温度传感器的温度特性测量及应用资料
- 格式:ppt
- 大小:356.00 KB
- 文档页数:47
沈阳城市学院物理实验报告实验题目温度传感器特性研究姓名学号专业班级实验室号实验成绩指导教师实验时间年月日物理实验室制请认真填写实验原理(注意:原理图、测试公式)一、直流电桥法测Pt100铂电阻温度特性直流电桥的原理图如图,根据直流电桥的基本 原理有:312t R R R R =,因为R1=R2,所以R3=Rt ,Rt 即为铂电阻。
Pt100铂电阻是一种利用铂金属导体电阻随温度变化的特性制成的温度传感器,在0~100℃范围内Rt 的表达式可近似线性为:01(1)t R R A t =+ 。
二、恒流源法测NTC 热敏电阻温度特性恒流源法电路原理图如图,根据串联电路原理11R RtO Rt t U U R I U R ==,Rt 即为热敏电阻。
热敏电阻是利用半导体电阻阻值随温度变化的特性来测量温度的,在一定的温度范围内(小于450℃)热敏电阻的电阻Rt 与温度T 之间有如下关系:)11(00T T B T eR R -=三、PN 结温度传感器特性PN 结温度传感器实验电路如图,PN 结的正向电压U 和温度t 近似满足下列线性关系U=Kt+Ugo 式中Ugo 为半导体材料参数,K 为PN 结的结电压温度系数。
请认真填写请在两周内完成,交教师批阅附录110115120125130135电阻/Ω温度/℃直流电桥法测Pt100铂电阻的温度特性图100200300400500600700800900电阻/Ω温度/℃电压/m V温度/℃。
温度传感器的基本特性与应用研究班级:机械一班 姓名:汪浩奇;钟嘉怡 学号: 06180118 ;06180102 指导老师:汪亮摘要: 通过图2的简单电路,来测量LM35的温度特性,了解LM35一定范围内温度和电压之间的关系。
通过图3的电路,制作一个用LM35集成电路电压型传感器组装的温度控制仪表,从而验证电压与温度的线性关系。
关键词: LM35电压型集成温度传感器;温度控制仪表;数显温度计;1. 概述温度是表征物体冷热程度的物理量,它和我们的生活环境密切相关,也是工农业生产过程中一个很重要的测量参数,温度的测量及控制对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非常重要的作用。
由于温度测量的普遍性,温度传感器的应用十分广泛。
2. 实验原理温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。
常用的温度传感器有热电阻、热电偶、集成电路温度传感器等。
本实验将通过测量几种常用的温度传感器的特定物理量随温度的变化,来了解这些温度传感器的工作原理。
1、 电压型集成电路温度传感器〔LM35)LM35温度传感器,其准确度一般为0.5C ±︒,由于其输出为电压,且线性极好,故只要配上电压源,数字式电压表就可以构成一个精密数字控温系统。
内部的激光校准保证了极高的准确度及一致性,且无须校准。
LM35温度传感器的温度系数V K 约为10.0/mV C ︒,利用下式可计算出被测温度t :0/V t U K =LM35温度传感器的电路符号如图1所示,0U 为电压输出端。
图1 LM35电路符号实验测量时只要直接测量其输出电压0U ,即可知待测量的温度。
2、 用LM35电压型温度传感器组成温度控制装置温度控制:若设置控制温度为()t C ︒,根据LM35传感器温度特性测试中的线性、拟合结果进行计算,得出此温度对应的LM35传感器输出电压值,调节可调电阻1RX ,将控温电压设定在计算值上〔根据使用仪器的实际情况稍作修正),这就设定好了控制的温度。
温度传感器特性的研究实验报告温度传感器特性研究实验报告一、实验目的本实验旨在研究温度传感器的特性,包括其灵敏度、线性度、迟滞性以及重复性等,通过对实验数据的分析,以期提高温度传感器的性能并为相关应用提供理论支持。
