关于直流电源系统级差配合
- 格式:ppt
- 大小:165.50 KB
- 文档页数:32
直流系统级差配合前言随着我国电力工业的不断进步,电力系统向超高压、大容量方向发展,为这些大容量电力设备提供控制、保护、信号、操作电源,直流系统的安全、可靠、经济运行就必须提到一个新的高度。
正常运行时,直流系统为断路器提供合闸电源,为继电保护及自动装置、通讯等提供直流电源;故障时,特别是交流电源中断情况下,直流系统为继电保护及自动装置、断路器合跳闸、事故照明提供安全可靠的直流电源,是电力系统继电保护、自动装置和断路器正确动作的基本保证。
在直流回路中,熔断器、断路器是直流系统各出线过流和短路故障主要的保护元件,可作为馈线回路供电网络断开和隔离之用,其选型和动作值整定是否适当以及上下级之间是否具有保护的选择性配合,直接关系到能否把系统的故障限制在最小范围内,这对防止系统破坏、事故扩大和主设备严重损坏至关重要。
因此,加强熔断器、断路器选择及配置的准确性,对提高电力系统运行的安全可靠性具有重要意义。
1 级差配合存在的主要问题由于变电站直流系统供电内容多,回路分布广,在一个直流网络中往往有许多支路需要设置断路器或熔断器进行保护,并往往分成三级或四级串联,这就存在着正确选择保护方案和保护上下级之间的配合问题。
1.1 交直流断路器混用由于交、直流的燃弧及熄弧过程不同,额定值相同的交直流断路器开断直流电源的能力并不完全一样,用交流断路器代替直流断路器或交、直流断路器混用是保护越级误动的主要原因之一。
断路器瞬时动作采用磁脱扣原理,判据为通过的电流峰值,断路器标定的额定值为有效值,而交流电的峰值高于有效值,在相同定值下,在直流回路中交流断路器实际额定值高于直流断路器。
另外,因交流断路器与直流断路器灭弧原理不同,交流断路器用于直流回路不能有效、可靠地熄灭直流电弧,容易造成上级越级动作。
1.2 熔断器质量及参数问题各生产厂家提供的熔断器技术数据是在产品型式试验时得到的,且校验熔断器的分断能力是在交流电源周期分量有效值下做的,熔体动作选择配合特性曲线也是交流安秒特性曲线。
水利电力科技风2016年10月上D 01:10.19392/j .cnki .l 671-7341.201619112变电所低压直流系统开关设备级差配合的研究徐政黄涛秦福兴长春工程学院电气与信息学院吉林长春130012摘要:依据变电所直流系统典型的上下级之间的配合情况,以现场常用断路器和熔断器为试验样品,进行级差配合试验。
通过试验数据,提出级差配合的具体配置原则,确保变电所直流系统回路故障时有选择性地切除故障回路,把系统的故障限制在最小范围内,维护系统安全运行a关键词:变电所;直流系统;开关设备;级差配合变电所直流系统供给站内继电保护及安全A 动装置、控制信吁回 路、事故照明等工作电源,是继电保护、自动装置和断路器正确动作的 基本保证。
n 甜,断路器和熔断器足变电所直流电源系统中使用最广泛的主要保护电器,在回路故障时有选择性地切除故障回路,把系统的故障限 制在最小范围内。
断路器和熔断器往往需要多级串联使用,其上下级之间具有选择 性保护是保证电力系统安全可靠运行的茧要条件。
M 内电力系统发生 多起变电站低丨f ;:直流系统儿关设备因上下级失去了配合关系,而造成 故障扩大的事故。
这种隐患严贯威胁着系统的安全运行,:要从根本上 解决此类间题。
n 前,直流系统保护元件级差配合存在的主要问题有以下四个方面:1)变电所直流系统的终端控制屏和保护屏中,尚存在着不少用交流断路器代替直流断路器的现象,存在着不安全的隐患。
交流断路器用 于直流回路,造成实际定俏偏大,4上级实际级差变小,2) 熔断器本身不规范,熔体的分散性和内阻不一致。
3) 产品质量问题。
目前W 内低W 电器也产厂家过多,质量难以保证◎4) 上下级间的额定值级差选择不当。
