核酸基础知识
- 格式:ppt
- 大小:7.41 MB
- 文档页数:119
核酸检测原理通俗易懂
核酸检测是一种常用的检测方法,它可以用来检测人体内的病原体,如病毒和细菌。
核酸检测的原理是通过检测样本中的核酸序列来确认是否存在目标病原体。
核酸是构成生物体遗传信息的基本单位,它由四种不同的碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)组成。
不同的病原体具有特定的核酸序列,通过检测这些核酸序列的存在与否,可以识别出病原体的种类和数量。
核酸检测的过程通常包括样本采集、核酸提取、引物设计、聚合酶链反应(PCR)扩增和检测结果分析等步骤。
首先,需要从患者体内采集样本,一般采用鼻咽拭子或者咽喉拭子进行样本的采集。
然后,通过核酸提取的方法,将样本中的核酸从其他杂质中分离出来。
接下来,需要设计特异性引物,这些引物是根据已知的病原体核酸序列来设计的。
引物的作用是将目标病原体的核酸特异性地扩增出来,以便于后续的检测。
然后,进行PCR扩增反应。
PCR是一种体外的核酸模拟过程,利用DNA聚合酶酶和引物,通过循环反复的加热和降温过程,将目标病原体核酸序列扩增成大量可检测的DNA片段。
最后,通过检测方法,如凝胶电泳、荧光染色或者实时荧光PCR等,可以快速和准确地判断扩增产物中是否存在目标病
原体的核酸序列。
总的来说,核酸检测利用了病原体特定的核酸序列,通过PCR扩增和检测方法,可以高效地确认病原体的存在与否。
这种检测方法在疾病的早期诊断和预防控制中起到了重要的作用。
高一必修一生物核酸知识点生物核酸是生物体内重要的分子之一,其作为遗传信息的存储和传递载体,在细胞的生命活动中起着重要的作用。
本文将为大家介绍高一必修一生物核酸的基本知识点。
一、核酸的基本结构生物体内的核酸可分为两类,即脱氧核糖核酸(DNA)和核糖核酸(RNA)。
它们的基本结构由碱基、糖和磷酸组成。
DNA由脱氧核糖、腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)组成;RNA由核糖、腺嘌呤(A)、尿嘧啶(U)、鸟嘌呤(G)和胞嘧啶(C)组成。
二、核酸的功能1. 遗传信息的存储和传递DNA是细胞遗传信息的主要存储介质,它携带有决定个体性状的遗传信息,并通过复制、转录和翻译等过程传递给后代。
RNA 在转录和翻译过程中参与基因的表达调控,起到传递和翻译DNA 信息的作用。
2. 蛋白质的合成DNA在细胞质中通过转录过程生成RNA,而RNA通过翻译过程合成蛋白质。
蛋白质是生物体内最基本的功能分子,参与构建细胞结构、调节代谢功能等重要生命过程。
三、DNA的结构与复制1. DNA的双螺旋结构DNA呈双螺旋结构,由两根互补的链组成,形成一个稳定的螺旋状。
两条链以氢键连接,腺嘌呤与胸腺嘧啶之间形成两个氢键,鸟嘌呤与胞嘧啶之间形成三个氢键。
2. DNA的复制DNA的复制是指在细胞有丝分裂和无丝分裂过程中,通过DNA聚合酶的作用,在两条DNA链的模板上合成新的DNA链。
复制过程保证了遗传信息的准确传递,是细胞分裂和繁殖的基础。
四、RNA的结构与功能1. RNA的结构RNA的结构可分为成熟的mRNA、转运的tRNA和核糖体结构的rRNA。
mRNA是由DNA转录而来,携带有蛋白质合成所需的遗传信息。
tRNA将氨基酸输送到翻译过程中的核糖体,参与蛋白质的合成。
rRNA是核糖体的主要结构组分。
2. RNA的功能RNA参与基因的转录和翻译过程,调控基因的表达。
mRNA将DNA的遗传信息转录为RNA信息,tRNA通过将氨基酸带到翻译机器上,使其按照mRNA信息合成蛋白质。
新冠病毒核酸采样培训•引言•核酸采样基础知识•核酸采样操作规范•核酸采样技术要点与技巧目录•核酸采样实验室安全与防护•核酸采样质量控制与评估•总结与展望01引言培训目的和背景目的背景随着新冠疫情的爆发,核酸采样成为了疫情防控的重要手段之一。
为确保采样的准确性和规范性,医务人员需要接受专业的培训。
早期发现病例监测病毒变异评估疫情形势保障公共卫生安全核酸采样在疫情防控中的重要性02核酸采样基础知识核酸是由核苷酸组成的大分子,包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
核苷酸由磷酸、五碳糖(脱氧核糖或核糖)和含氮碱基(A、T、G、C或U)组成。
新冠病毒属于RNA病毒,其遗传物质为单链RNA。
核酸的组成与结构核酸采样的原理和方法采样方法核酸采样原理包括鼻咽拭子、口咽拭子、痰液、血液等样本采集。
其中,鼻咽拭子和口咽拭子是最常用的采样方法。