二、实验原理温度传感器是一种将温度变化转化为电信号的装置,其特性受到材料、结构及环境因素的影响。
本次实验将重点研究以下特性:1.灵敏度:温度传感器对温度变化的响应程度;2.线性度:温度传感器输出信号与温度变化之间的线性关系;3.迟滞性:温度传感器在升温与降温过程中,输出信号与输入温度变化之间的关系;4.重复性:温度传感器在多次重复测量同一温度时,输出信号的稳定性。
三、实验步骤1.准备材料与设备:包括温度传感器、恒温水槽、加热装置、数据采集器、测温仪等;2.将温度传感器置于恒温水槽中,连接数据采集器与测温仪;3.对温度传感器进行升温、降温操作,并记录每个过程中的输出信号;4.在不同温度下重复上述操作,收集足够的数据;5.对实验数据进行整理与分析。
四、实验结果及数据分析1.灵敏度:通过对比不同温度下的输出信号,发现随着温度的升高,输出信号逐渐增大,灵敏度整体呈上升趋势。
这表明该温度传感器具有良好的线性关系。
2.线性度:通过对实验数据的线性拟合,得到输出信号与温度之间的线性关系式。
结果表明,在实验温度范围内,输出信号与温度变化之间具有较好的线性关系。
3.迟滞性:在升温与降温过程中,发现输出信号的变化存在一定的差异。
升温过程中,输出信号随着温度的升高而逐渐增大;而在降温过程中,输出信号却不能完全恢复到初始值。
这表明该温度传感器具有一定的迟滞性。
4.重复性:通过对同一温度下的多次测量,发现输出信号具有良好的重复性。
这表明该温度传感器在重复测量同一温度时具有较高的稳定性。
五、结论与建议本次实验研究了温度传感器的特性,发现该传感器具有良好的灵敏度和线性度,但在降温过程中存在一定的迟滞性。
此外,该温度传感器具有良好的重复性。
NTC热敏电阻及温度传感器的用途及应用设计NTC热敏电阻(Negative Temperature Coefficient Thermistor)是一种温度敏感性较强的电阻器件,其电阻值随温度的变化而产生变化。
温度传感器则是利用NTC热敏电阻的温度特性进行温度测量和控制的装置。
NTC热敏电阻及温度传感器在各个领域都有着广泛的应用,下面将介绍其主要的用途和应用设计。
首先,NTC热敏电阻及温度传感器在工业领域中的应用非常广泛。
例如,它可以用于电机的温度保护,通过监测电机的温度来避免电机因过热而损坏。
此外,它还可用于机器设备的温度监控和控制,以确保设备的正常运行和安全性。
在加热系统中,NTC热敏电阻及温度传感器常用于加热器的温度控制,可以通过控制加热器的电源来实现温度的精确调节。
此外,它还可应用于冷却系统中,用于检测冷却介质的温度,以保证冷却系统的效果。
其次,在电子产品中,NTC热敏电阻及温度传感器也有着广泛的应用。
比如,在计算机硬件中,它可以用于CPU和显卡的温度监测和控制,以避免硬件过热导致性能下降或损坏。
此外,它还可以应用于电源模块的温度控制,以确保电源模块的稳定工作和延长寿命。
在家电产品中,NTC热敏电阻及温度传感器可以用于电热水器、空调、洗衣机等的温度控制,实现设备的智能化控制和高效运行。
此外,NTC热敏电阻及温度传感器还可以应用于医疗领域。
例如,在医疗仪器中,它可以用于体温测量,通过测量人体的温度来判断健康状况,并用于感应人体温暖和冷却的治疗设备中。
此外,它还可以应用于药品的储存和运输过程中,通过监测药品的温度来确保药品的质量和有效性。
在设计NTC热敏电阻及温度传感器应用时,需要考虑到以下几个方面。
首先,需要选择适合的NTC热敏电阻,包括电阻值、温度系数、响应时间等参数的选择。
其次,需要设计合适的接口电路,以确保NTC热敏电阻输出的信号能够被准确地读取和处理。
此外,还需要考虑到温度的精度要求、环境条件以及安全性等因素,以设计出可靠且适用的温度传感器系统。
温度传感器的原理和应用实验1. 温度传感器的原理介绍温度传感器是一种用于测量环境、物体或者系统温度的装置。