对于直流断路器之间、直流断路器与熔断器之间的级差配合照搬 熔断器间的配介规定。
熔断器与直流断路器动作原现不冋,安秒特性曲 线不同,配合级差也不苘s 另外仅选择两段保护直流断路器作保护操作 电器的直流系统,在一定条件下存在着上下级配合不可靠的隐患。
附件1 空开级差配合要求注:本内容参考《南方电网公司变电站直流电源系统技术规范》(2012年修订)1 直流电源系统支路直流熔断器和直流断路器级差配合原则如下:1.1 变电站所有直流负荷必须带直流保护电器。
根据工程具体情况,可采用直流熔断器,甚至熔断器和直流断路器混用,但应注意上下级之间的配合。
当直流断路器与熔断器配合时,应考虑动作特性的不同,对级差做适当调整。
直流断路器下一级不宜再接熔断器。
1.2 上、下级均为直流断路器的,额定电流宜按照4级及以上电流级差选择配合。
1.3 蓄电池出口为熔断器,下级为直流断路器的,宜按照2倍及以上额定电流选择级差配合。
1.4 变电站内设置直流保护电器的级数不宜超过4级。
1.5 500kV变电站当设置直流分电屏时,直流主馈电屏宜采用塑壳式直流断路器。
2 直流电源系统的直流断路器、熔断器典型配置方案推荐如下:2.1 300Ah蓄电池出口可采用额定电流315A的熔断器;500Ah蓄电池出口可采用额定电流400A的熔断器;800Ah蓄电池出口可采用额定电流630A的熔断器。
2.2 60A充电装置总输出可采用额定电流80A的直流断路器;80A 充电装置总输出可采用额定电流100A的直流断路器;120A充电装置总输出可采用额定电流160A的直流断路器。
2.3 保护装置、测控装置、故障录波、PMU、安全自动装置等二次设备和断路器控制回路宜采用额定电流不大于6A直流断路器。
资料性附录附录1熔断器-自动空气开关的特性配合当预期的短路电流较大、且超过自动空气开关的额定分断能力时,或系统短路电流过大没有可供选择的自动空气开关时,采用熔断器与自动空气开关的组合方式具有既经济又简单的优点。
1)熔断器安-秒特性曲线应位于自动空气开关脱扣器跳闸曲线上方,并保持足够的距离(见图1)。
2)当系统短路电流超过自动空气开关的额定分断能力时,应使其曲线在稍小于自动空气开关额定分断能力的点上与自动空气开关瞬时短路脱扣器的跳闸曲线相交,以保证在较小短路电流时,自动空气开关跳闸,在较大的超过自动空气开关额定分断能力的短路电流情况下,由熔断器来分断。
发电厂直流系统空气开关级差配合试验在现场的应用作者:孙严王彦来源:《理论与创新》2020年第20期【摘要】本文介绍了发电厂直流系统级差配合试验的常规试验方法及现场应用情况。
同时也针对不易停运的直流系统,介绍了一种将直流系统短路电流与空气开关安秒特性试验相结合的方法,用以验证直流系统空气开关级差是否合理。
【关键词】直流系统空气开关;级差配合试验;试验方法引言发电厂电力系统中直流系统为继电保护、仪表、通信、动力回路等提供电源,是电力系统的重要组成部分。
在直流系统回路中,直流空气开关是直流系统发生短路故障的重要保护元件,所以直流空气开关的选型以及直流空气开关上、下级级差配合是否满足选择性要求至关重要。
1.发电厂直流空气开关级差配置的现状发电厂电力系统中直流系统一般采用集中辐射形供电方式或分层辐射形供电方式。
直流系统空气开关级差配合一般分为以下几级。
级差第一级为蓄电池出口熔断器,第二级为直流馈线屏各路直流馈线空气开关。
如果采用分层辐射形供电方式,第三级为直流分电屏直流空气开关。
最末一级为负荷侧、用户侧直流空气开关。
各级空气开关配置应根据直流电源系统短路电流计算结果,保证具有可靠性、选择性、灵敏性和速动性。
