马氏体不锈钢的热处理工艺
- 格式:doc
- 大小:25.00 KB
- 文档页数:1
不锈钢(含碳量:马氏体不锈钢0.1~1%,铁素体不锈钢≤0.12~0.15%,奥氏体不锈钢≤0.2%)工作条件、性能要求硬度σbσsδψαk(HRC)(公斤·米/厘米2)0Cr131000~1050℃油或水淬,700~790℃回火——50352460——1Cr131000~1050℃油或水淬,700~790℃回火——≥60≥42≥20≥60≥92Cr131000~1050℃油或水淬,660~770℃回火——≥66≥45≥16≥55≥83Cr131000~1050℃油淬,200~300℃回火4816013034——4Cr131050~1100℃油淬,200~300℃回火5016814048——9Cr181000~1050℃油淬,200~300℃回火55——————————Cr17750~800℃退火空冷HB156402520502~8Cr17Mo2Ti750~780℃退火空冷HB14550302055——0Cr18Ni91080~1130℃水淬——50204560——1Cr18Ni91100~1150℃水淬——55204550——2Cr18Ni91100~1150℃水淬——58224055——1Cr18Ni9Ti1100~1150℃水淬——52——40————Cr18Ni18Mo2Cu2Ti1050~1100℃水淬——652340————不锈钢的工作条件和热处理在酸、碱、盐类溶液中、潮湿大气中或在高温下受蒸汽和气体作用下工作,一般承受压力或交变负荷,易发生电化学或化学腐蚀。
要求马氏体不锈钢有良好的机械性能和适中的抗蚀能力。
铁素体不锈钢对耐酸腐蚀性要求很高,机械性能要求不高。
奥氏体不锈钢需要优良的机械性能,工艺性能和抗蚀能力。
马氏体不锈钢:0Cr131Cr132Cr133Cr134Cr139Cr18Cr14铁素体不锈钢:Cr17Cr17TiCr17Mo2TiCr25TiCr28Cr25Mo3Ti奥氏体不锈钢:0Cr18Ni91Cr18Ni92Cr18Ni90Cr18Ni10Ti1Cr18Ni9TiCr18Ni11NbCr18Ni12Mo2Ti钢号热处理规范(公斤/毫米2)(%)特点与热处理不锈钢按正火组织状态不同分为奥氏体型、铁素体型、奥氏体-铁素体型及马氏体型。
马氏体不锈钢调质处理概述及解释说明1. 引言1.1 概述马氏体不锈钢是一种通过调质处理来改善性能的特殊不锈钢材料。
它具有优异的耐腐蚀性、高强度和良好的延展性,广泛应用于汽车工业、建筑材料和能源领域等多个领域。
在不同行业中,马氏体不锈钢的调质处理方法和工艺流程有所差异,因此掌握了解这些关键要素对实现材料性能优化至关重要。
1.2 文章结构本文将围绕马氏体不锈钢调质处理展开阐述,内容包括马氏体不锈钢的定义和特点、调质处理的概念和作用、调质处理的方法和工艺流程以及该过程中需要注意的重要要点。
另外,文章还将通过案例分析探讨马氏体不锈钢调质处理在汽车工业、建筑材料以及能源领域中的应用和效果评估,并从中挖掘出实践与挑战。
最后,在结论部分对全文进行总结,并对未来研究和应用做出展望。
1.3 目的本文旨在全面介绍马氏体不锈钢调质处理的概况及其重要要点,提供给读者对这一领域有更深入了解和把握。
通过阅读本文,读者可以获得关于马氏体不锈钢调质处理方法、工艺流程以及调质过程中需要注意的关键要点方面的知识。
此外,通过案例分析,读者还能了解到该技术在不同领域中的应用和效果评估。