它们通常基于各种物理原理来实现温度的测量,包括热电效应、电阻变化、热敏电阻、半导体特性等。
常见的温度传感器包括热电偶、热敏电阻、半导体传感器等。
•热电偶传感器:热电偶传感器利用热电效应来测量温度。
它由两种不同金属(通常是铜和铳)焊接在一起构成,当两个焊点处于不同温度时会产生一个热电动势,根据热电动势的大小可以计算出温度值。
•热敏电阻传感器:热敏电阻传感器是一种根据电阻值的变化来测量温度的传感器。
它的电阻随温度的变化而变化,通过测量电阻值的变化可以得出温度值。
•半导体传感器:半导体传感器是一种基于半导体材料的电阻特性来测量温度的传感器。
常见的半导体传感器有热敏电阻传感器和热敏电容传感器。
2. 温度传感器的应用实验2.1 实验材料准备•一个温度传感器(可以选择热电偶或热敏电阻传感器)•一个数字温度计或模拟温度计•恒温水槽或恒温实验箱•温度标准器(可选,用于校准温度传感器)2.2 实验步骤1.将温度传感器连接到数字温度计或模拟温度计上。
2.准备一个恒温水槽或恒温实验箱,并将温度传感器放入其中。
3.将恒温水槽或恒温实验箱的温度调节到一个已知的温度值,例如25℃。
4.使用数字温度计或模拟温度计测量温度传感器的输出值,并记录下来。
5.重复步骤3和步骤4,每次改变恒温水槽或恒温实验箱的温度,记录下对应的温度传感器输出值。
6.根据测量得到的数据,可以绘制温度传感器的输入输出特性曲线。
可以使用Excel等工具进行数据分析和图表绘制。
2.3 实验结果分析通过实验可以得到温度传感器的输入输出特性曲线,可以根据这些数据来判断传感器的精确度和稳定性。
•精确度:通过与标准温度计的比较,可以评估传感器的精确度。
如果测量结果与标准值接近,则传感器具有较高的精确度。
•稳定性:通过多次测量同一温度下的输出值,如果这些值相对稳定,则传感器具有较好的稳定性。
温度传感器的特性实验一、实验目的:1、熟悉常用的集成温度传感器实验原理、性能与应用。
2、熟悉热电阻的特性与应用。
二、实验原理:1、集成温度传器将温敏晶体管与相应的辅助电路集成在同一芯片上,它能直接给出正比于绝对温度的理想线性输出,一般用于-50℃-+150℃之间温度测量,温敏晶体管是利用管子的集电极电流恒定时,晶体管的基极――发射极电压与温度成线性关系。
为克服温敏晶体管U电压生产时的b 离散性、均采用了特殊的差分电路。
集成温度传感器有电压型和电流型二种,电流输出型集成温度传感器,在一定温度下,它相当于一个恒流源。
因此它具有不易受接触电阻、引线电阻、电压噪声的干扰。
具有很好的线性特性。
本实验采用的是国产的AD590。
它只需要一种电源(+4V-+30V)。
即可实现温度到电流的线性变换,然后在终端使用一只取样电阻(本实验见图14-1)即可实现电流到电压的转换。
它使用方便且电流型比电中为R2压型的测量精度更高。
2、利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。
常用铂电阻和铜电阻、铂电阻在0-630.74℃以内,电阻Rt与温度t的关系为:Rt=Ro(1+At+Bt2)Ro系温度为0℃时的电阻。
本实验Ro=100℃。
A=3.9684×10-2/℃,B=-5.847×10-7/℃2,铂电阻现是三线连接,其中一端接二根引线主要为消除引线电阻对测量的影响。
三、实验设备与仪器:温度控制单元、加热源、K型热电偶、Pt100热电阻、集成温度传感器、温度传感器实验模板、数显单元、万用表。
四、实验步骤:(一)、集成温度传感器1.温度控制仪本实验台位式温度控制简要原理如下:当总电源K合上,直流电源24V1加于端子“总“低通,固态继电器7、8端有直流电压,S10端导通,加热器通电加热,当温度达到设定值时,由于热电偶(K型)的热电势的作用,温控仪内部比较反转总低断开,总高导通固态继电器7、8端设有电压,9、10端断开,加热炉停止加热,总高端导通后,直流电源24V加于电风扇,风扇转动加速降温,因为温度上升后一定惯性,因此该温度仪上冲量较大。