2.发电厂直流系统空气开关级差配合试验2.1常规直流系统空气开关级差配合试验发电厂直流系统空气开关级差配合试验的常规方法,是根据电厂直流系统级差配合情况,选择不同规格型号的直流空气开关,在直流系统的最末级直流负荷空气开关的输出侧,用专用的试验仪器进行模拟金属性短路试验,并录制短路电流波形。
然后通过分析各短路点短路时,直流空气开关跳闸后的灭弧特性和上、下级各级开关级差配合是否合理,验证直流空气开关是否存在越级动作的情况。
2.2试验数据在某电厂升压站110V直流系统的不同规格直流负荷空气开关输出侧进行模拟金属性短路,验证各级直流空气开关的级差配合情况。
如下表。
试验结果表明,在直流负荷空气开关输出侧模拟短路试验过程中,下级直流空气开关直流空气开关均先于上一级空气开关动作,不存在越级跳闸的情况。
附件1 空开级差配合要求注:本内容参考《南方电网公司变电站直流电源系统技术规范》(2012年修订)1 直流电源系统支路直流熔断器和直流断路器级差配合原则如下:1.1 变电站所有直流负荷必须带直流保护电器。
根据工程具体情况,可采用直流熔断器,甚至熔断器和直流断路器混用,但应注意上下级之间的配合。
当直流断路器与熔断器配合时,应考虑动作特性的不同,对级差做适当调整。
直流断路器下一级不宜再接熔断器。
1.2 上、下级均为直流断路器的,额定电流宜按照4级及以上电流级差选择配合。
1.3 蓄电池出口为熔断器,下级为直流断路器的,宜按照2倍及以上额定电流选择级差配合。
1.4 变电站内设置直流保护电器的级数不宜超过4级。
1.5 500kV变电站当设置直流分电屏时,直流主馈电屏宜采用塑壳式直流断路器。
2 直流电源系统的直流断路器、熔断器典型配置方案推荐如下:2.1 300Ah蓄电池出口可采用额定电流315A的熔断器;500Ah 蓄电池出口可采用额定电流400A的熔断器;800Ah蓄电池出口可采用额定电流630A的熔断器。
2.2 60A充电装置总输出可采用额定电流80A的直流断路器;80A充电装置总输出可采用额定电流100A的直流断路器;120A 充电装置总输出可采用额定电流160A的直流断路器。
2.3 保护装置、测控装置、故障录波、PMU、安全自动装置等二次设备和断路器控制回路宜采用额定电流不大于6A直流断路器。
资料性附录附录1熔断器-自动空气开关的特性配合当预期的短路电流较大、且超过自动空气开关的额定分断能力时,或系统短路电流过大没有可供选择的自动空气开关时,采用熔断器与自动空气开关的组合方式具有既经济又简单的优点。
1)熔断器安-秒特性曲线应位于自动空气开关脱扣器跳闸曲线上方,并保持足够的距离(见图1)。
2)当系统短路电流超过自动空气开关的额定分断能力时,应使其曲线在稍小于自动空气开关额定分断能力的点上与自动空气开关瞬时短路脱扣器的跳闸曲线相交,以保证在较小短路电流时,自动空气开关跳闸,在较大的超过自动空气开关额定分断能力的短路电流情况下,由熔断器来分断。
直流保护电器级差配合校验系统开发及应用发布时间:2021-05-17T02:34:09.737Z 来源:《电力设备》2021年第1期作者:党建伟李俊王朋[导读] 直流系统作为电力系统中重要的组成部分,是现代自动控制与监测的基础。
近些年电力行业标准及“反事故措施”均对直流系统直流断路器、熔断器的保护级差配合提出了具体要求。
(国网新疆电力有限公司喀什供电公司变电检修中心)摘要:直流系统作为电力系统中重要的组成部分,是现代自动控制与监测的基础。
近些年电力行业标准及“反事故措施”均对直流系统直流断路器、熔断器的保护级差配合提出了具体要求。
本文将保护电器特性对此提出选择性校验试验法,直流电源保护电器级差配合装置就是根据短路电流预估算法研制的。
关键词:直流电源系统;级差配合;校验系统目前,电力系统直流电源馈电网络多采用树状结构,从蓄电池到站内用电设备,一般经过三级配电;采用直流断路器和熔断器作为其保护电器,在直流回路故障时,能选择性地切除故障;上下级保护元件配置不当时将会越级跳闸,扩大事故范围。