最后,在结论部分,读者将了解到对未来研究和应用的展望。
2. 马氏体不锈钢调质处理:2.1 马氏体不锈钢的定义和特点:马氏体不锈钢是一种具有良好耐腐蚀性和优异机械性能的不锈钢。
其主要特点包括高强度、高硬度、优良的延展性和耐磨性,同时还具备较好的抗腐蚀能力。
马氏体不锈钢通常由铁素体和奥氏体相组成。
2.2 调质处理的概念和作用:调质处理是指通过控制合适的温度进行热处理,并随后通过快速冷却来改变材料的组织结构和性能。
对于马氏体不锈钢而言,调质处理可以显著提高其硬度、强度和耐磨性,并确保材料的韧性得到保持。
2.3 调质处理的方法和工艺流程:马氏体不锈钢的调质处理通常包括加热、保温和冷却三个步骤。
加热阶段: 具体加热温度取决于材料的成分和特定需求,但通常在800°C至1050°C之间。
马氏体不锈钢热处理淬火一、马氏体不锈钢概述马氏体不锈钢是一种具有高强度和耐腐蚀性的不锈钢,其主要成分为铬、镍和钼。
在加工过程中,通过控制冷却速度和温度来控制其组织结构,从而实现各种性能的调节。
二、热处理工艺热处理是通过对金属材料进行加热、保温和冷却等工艺处理,以改变其组织结构和性能的方法。
在马氏体不锈钢的热处理过程中,主要包括以下几个步骤:1. 固溶处理:将材料加热至固溶温度以上,并保持一定时间,使得所有合金元素均能溶解在晶粒中。
2. 快速冷却:将材料迅速浸入水或油中进行淬火,使得晶粒迅速形成马氏体组织。
3. 时效处理:将淬火后的材料再次加热至一定温度,并保持一定时间,在此过程中发生析出硬化作用,提高材料的强度和硬度。
三、淬火工艺淬火是指将材料加热至一定温度,然后迅速冷却以改变其组织结构和性能的过程。
在马氏体不锈钢的淬火过程中,主要包括以下几个方面:1. 温度控制:淬火温度是影响马氏体形成和性能的重要因素,一般应在850℃以上。
2. 冷却介质选择:淬火过程中的冷却介质可以选择水、油、空气等,不同介质对材料的影响也不同。
3. 冷却速度控制:淬火时冷却速度越快,形成的马氏体组织越多,材料强度和硬度也越高。
因此,在实际操作中需要根据具体情况进行调整。
四、淬火工艺参数在实际操作中,淬火工艺参数的选择会直接影响到材料的性能和品质。
以下是常见的几个淬火工艺参数:1. 淬火温度:一般为850~1050℃之间。
2. 淬火介质:水、油、空气等。
3. 冷却速率:一般为10~30℃/s之间。
4. 持温时间:一般为30~60分钟。
五、淬火后的组织结构和性能淬火后的马氏体不锈钢具有高强度、高硬度、良好的耐磨性和耐蚀性等特点。
其组织结构主要为马氏体和残余奥氏体,其中马氏体占主导地位。
此外,还会出现一些碳化物和铁素体相。
六、注意事项在实际操作中,需要注意以下几个方面:1. 温度控制:淬火温度过高或过低都会影响材料的性能。
2. 冷却介质选择:不同介质对材料的影响也不同,需要根据具体情况进行选择。
马氏体不锈钢马氏体不锈钢、马氏体和半奥氏体(或半马氏体)沉淀硬化不锈钢以及马氏体时效不锈钢等。
马氏体不锈钢是一类可以通过热处理(淬火、回火)对其性能进行调整的不锈钢,通俗地讲,是一类可硬化的不锈钢。
这种特性决定了这类钢必须具备两个基本条件:一是在平衡相图中必须有奥氏体相区存在,在该区域温度范围内进行长时间加热,使碳化物固溶到钢中之后,进行淬火形成马氏体,也就是化学成分必须控制在γ或γ+α相区,二是要使合金形成耐腐蚀和氧化的钝化膜,铬含量必须在10.5%以上。
按合金元素的差别,可分为马氏体铬不锈钢和马氏体铬镍不锈钢。