温度传感器的原理及应用1. 介绍温度传感器是一种能够测量温度并将其转化为电信号的器件。
它广泛应用于各种领域,如工业控制、环境检测、医疗设备等。
本文将介绍温度传感器的基本原理和常见的应用领域。
2. 温度传感器的工作原理温度传感器通过感应温度变化来输出与温度相关联的电信号。
常见的温度传感器有热敏电阻(PTC、NTC)、热电偶、热电阻等。
以下是几种常见温度传感器的工作原理:2.1 热敏电阻(PTC、NTC)热敏电阻是一种电阻随温度变化而变化的器件。
其中,正温度系数(PTC)的电阻随温度升高而增加,负温度系数(NTC)的电阻则随温度升高而减小。
利用这种特性,可以通过测量电阻值来获得温度值。
2.2 热电偶热电偶利用两种不同金属的热电特性来检测温度。
当两端形成温差时,会产生热电势。
根据热电势的大小,可以推算出温度值。
2.3 热电阻热电阻也是一种电阻随温度变化而变化的器件,其电阻值随温度的升高而增加。
常用的热电阻有铂电阻(PT100、PT1000)等,通过测量电阻值来确定温度。
3. 温度传感器的应用温度传感器在各个领域都有广泛的应用。
以下是几个常见的应用场景:3.1 工业控制工业控制中,温度传感器被广泛用于测量、监控和控制各种设备和系统的温度。
例如,在冶金工业中,温度传感器被用于测量熔炼炉中的温度,以确保炉温稳定在所需范围内。
3.2 环境检测温度传感器在环境检测中起着重要作用。
例如,在气象站中,温度传感器被用于测量大气温度,以便为天气预报提供数据支持。
此外,室内温度传感器也被广泛应用于智能家居系统中,以实现温度自动调节。
3.3 医疗设备在医疗设备中,温度传感器被用于测量病人体温。
这对于监测病人的健康状态至关重要。
温度传感器可以将体温转化为数值信号,方便医生和护士实时监测患者的温度。
3.4 汽车工业温度传感器在汽车工业中也扮演着重要角色。
例如,发动机温度传感器被用于监测发动机的工作温度,以避免过热或过冷造成的损坏。
实验十二集成电路温度传感器特性测量实验目的:1. 了解热敏电阻的基本工作原理以及热敏电阻的依温度变化的电阻值特性;2. 掌握集成电路温度传感器的结构、特性及应用;3. 学会使用万用表测试温度传感器的特性参数,如输出电压、灵敏度等;4. 了解温度传感器在实际电路中的应用。
实验原理:1. 热敏电阻原理热敏电阻的电阻值随温度的变化而变化,其原理是基于温度引起的电阻率变化。
金属导体是随温度升高而电阻率增大,而很多半导体材料和复合材料,则是随温度的升高而导电能力降低,电阻值增大。
作为热敏材料的锗、硅、氮化硅等半导体材料,用它们制成的电阻叫做热敏电阻。
热传导在热敏电阻发生作用时,从传感器的两个端点传递到插在热敏电阻所在电路的两个连接器处的电压信号。
温度升高时,电阻值就减小,热敏电阻的输出电压就会对应地降低,反之,则会增加。
热敏电阻的电阻值与温度的关系可以通过实验测量来确定。
根据实验结果,可以得到不同温度下热敏电阻的电阻值,从而画出相应的温度-电阻曲线。
在温度相同时,不同的热敏电阻输出的电压各不相同,因此,可以通过热敏电阻的输出电压来检测温度的变化。
集成电路温度传感器是一种微型化的温度测量装置,它的大小只有普通热敏电阻的千分之一,具有温度响应快、输出电压高、稳定性好、精度高等特点。
集成电路温度传感器的常用规格及主要特点如下表所示。
集成电路温度传感器的工作原理是利用集成电路内部的PN结的温度特性,当其温度发生变化时,PN结电压也会随之变化,产生热释电效应,从而改变晶体管等元器件的参数,如电流或电压等。
通过测量这些被改变的参数,可以得到温度信息。
集成电路温度传感器的应用领域广泛,可以应用于汽车、电子设备、医疗设备、生产线及环境监测等领域。