造成其它馈电线路断电,进而引起变电站高压开关、变压器、电容器等一次设备事故,直接威胁到电网的安全运行。
现在,发电厂、变电站的直流系统基本上都能按照相关标准进行设计,保证2~4个级差卫一,但是现场运行的直流保护电器级差配合是否满足选择性保护要求,却因检修维护人员不具备相应的测试手段和工具而无法进行试验验证,这就给电力系统安全运行埋下了隐患。
一、校验直流电源保护电器1、级差配合特性法。
在采用该方法之前应先建模,根据型号不同的直流保护电器所具有的特性开展建模,直流电源系统保护电器配置可采用仿真软件进行模拟,级差配合情况可根据对仿真结果的分析获得。
通过保护器件电流和延时时间的函数关系是对保护器件建模过程中必不可少的。
通过器件的电流与断路器保护时间之间的函数关系可采用软件函数进行拟合,还需要对多型号的直流断路器以及熔断器饿保护特性曲线进行查阅。
方案签批页安全技术、职业健康和环境因素交底记录序号:编号:HBCKDZ/QR-0901.试验目的依据国家及行业有关标准及电力企业有关规定的要求,对直流系统级差配合特性通过试验予以确定,验证直流系统各段直流负荷空气开关安秒特性、金属短路时开关脱扣后灭弧特性和上、下级各个开关级差配合是否合理,以确保直流系统安全稳定运行。
2.编制依据2.1《继电保护和安全自动装置技术规程》(GB/T 14285-2006)2.2《电力工程直流系统设计技术规程》(DL/T 5044-2004)2.3《直流电源系统技术监督规定》2.4《防止直流电源系统事故措施》2.5《国家电网公司直流电源系统运行规范》2.6《国家电网公司十八项电网重大反事故措施》3.组织措施为保证试验顺利进行,成立领导小组和试验小组。
人员组成如下:1.试验领导小组组长:成员:2.现场试验专业组组长:成员:4.主要设备技术参数表1:主要设备技术参数5.试验前准备工作5.1试验使用仪器表2:试验使用仪器5.2试验步骤5.2.1将测试系统控制装置从仪表箱中取出,放置在地面或平稳的台面上,打开上位管理机,并依据操作说明书连接上位管理机和测试系统控制装置。
5.2.2退出本段直流电源系统所有负荷,关闭充电机,断开待测回路直流断路器,依图一连接现场待测直流断路器和测试系统各部分。
5.2.3接通控制装置及上位管理机工作电源。
5.2.4设置系统及开关参数, 并根据现场实际情况,按照使用说明书操作方法,进行小电流预估或短路校验试验。
5.2.6进行短路校验试验时,正常情况下,待测回路断路器自动脱扣断开,控制装置也延时断开,同时录波功能单元单次触发,记录电流波形。
如出现异常,迅速按“急停”按钮,强制分断主回路。
5.2.7分断待测回路直流断路器,断开控制装置和上位管理机工作电源.将测试系统拆下并装箱,恢复直流电源系统.图一:现场连线示意图6.安全注意事项6.1试验方案准备就绪;有关试验及操作人员熟悉本方案并做好事故预想。
附件1 空开级差配合要求注:本内容参考《南方电网公司变电站直流电源系统技术规范》(2012年修订)1 直流电源系统支路直流熔断器和直流断路器级差配合原则如下:1.1 变电站所有直流负荷必须带直流保护电器。
根据工程具体情况,可采用直流熔断器,甚至熔断器和直流断路器混用,但应注意上下级之间的配合。
当直流断路器与熔断器配合时,应考虑动作特性的不同,对级差做适当调整。
直流断路器下一级不宜再接熔断器。
1.2 上、下级均为直流断路器的,额定电流宜按照4级及以上电流级差选择配合。
1.3 蓄电池出口为熔断器,下级为直流断路器的,宜按照2倍及以上额定电流选择级差配合。
1.4 变电站内设置直流保护电器的级数不宜超过4级。
1.5 500kV变电站当设置直流分电屏时,直流主馈电屏宜采用塑壳式直流断路器。