马氏体铬不锈钢的主要合金元素是铁、铬和碳。
图1-4是Fe-Cr系相图富铁部分,如Cr大于13%时,不存在γ相,此类合金为单相铁素体合金,在任何热处理制度下也不能产生马氏体,为此必须在内Fe-Cr二元合金中加入奥氏体形成元素,以扩大γ相区,对于马氏体铬不锈钢来说,C、N是有效元素,C、N元素添加使得合金允许更高的铬含量。
在马氏体铬不锈钢中,除铬外,C是另一个最重要的必备元素,事实上,马氏体铬不锈耐热钢是一类铁、铬、碳三元合金。
当然,还有其他元素,利用这些元素,可根据Schaeffler图确定大致的组织。
铬是马氏体铬不锈钢最重要的合金元素。
铬是铁素体形成元素,足够的铬可使钢变成单一的铁素体不锈钢,铬和碳的相互作用使钢在高温时具有稳定的γ或γ+α相区,铬可以降低奥氏体向铁素体和碳化物的转变速度,从而提高淬透性;在大气H2S及氧化性酸介质中。
它能提高钢的耐蚀性能,这与铬能促使生成一层铬的氧化物保护膜有关,但在还原介质中,随着铬含量的提高,钢的耐蚀性下降;铬含量的提高,钢的抗氧化性能也明显提高。
碳是马氏体铬不锈钢另一重要的合金元素。
为了产生马氏体相变,碳含量要视钢中的铬含量而定,一般充分考虑碳、铬两者相互关系及碳的溶解极限(见图1-5)。
在给定的铬量下,碳含理提高,强度、硬度提高,塑性降低,耐蚀性下降。
第三节不锈钢机组连续热处理炉一、不锈钢带的热处理工艺在大气中能抵抗腐蚀的钢称为不锈钢。
不锈钢按其金相组织结构可以分成三大类,即奥氏体不锈钢,铁素体不锈钢及马氏体不锈钢。
1.奥氏体不锈钢的热处理工艺奥氏体不锈钢是一种铬镍合金钢,其主要合金元素的含量,镍大于6%,铬16~26%,为了使钢获得特殊性能某些加有钼、钛、铌等其它元素。
这类钢的热处理工艺是退火处理,其目的一方面使加工以后的金属组织再结晶,以使其充分软化,便于再加工,另一方面是将碳化物固熔在奥氏体组织中,以增强抗腐蚀性。
奥氏体不锈钢的退火温度范围一般为1000~11500C,然后在此温度急速冷却,依靠快冷,能把碳呈固熔状态的奥氏体保持到常温(若冷却速度慢,则析出碳化物)。
冷却方式视带钢材质及厚度而异,可以水冷、喷雾冷却、保护气体喷吹冷却及空冷等。
2.铁素体不锈钢的热处理工艺铁素体不锈钢是以铬元素为主(含铬占11~28%)的合金钢,大都是低碳的,镍含量很少。
这类钢的热处理也只是进行退火,其目的是消除应力,软化,增加延展性。
这类钢的退火温度范围为650~8500C,在空气、水或保护气体中冷却。
对于高铬钢要注意在400~5000C范围内徐冷时会产生脆化,因此应该尽量避免在这一范围中停留。
3.马氏体不锈钢的热处理工艺此类不锈钢亦以铬为主要合金元素(含铬10~18%),碳在0.08~1.2%范围内,大多数不含镍,个别含少量镍(2. 5%)。
马氏体不锈钢的热处理一般有下列几种工艺:退火——热轧以后由于冷却较快而发生硬化,为了软化处理,增加延展性,需要进行退火。
退火温度为850~9200C,炉冷到6000C,然后空冷的称为完全退火,一般在罩式炉中进行。
退火温度为620~7800C,然后空冷的称为过程退火,一般在连续式炉内进行。
淬火——马氏体不锈钢经过高温急冷可以得到很高的硬度,其淬火温度为925~10650C,油淬或空冷。
为了消除淬火以后的内部应力,一般还需要进行消除应力退火和回火。
马氏体不锈钢热处理淬火简介马氏体不锈钢是一种通过热处理淬火获得的高强度不锈钢。