实验内容:实验电路如下:由于不同的热敏电阻表现不同,为了保证实验的准确性,先将热敏电阻调零。
调零是指将热敏电阻的电阻值与测量电路的零点电阻相等的操作。
步骤如下:1、用多用表选择Ω档,测量变阻器的两端相接时的阻值。
温度传感器原理及应用
温度传感器是一种能够感知温度变化并将其转化为电信号输出的传感器,广泛
应用于工业控制、医疗设备、家用电器等领域。
本文将介绍温度传感器的工作原理、常见类型及其应用。
温度传感器的工作原理主要基于材料的热敏效应。
热敏效应是指当材料温度发
生变化时,材料的电阻、电压或电流等特性也会发生相应的变化。
根据这一原理,温度传感器可以通过测量材料的电阻、电压或电流来间接反映温度的变化。
常见的温度传感器类型包括热电偶、热敏电阻、红外线传感器等。
热电偶是利
用两种不同金属导体的热电势差来测量温度变化的传感器,具有快速响应、测量范围广的特点,适用于高温环境下的测量。
热敏电阻则是利用材料的电阻随温度变化而变化的特性来测量温度,常见的热敏电阻材料有铂、镍、铜等,具有灵敏度高、成本低的优点。
而红外线传感器则是通过测量物体辐射出的红外线能量来推断物体的温度,适用于远距离、非接触式的温度测量。
温度传感器在工业控制中扮演着重要的角色。
例如,在化工生产中,温度传感
器可以用于监测反应釜内的温度变化,实现自动控制;在汽车制造中,温度传感器可以用于发动机冷却系统的温度监测,确保发动机工作在安全温度范围内。
此外,温度传感器还广泛应用于医疗设备、家用电器等领域,如体温计、空调、冰箱等。
总之,温度传感器通过测量材料的热敏特性来实现对温度的测量,其工作原理
简单而有效。
不同类型的温度传感器具有各自的特点和适用范围,可以满足不同场景下的温度测量需求。
在工业控制、医疗设备、家用电器等领域都有着广泛的应用前景。
实验二十九 Cu50温度传感器的温度特性实验一、实验目的:了解Cu50温度传感器的特性与应用。
二、基本原理:在一些测量精度要求不高且温度较低的场合,一般采用铜电阻,可用来测量-50ºC~+150ºC的温度。
铜电阻有下列优点:1.在上述温度范围内,铜的电阻与温度呈线性关系R t = R0(1+at)2.电阻温度系数高,a = 4.25~4.28×10-3/ºC3.容易提纯,价格便宜三、需用器件与单元:K型热电偶、Cu50热电阻、YL系列温度测量控制仪、直流电源±15V、温度传感器实验模块、数显单元(主控台电压表)、万用表。
四、实验步骤:1、差动电路调零将温度测量控制仪上的220V电源线插入主控箱两侧配备的220V控制电源插座上。
首先对温度传感器实验模块的三运放测量电路和后续的反相放大电路调零。
具体方法是把R5和R6的两个输入点短接并接地,然后调节Rw2使V01的输出电压为零,再调节Rw3,使V02的输出电压为零,此后Rw2和Rw3不再调节。
2、温控仪表的使用注意:首先根据温控仪表型号,仔细阅读“温控仪表操作说明”,(见附录一)学会基本参数设定(出厂时已设定完毕)。
3、热电偶的安装选择控制方式为内控方式,将K型热电偶温度感应探头插入“YL系列温度测量控制仪”的上方两个传感器放置孔中的一个。
将K型热电偶自由端引线插入“YL系列温度测量控制仪”正前方面板的的“传感器”插孔中,红线为正极。
4、热电阻的安装及室温调零将Cu50热电阻传感器探头插入加热源的另一个插孔中,尾部红色线为正端,插入实验模块的a端,其它两端相连插入b端,见图11-1,a端接电源+2V,b端与差动运算放大器的一端相接,桥路的R W1另一端和差动运算放大器的另一端相接(R2=50欧姆)。
模块的输出V02与主控台数显表相连,连接好电源及地线,合上主控台电源,调节Rw1,使数显表显示为零(此时温度测量控制仪电源关闭)。
温度传感器的温度特性测量实验【目的要求】测量PN结温度传感器的温度特性;测试PN结的正向电流与正向电压的关系(指数变化规律)并计算出玻尔兹曼常数。
