯组装为宏观的功能构造如纤维等,是实现石墨烯实际应用的重要途径。
近年来成功合成石墨烯纤维的例子及其在某些特别应用上发挥的重要作用激发了人们的争辩兴趣。
一维石墨烯纤维不仅是对二维薄膜和三维石墨烯块的补充,而且对纺织功能材料和器件的进展具有格外重要的作用。
本文中将对石墨烯纤维的争辩现状和进展进展综述和展望。
主要争辩石墨烯纤维的可把握备、功能性修饰及其在非传统器件〔如柔性纤维状驱动器、机器人、马达、光伏电池和超级电容器〕等方面的应用。
石墨烯纤维的制备1.1液晶相湿法纺丝法争辩觉察,可溶性氧化石墨烯片可以形成液晶相,呈现片状排列或螺旋构造,这使制备宏观石墨烯纤维成为可能。
这种液晶构造能够使氧化石墨烯在足够高的浓度下分散,适合高效分散成型。
高成明等用注射器将石墨烯分散液注射到质量分数为5%的氢氧化钠/甲醇溶液中,制成了均匀的氧化石墨烯纤维。
然后,承受氢碘酸化学复原的方法得到了石墨烯纤维。
尽管该方法制得的纤维强度有待提升,但这种湿法纺丝法具有大规模生产石墨烯纤维的潜能。
于虹等随后证明可以用氧化石墨烯悬浮液做为原料,流体纺丝后经化学复原制备石墨烯纤维,并提出了卷曲-折叠构造氧化石墨烯纤维的机理。
该湿法纺丝技术促进了石墨烯与其他有机、无机材料复合纤维的多功能化进展。
湿法纺丝制得的氧化石墨烯纤维拉伸强度相对较低,这与纤维轴向的氧化石墨烯层的内部排列有关。
为了解决这一问题,Tour 争辩组用大片氧化石墨烯〔平均直径22μm〕做为湿法纺丝的原料合成纤维。
结果说明,这样制得的纤维拉伸模量比之前的方法高出一个数量级,纤维具有100%的高打结率。
石墨烯环评报告1. 简介本报告是对石墨烯的环境评价报告,旨在评估石墨烯生产和使用过程中的环境影响,为相关部门和利益相关方提供决策和管理依据。
石墨烯是一种由单层碳原子构成的二维晶体材料,具有优异的电学、热学和力学性能。
其在电子学、光电子学、能源存储和生物医学等领域具有广泛的应用前景。
然而,石墨烯生产和使用过程中也存在一定的环境风险和影响,因此有必要进行环境评价。
2. 生产过程2.1 原材料准备石墨烯的生产过程通常需要使用石墨作为原材料。
石墨是一种天然矿物,其开采和提纯过程可能对土壤和水源造成一定的污染风险。
2.2 石墨烯制备石墨烯的制备过程可以采用多种方法,包括机械剥离、化学气相沉积和化学氧化还原法等。
这些方法在不同程度上会产生废弃物或有害气体。
2.3 石墨烯应用石墨烯的应用主要集中在电子领域,如半导体器件、传感器和储能设备等。
在这些应用过程中,可能会产生废弃物和有害气体,对环境造成影响。
3. 环境风险评估3.1 大气环境石墨烯生产和使用过程中可能会排放气体,如二氧化硫、氮氧化物和挥发性有机物等。
这些气体对大气环境造成污染,对人体健康和生态系统产生潜在影响。
3.2 水环境石墨烯生产和使用过程中的废水可能含有一定量的有毒物质,如重金属离子和有机污染物等。
这些物质如果未经处理直接排放到水体中,可能对水生生物和水源造成污染。
3.3 土壤环境石墨烯生产和使用过程中可能会排放废弃物或化学物质,如果未经妥善处理就直接排放到土壤中,可能对土壤质量产生不利影响,并可能进一步对植物和生态系统造成危害。
4. 环境管理措施4.1 原材料管理对原材料进行甄别和筛选,选择环境友好型的原材料,并确保采购渠道合法和可靠。
4.2 生产流程管理对石墨烯的制备过程进行优化,减少废弃物和有害气体的生成。
采用环保设备和技术手段,如废气处理装置和废水处理系统等。
4.3 废弃物管理对废弃物进行分类、储存和处理,最大限度地减少对环境的不利影响。
石墨烯检测报告(一)引言概述:石墨烯作为一种新兴的材料,在科学研究和工业应用领域得到了广泛关注。
本文将就石墨烯的检测方法进行深入探讨,包括石墨烯的制备和表征技术,以及常见的石墨烯探测手段。
正文内容:1. 石墨烯的制备技术- 机械剥离法:通过机械剥离石墨烯原料,如石墨,来获得单层或多层的石墨烯片段。
- 化学气相沉积法:在高温下,通过热解石墨烯前体气体,沉积在衬底上,实现石墨烯的制备。
- 液相剥离法:利用氧化剂或还原剂对石墨进行化学反应,使石墨烯分散在液体中,并通过过滤得到石墨烯材料。
2. 石墨烯的表征技术- 原子力显微镜(AFM):通过扫描样品表面,测量力的变化,获得石墨烯片层的拓扑结构和高度信息。
- 透射电子显微镜(TEM):利用电子束穿透样品,观察和分析石墨烯的晶体结构和缺陷情况。
- X射线光电子能谱(XPS):通过测量材料中的光电子能谱,分析材料的化学成分和电子结构。
- 拉曼光谱:利用激光与样品反射、散射和吸收的变化,分析石墨烯的结构和化学键的振动模式。
- 热重分析(TGA):通过测量材料随温度的质量变化,分析石墨烯的热分解过程和热稳定性。
3. 石墨烯的电学性质检测- 电导率测量:通过测量石墨烯样品的电阻,计算出其电导率,评估石墨烯的导电性能。