2 直流电源系统的直流断路器、熔断器典型配置方案推荐如下:2.1 300Ah蓄电池出口可采用额定电流315A的熔断器;500Ah蓄电池出口可采用额定电流400A的熔断器;800Ah蓄电池出口可采用额定电流630A的熔断器。
2.2 60A充电装置总输出可采用额定电流80A的直流断路器;80A充电装置总输出可采用额定电流100A的直流断路器;120A充电装置总输出可采用额定电流160A的直流断路器。
2.3 保护装置、测控装置、故障录波、PMU、安全自动装置等二次设备和断路器控制回路宜采用额定电流不大于6A直流断路器。
资料性附录附录1熔断器-自动空气开关的特性配合当预期的短路电流较大、且超过自动空气开关的额定分断能力时,或系统短路电流过大没有可供选择的自动空气开关时,采用熔断器与自动空气开关的组合方式具有既经济又简单的优点。
1)熔断器安-秒特性曲线应位于自动空气开关脱扣器跳闸曲线上方,并保持足够的距离(见图1)。
2)当系统短路电流超过自动空气开关的额定分断能力时,应使其曲线在稍小于自动空气开关额定分断能力的点上与自动空气开关瞬时短路脱扣器的跳闸曲线相交,以保证在较小短路电流时,自动空气开关跳闸,在较大的超过自动空气开关额定分断能力的短路电流情况下,由熔断器来分断。
基于直流系统空气开关级差配合的研究摘要:本文针对电力直流系统的安全需求进行分析,并就空气开关的相应特性进行了研究,进而探究了其中级差配合的主要问题,提出了解决相应问题的措施。
关键词:直流系统;空气开关;级差配合引言电力直流系统在电力网络中主要扮演的角色就是为电力设备提供控制、保护、信号、操作电源,因此如果直流系统发生失灵,就会对电力设备造成很大的影响,在电力系统发生故障时,保护因失去直流电源将拒动,断路器因失去控制电源将不能跳闸切除故障,强大的故障短路电流将烧毁变压器等一次设备,将造成变电站设备严重损坏或发生火灾爆炸事故,将可能导致电网瓦解大面积停电等极为严重的事故。
因此直流系统的安全、可靠与否直接影响着电网的安全稳定运行。
1直流系统与空气开关的特性分析直流系统中需要配置各种空气开关来作为直流回路的保护,当该回路发生过载或短路故障时,空气开关采用励磁原理与热效应结合脱扣后断开故障电流,从而对回路连接导体起到短路和过载的保护作用。
在变电站内,直流系统因为供电负载较多,采用点对点辐射式供电,因此回路较多。
一般一个直流网络中有许多支路需要设置空气开关来进行保护,并往往分成三至四级来串联,这就存在着直流空气开关选型和动作值是否合适及上下级之间是否具有选择性保护配合的问题。
正确配置空气开关,防止越级跳闸扩大直流系统停电范围,对直流系统的安全运行意义重大,因此正确配置直流系统空气开关与电网的安全可靠运行也息息相关。
空气开关即为低压断路器,结构类型包括塑料外壳式和框架式两种。
空气开关主要由触头、脱扣器、灭弧系统、自由脱扣机构和操作机构构成,能够自动分段电路中过载情况、短路故障以及欠电压等不正常运行状态,当出现过载时,过载电流和空气开关动作时间成反比,当短路时,空气开关能够快速将故障切除;当系统需要不频繁地起动电动机和接通、分断电路时,空气开关也可以实现。
在低压交、直流配电系统中,它起到很重要的保护作用。
直流短路电流不像交流电流有过零的特征,熄灭电弧的能力比交流差,因此,直流空气开关的开断距离要比交流开关的开断距离大。
附件1 空开级差配合要求注:本内容参考《南方电网公司变电站直流电源系统技术规范》(2012年修订)1 直流电源系统支路直流熔断器和直流断路器级差配合原则如下:1.1 变电站所有直流负荷必须带直流保护电器。
根据工程具体情况,可采用直流熔断器,甚至熔断器和直流断路器混用,但应注意上下级之间的配合。
当直流断路器与熔断器配合时,应考虑动作特性的不同,对级差做适当调整。
直流断路器下一级不宜再接熔断器。