由于其出色的耐腐蚀性能和良好的可加工性,马氏体不锈钢在航空航天、汽车制造、医疗器械等领域广泛应用。
本文将深入探讨马氏体不锈钢的热处理淬火过程及其影响因素。
热处理淬火的原理热处理是通过控制材料的组织和性能来改变材料的加工性能和使用性能。
淬火是其中一种重要的热处理方法之一。
马氏体不锈钢热处理淬火的原理如下:1.加热:将马氏体不锈钢加热至适当的温度,通常在900°C到1050°C之间。
这样可以使材料中的奥氏体晶体结构转变为奥氏体加马氏体的组织结构。
2.保温:在加热的温度下保持一段时间,以确保奥氏体转变为均匀的奥氏体加马氏体。
3.冷却:迅速将材料从加热温度冷却至室温,通常采用水或油冷却。
这种迅速冷却的过程使马氏体得以保留,从而提高了材料的硬度和强度。
热处理淬火的影响因素马氏体不锈钢的热处理淬火过程中,有多个因素会对材料的组织和性能产生影响。
以下是影响因素的详细讨论:温度热处理淬火的温度对马氏体不锈钢的相变和淬火效果具有重要影响。
较高的温度可以提高材料的形变能力和可塑性,但过高的温度可能导致晶粒的长大和材料的软化。
因此,选择适当的加热温度是确保良好淬火效果的关键。
保温时间是指材料在加热温度下保持的时间。
较长的保温时间可以促进奥氏体加马氏体转变的充分进行,确保得到均匀的组织结构。
然而,过长的保温时间可能导致晶粒的长大和材料的软化,因此需要根据具体情况选择适当的保温时间。
冷却速率冷却速率是热处理淬火中另一个重要的影响因素。
快速的冷却速率能够有效地保留马氏体,提高材料的硬度和强度。
水冷却和油冷却是常用的冷却介质,其冷却速率各有特点。
水冷却能够提供更快的冷却速率,但可能会引起材料的变形和裂纹。
油冷却则相对较缓慢,冷却效果较温和。
因此,需要根据具体要求选择适当的冷却速率。
加热速率加热速率指材料从室温升温至加热温度的速率。
马氏体不锈钢淬火热处理一、引言马氏体不锈钢是一种重要的不锈钢材料,具有高强度、高韧性和良好的耐腐蚀性能。
其中,淬火热处理是马氏体不锈钢制造过程中必不可少的步骤之一。
本文将介绍马氏体不锈钢淬火热处理的原理、方法和注意事项。
二、马氏体不锈钢淬火热处理原理1. 马氏体变形机制在淬火过程中,马氏体变形机制主要是由相变引起的位错密度增加和晶界滑移所致。
当马氏体从奥氏体转变时,晶格结构发生变化,导致位错密度增加。
此时,晶界滑移将继续发生,直到位错密度达到一个平衡状态。
2. 马氏体不锈钢淬火热处理原理在淬火过程中,由于快速冷却产生了大量的残余应力和塑性留下来的位错。
这些留下来的位错会影响材料的力学性能和耐腐蚀性能。
通过回火处理可以消除这些留下来的位错,从而提高材料的力学性能和耐腐蚀性能。
三、马氏体不锈钢淬火热处理方法1. 淬火温度马氏体不锈钢淬火温度一般在800℃以上。
当温度超过800℃时,奥氏体会转变为铁素体和铁碳化物,这将导致材料的强度和韧性下降。
2. 淬火介质淬火介质一般使用水或油。
使用水进行淬火可以获得更高的硬度和强度,但也容易产生较大的变形和裂纹。
使用油进行淬火可以减少变形和裂纹的产生,但硬度和强度相对较低。
3. 淬火时间淬火时间取决于材料的厚度、形状和尺寸等因素。
一般来说,较厚的材料需要更长的淬火时间才能达到所需的硬度和强度。
4. 回火处理回火处理是消除残余应力和塑性留下来的位错的重要方法之一。
回火温度和时间可以根据所需的力学性能进行选择。
回火温度一般在300℃-600℃之间,时间一般为1-2小时。
四、马氏体不锈钢淬火热处理注意事项1. 淬火过程中要控制温度和时间,避免过度淬火或欠淬火。