- 能带结构分析:利用光电子能谱等技术,研究石墨烯样品的能带结构,探究其导电机制。
- 场效应晶体管测量:利用场效应晶体管(FET)结构,测量石墨烯的电流-电压特性,评估其在电子器件中的应用潜力。
- 导电性显微镜:结合原子力显微镜,对石墨烯样品进行局部电流密度的测量,探究其导电特性的空间分布。
4. 石墨烯的力学性质检测- 纳米压痕测试:利用纳米压痕仪,测量石墨烯的硬度和弹性模量,评估其力学特性。
- 拉伸测试:通过拉伸试验机,对石墨烯进行拉伸破裂实验,获得其拉伸强度和断裂应变。
- 厚度测量:利用原子力显微镜等技术,测量石墨烯的厚度,评估其层间结构和单层特性的存在情况。
石墨烯综述1.1石墨烯概述石墨烯(Graphene)作为一种平面无机纳米材料,在物理、化学、科技、数码方面的发展都是极具前景的。
它的出现为科学界带来极大的贡献,机械强度高,导热和导电功能极具优势,原材料来源即石墨也相当丰富,是制造聚合复合物的最佳无机纳米技术。
由于石墨烯的运用很广泛,导致在工业界的发展存在很严重的一个问题就是其制作过程规模浩大,所以应该将其合理地分散到相应的聚合物内部,达到均匀分布的效果,同时平衡聚合物之间的作用力。
石墨烯的内部结构是以碳原子以sp 2杂化而成的,是一种单原子结构的平面晶体,其以碳原子为核心的蜂窝状结构。
一个碳原子相应的只与非σ键以外的三个碳原子按照相应的顺序连接,而其他的π则相应的与其他的的碳原子的π电子有机地组成构成离域大π键,在这个离域范围内,电子的移动不受限制,因为此特性使得石墨烯导电性能优异。
另一方面,这样的蜂窝状结构也是其他碳材料的基础构成元素。
如图1-1 所示,单原子层的最外层石墨烯覆盖组成零维的富勒烯,任何形状的石墨烯均可以变化形成壁垒状的管状[1]。
因为在力学规律上,受限于二维晶体的波动性,所以任何状态的石墨烯都不是平整存在的,而是稍有褶皱,不论是沉积在最底层的还是不收区域限制的。
,如图1-2 所示,蒙特卡洛模拟(KMC)做出了相应的验证[3]。
上面所提的褶皱范围在横向和纵向上都存在差异,这种微观褶皱的存在会在一定程度上引起静电,所以单层的会很容易聚集起来。
同时,褶皱的程度也会相应的影响其光电性能[3-6]图1-1. 石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维碳纳米管,也可堆叠形成三维的石墨[7]。
Figure 1-1. Graphene: the building material for other graphitic carbon materials. It can be wrapped up into 0D buckyballs, rolled into 1D nanotubes or stacked into 3D graphite[7].图 1-2. 单层石墨烯的典型构象[1]。
石墨烯行业报告石墨烯是一种新型的碳材料,具有独特的结构和性能,被誉为21世纪的“黑金”。
自2004年被发现以来,石墨烯已经引起了全球范围内的广泛关注,被认为是未来科技领域的重要突破之一。
本报告将对石墨烯行业的发展现状、市场规模、应用领域以及未来发展趋势进行深入分析。
1. 石墨烯行业的发展现状。
石墨烯作为一种新兴材料,其研发和产业化进程仍处于起步阶段。
目前,全球范围内的石墨烯产业主要集中在美国、英国、中国等国家和地区。
在研发方面,各国科研机构和企业纷纷投入大量资金和人力资源进行石墨烯的研究,取得了一系列重要的科研成果。
在产业化方面,石墨烯的商业化应用仍面临诸多挑战,但也取得了一些进展。
2. 石墨烯行业的市场规模。
随着石墨烯技术的不断成熟,石墨烯市场规模逐渐扩大。
据统计,2019年全球石墨烯市场规模达到了约2.5亿美元,预计未来几年将保持较快的增长速度。
石墨烯在电子、材料、能源、医疗等领域的应用需求不断增加,为石墨烯市场的扩大提供了有力支撑。
3. 石墨烯行业的应用领域。
石墨烯具有优异的导电、导热、机械强度等性能,被广泛应用于电子器件、材料改性、能源存储、生物医药等领域。
在电子器件方面,石墨烯可以制备出高性能的柔性显示屏、传感器、光伏电池等产品;在材料改性方面,石墨烯可以提高材料的强度、导热性和阻燃性能;在能源存储方面,石墨烯可以制备出高性能的锂离子电池、超级电容器等产品;在生物医药方面,石墨烯可以用于药物输送、诊断成像等应用。
4. 石墨烯行业的未来发展趋势。
未来,石墨烯行业将继续保持快速发展的态势。
随着石墨烯技术的不断进步,石墨烯的成本将进一步降低,应用领域将进一步拓展。
同时,石墨烯与其他材料的复合应用也将成为未来的发展趋势,为石墨烯行业带来新的增长点。
此外,政府的支持政策和产业链的完善也将促进石墨烯行业的健康发展。
综上所述,石墨烯作为一种新型材料,具有巨大的发展潜力。
随着技术的不断进步和市场的不断扩大,石墨烯行业将迎来更加广阔的发展空间。