【实验仪器】FD-ST-TM温度传感器温度特性实验模块(需配合FD-ST系列传感器测试技术实验仪)含加热系统、恒流源、直流电桥、Pt100铂电阻温度传感器、NTC1K热敏电阻温度传感器、PN结温度传感器、电流型集成温度传感器AD590、电压型集成温度传感器LM35、实验插接线等)。
【实验原理】“温度”是一个重要的热学物理量,它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要,所以温度传感器应用广泛。
温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。
常用的温度传感器的类型、测温范围和特点见下表。
PN结温度传感器1.测试PN结的Vbe与温度变化的关系,求出灵敏度、斜率及相关系数PN结温度传感器是利用半导体PN结的结电压对温度依赖性,实现对温度检测的,实验证明在一定的电流通过情况下,PN结的正向电压与温度之间有良好的线性关系。
通常将硅三极管b、c极短路,用b、e极之间的PN 结作为温度传感器测量温度。
硅三极管基极和发射极间正向导通电压Vbe 一般约为600mV (25℃),且与温度成反比。
线性良好,温度系数约为-2.3mV/℃,测温精度较高,测温范围可达-50——150℃。
缺点是一致性差,互换性差。
通常PN 结组成二极管的电流I 和电压U 满足(1)式[]1/-=kT qU S e I I (1)在常温条件下,且1/〉〉KTqU e时,(7)式可近似为kT qU S e I I /= (2)(7)、(8)式中:T 为热力学温度 ; Is 为反向饱和电流;正向电流保持恒定条件下,PN 结的正向电压U 和温度t 近似满足下列线性关系U=Kt+Ugo (3)(3)式中Ugo 为半导体材料参数,K 为PN 结的结电压温度系数。
实验14 温度传感器特性测量及应用温度是科学研究中一个重要的基本物理量,在物理学、化学、热力学、飞行力学、流体力学等科学的研究中,都离不开对温度的测量和控制,许多工业产品的质量和产量都与温度有直接关系。
随着科学技术的发展,各种新型的集成电路温度传感器器件不断涌现,并大批量生产和扩大应用。
这类集成电路测温器件有以下几个优点:(1)温度变化引起输出量的变化呈现良好的线性关系;(2)不像热电偶那样需要参考点;(3)抗干扰能力强;(4)互换性好,使用简单方便。
因此,这类传感器已在科学研究、工业和家用电器温度传感器等方面被广泛使用于温度的精确测量和控制。
本实验要求测量电流型集成电路温度传感器的输出电流与温度的关系,熟悉该传感器的基本特性,并采用非平衡电桥法,组装一台0~50o C数字式温度计。
实验目的和学习要求1.学习和掌握AD590电流型集成电路温度传感器的特性;2.测量集成温度传感器AD590在某恒定温度时的伏安特性曲线;3.测量AD590输出电流和温度的关系;4.用AD590传感器设计并组装数字式摄氏温度计。
实验原理集成温度传器将温敏晶体管与相应的辅助电路集成在同一芯片上,它能直接给出正比于绝对温度的理想线性输出,一般用于-50℃-+120℃之间温度测量。
集成温度传感器有电压输出型和电流输出型二种,电流输出型集成温度传感器,在一定温度下,它相当于一个恒流源,因此它具有不易受接触电阻、引线电阻、电压噪声的干扰,具有很好的线性特性。
本实验采用的是AD590电流型集成温度传感器,该器件的两端当加有某一直流工作电压时(一般工作电压可在4.5V~20V范围内),其输出电流(I)与温度(T)成正比。
I=BT+A式中,I为其输出电流,单位μA;T为摄氏温度;B为传感器的灵敏度(一般AD590的B=1μA/o C,即如果该温度传感器的温度升高或降低1o C,则传感器的输出电流增加或减少1μA);A为摄氏零度时的电流值,该值恰好与冰点的热力学温度273K相对应。