1.2 上、下级均为直流断路器的,额定电流宜按照4级及以上电流级差选择配合。
1.3 蓄电池出口为熔断器,下级为直流断路器的,宜按照2倍及以上额定电流选择级差配合。
1.4 变电站内设置直流保护电器的级数不宜超过4级。
1.5 500kV变电站当设置直流分电屏时,直流主馈电屏宜采用塑壳式直流断路器。
2 直流电源系统的直流断路器、熔断器典型配置方案推荐如下:2.1 300Ah蓄电池出口可采用额定电流315A的熔断器;500Ah蓄电池出口可采用额定电流400A的熔断器;800Ah蓄电池出口可采用额定电流630A的熔断器。
2.2 60A充电装置总输出可采用额定电流80A的直流断路器;80A 充电装置总输出可采用额定电流100A的直流断路器;120A充电装置总输出可采用额定电流160A的直流断路器。
2.3 保护装置、测控装置、故障录波、PMU、安全自动装置等二次设备和断路器控制回路宜采用额定电流不大于6A直流断路器。
资料性附录附录1熔断器-自动空气开关的特性配合当预期的短路电流较大、且超过自动空气开关的额定分断能力时,或系统短路电流过大没有可供选择的自动空气开关时,采用熔断器与自动空气开关的组合方式具有既经济又简单的优点。
1)熔断器安-秒特性曲线应位于自动空气开关脱扣器跳闸曲线上方,并保持足够的距离(见图1)。
2)当系统短路电流超过自动空气开关的额定分断能力时,应使其曲线在稍小于自动空气开关额定分断能力的点上与自动空气开关瞬时短路脱扣器的跳闸曲线相交,以保证在较小短路电流时,自动空气开关跳闸,在较大的超过自动空气开关额定分断能力的短路电流情况下,由熔断器来分断。
直流电源回路级差配合的分析目前运行中的直流电源系统存在的主要问题之一、也是最棘手、最迫切的需要解决的问题,就是如何面对诸多厂家、诸多型号的直流接地断路器如何选择、以及直流断路器级差怎么配合及动作选择性的如何确定,在这里做简要介绍:1.1直流断路器的作用直流断路是指能够接通、承载及分断正常电路条件下的电流,也能在规定的非正常电路条件下(过载、短路)接通、承载一定时间和分段电流的开关电器,称为断路器。
当短路故障出现时,要求断路器快速、准确的将故障从系统中切除,将故障缩小到最小范围,即不能拒动、也不能误动、更不能越级。
我过在20世纪60年代、七十年代也称自动开关、空气开关和空气断路器。
1.2直流断路器的保护类别目前国内常见直流断路器有两类即A类保护断路器和B类保护断路器:A类保护断路器为两段保护特性的断路器(即:过载长延时间保护+短路瞬间保护)。
“在短路情况下,断路器无明确指明用作串联在负载侧另一短路保护装置的选择性保护;即在短路情况下,选择性保护无人为的短延时,因而不要求额定短时耐受电流”。
B类保护断路器为三段保护特性的断路器(即:过载长延时保护+短路短延时保护+短路瞬间保护)。
“在短路情况下,断路器明确在用作串联在负载侧另一短路保护装置的选择性保护;即在短路情况下,选择性保护有人为的短延时(可调节),这类断路器具有要求额定短时耐受电流”。
1.3直流断路器保护动作特性面对大小不同的异常(过载)和短路故障电流,断路器应该在不同的时间内将故障回路从直流电源系统中切除,其表现形式为以下三种保护动作方式:A过载(长延时)保护:当故障电流相对比较小时,主要是防止供电线路或电缆发热进而造成绝缘破坏甚至起火,但同时考虑电缆具备一定的短时耐受能力及过载连续供电能力,断路器应当经过一段时间的延时后(长延时)再切除故障回路,这种保护方式为过载(长延时保护按反应时限动作原理)保护。
B短路短延时保护:当故障电流相对比较大时为一般短路电流时,为了防止越级保护带来的事故面扩大,保证故障电流仅仅由距离故障点最近的断路器来切除,有时要求上级断路器在遭遇短路电流时,经过一定时间的短延时(一般为毫秒级)后再动作。