2. 淬火介质的选择应根据材料的厚度、形状和尺寸等因素进行选择。
3. 回火处理应在适当的温度和时间内进行,避免过度回火或欠回火。
4. 在淬火热处理过程中,要注意防止材料变形和裂纹的产生。
五、结论马氏体不锈钢淬火热处理是提高材料力学性能和耐腐蚀性能的重要方法之一。
标准:GB/T 1220-1992●特性及应用:0Cr17Ni4Cu4Nb是由铜、铌/钶构成的沉淀、硬化、马氏体不锈钢。
0Cr17Ni4Cu4Nb有较高的强度、耐蚀性、抗氧化性,0Cr17Ni4Cu4Nb这个等级具有高强度、硬度(高达300℃/572℉)和抗腐蚀等特性。
经过热处理后,产品的机械性能更加完善,可以达到高达1100-1300MPa(160-190 ksi) 的耐压强度。
这个等级不能用于高于300℃(572℉) 或非常低的温度下,它对大气及稀释酸或盐都具有良好的抗腐蚀能力,它的抗腐蚀能力与304和430一样。
●应用领域:1.海上平台、直升机甲板、其他平台2.食品工业3.纸浆及造纸业4.航天(涡轮机叶片)5.机械部件6.核废物桶●化学成分:0Cr17Ni4Cu4Nb化学成分:C Si Mn P S Ni Cr Mo Cu Nb 其他≤0.07 ≤1.00 ≤1.00 ≤0.035 ≤0.030 3.00-5.00 15.5-17.5 - 3.00-5.00 0.15-0.45 -美国ASTMS17400,AISI630,UNS630化学成分C Si Mn P S Ni Cr Mo Cu Nb 其他≤0.07 ≤1.00 ≤1.00 ≤0.040 ≤0.030 3.00-5.00 15.5-17.5 - 3.00-5.00 0.15-0.45 -日本SUS630化学成分C Si Mn P S Ni Cr Mo Cu Nb+Tao 其他≤0.07 ≤1.00 ≤1.00 ≤0.040 ≤0.030 3.00-5.00 15.5-17.5 - 3.00-5.00 0.15-0.45 -欧洲X5CrNiCuNb16-4化学成分C Si Mn P S Ni Cr Mo Cu Nb+Tao 其他≤0.07 ≤1.00 ≤1.00 ≤0.040 ≤0.030 3.00-5.00 15.5-17.5 - 3.00-5.00 0.15-0.45 -●力学性能:抗拉强度σb (MPa):480℃时效,≥1310; 550℃时效,≥1060; 580℃时效,≥1000; 620℃时效,≥930条件屈服强度σ0.2 (MPa):480℃时效,≥1180;550℃时效,≥1000;580℃时效,≥865;620℃时效,≥725伸长率δ5 (%):480℃时效,≥10;550℃时效,≥12;580℃时效,≥13;620℃时效,≥16断面收缩率ψ (%):480℃时效,≥40;550℃时效,≥45;580℃时效,≥45;620℃时效,≥50硬度:固溶,≤363HB和≤38HRC;480℃时效,≥375HB和≥40HRC; 550℃时效,≥331HB和≥35HRC;580℃时效,≥302HB和≥31HRC;620℃时效,≥277HB和≥28HRC●热处理规范及金相组织:热处理规范:1)固溶1020~1060℃快冷;2)480℃时效,经固溶处理后,470~490℃空冷; 3)550℃时效,经固溶处理后,540~560℃空冷; 4)580℃时效,经固溶处理后,570~590℃空冷;5)620℃时效,经固溶处理后,610~630℃空冷。