采样注意事项核酸采样的意义和应用早期诊断疫情监测个性化治疗科学研究03核酸采样操作规范采样前的准备工作采样过程中的注意事项01020304010204采样后的处理和保存按照规定的方法对采样管进行标识和记录,确保信息准确无误。
将采样管放入专用的病毒保存液中,并按照规定的温度和时间进行保存和运输。
在保存和运输过程中要注意避免剧烈震动和高温环境,以免影响样本质量。
对于未能及时送检的样本,应按照规定的条件进行暂时保存,并尽快送检。
0304核酸采样技术要点与技巧优先选择鼻咽拭子可选口咽拭子采样前准备030201采样部位的选择与定位采样拭子的正确使用01020304选择合适的拭子采样前处理采样操作采样后处理避免交叉污染的措施严格遵循无菌操作原则使用一次性用品定期消毒个人防护05核酸采样实验室安全与防护实验室内部应明确划分清洁区、半污染区和污染区,各区之间应有明显的标识和隔离措施。
实验室台面、墙壁、地面等应平整、光滑、耐腐蚀,易于清洁和消毒。
实验室应具备良好的通风和照明条件,确保空气流通和视野清晰。
第三节蛋白质和核酸蛋白质是生物体内一类极为重要的功能高分子化合物,是生命活动的主要物质基础。
它不仅是细胞、组织、肌肉、毛发等的重要组成成分,而且具有多种生物学功能。
一、氨基酸1、氨基酸的分子结构氨基酸是羧酸分子烃基上的氢原子被氨基(—NH2)取代后的产物。
氨基酸的命名是以羧基为母体,氨基为取代基,碳原子的编号通常把离羧基最近的碳原子称为α碳原子,离羧基次近碳原子称为β碳原子,依次类推。
2、氨基酸的物理性质常温下状态:无色晶体;熔、沸点:较高;溶解性:能溶于水,难溶于有机溶剂。
3、氨基酸的化学性质(1)甘氨酸与盐酸反应的化学方程式:;(2)甘氨酸与氢氧化钠反应的化学方程式:氨基酸是两性化合物,基中—COOH为酸性基团,—NH2为碱性基团。
(3)成肽反应两个氨基酸分子(可以相同也可以不同)在酸或碱存在下加热,通过一分子的氨基和另一分子的羧基脱去一分子水,缩合形成含有肽键的化合物,称为成肽反应。
二、蛋白质的结构与性质1、蛋白质的结构蛋白质是一类高分子化合物,主要由C、H、O、N、S等元素组成。
蛋白质分子结构的显著特征是:具有独特而稳定的结构。
蛋白质的特殊功能和活性与多肽链的氨基酸种类、数目及排列顺序、特定空间结构相关。
2、蛋白质的性质(1)水解蛋白质在酸、碱或酶的作用下,水解成相对分子质量较小的肽类化合物,最终水解得到各种氨基酸。
(2)盐析少量的盐能促进蛋白质溶解。
当向蛋白质溶液中加入的盐溶液达到一定浓度时,反而使蛋白质的溶解度降低而从溶液中析出,这种作用称为盐析。
盐析是一个可逆过程,不影响蛋白质的活性。
因此可用盐析的方法来分离提纯蛋白质。
(3)变性影响蛋白质变性的因素有:物理因素:加热、加压、搅拌、振荡、紫外线照射、超声波等。
化学因素:强酸、强碱、重金属盐、三氧乙酸、乙醇、丙酮等。
变性是一个不可逆(填“可逆”或“不可逆”)的过程,变性后的蛋白质生理活性也同时失去。
(4颜色反应颜色反应一般是指浓硝酸与含有苯基的蛋白质反应,这属于蛋白质的特征反应。
核酸化学知识点总结一、核酸的化学结构1. 核酸的基本结构核酸是由核苷酸组成的,核苷酸又由碱基、糖和磷酸组成。
碱基分为嘌呤和嘧啶两类,嘌呤包括腺嘌呤(A)和鸟嘌呤(G),嘧啶包括胞嘧啶(C)和胸腺嘧啶(T)或尿嘧啶(U)。
糖分为核糖和脱氧核糖,其中RNA中的糖为核糖,DNA中的糖为脱氧核糖。
核苷酸是由碱基和糖组成的核苷,再与磷酸结合形成核苷酸。
2. 核酸的二级结构核酸的二级结构是指单条核酸链上碱基序列所具有的空间结构。
DNA分子具有双螺旋结构,由两条互补的DNA链通过氢键相互缠绕形成。
RNA分子没有固定的二级结构,但在一些情况下也可以形成双链结构。
3. 核酸的三级结构核酸的三级结构是指单条核酸链在立体空间上所呈现的结构。
DNA分子呈现出右旋的螺旋结构,RNA分子则可以形成各种复杂的结构。
4. 核酸的四级结构核酸的四级结构是指多条核酸链相互作用所形成的更为复杂的结构。
在一些特定情况下,核酸分子可以形成四级结构,并参与到一些生物学过程中。
二、核酸的功能1. 遗传信息的储存与传递核酸是生物体内遗传信息的携带者,DNA分子储存着生物体的遗传信息,RNA分子则在转录和翻译过程中参与到遗传信息的传递和表达中。
2. 蛋白质合成核酸通过转录和翻译的过程,参与到蛋白质的合成过程中。
DNA分子在转录过程中产生mRNA,mRNA再通过翻译过程将基因信息翻译成蛋白质。
3. 调节基因表达在一些生物学过程中,核酸可以通过转录调控、剪接调控和甲基化调控等方式来参与到基因的表达调节中。
4. 氧化磷酸化核酸分子参与到细胞内氧化磷酸化过程中,通过释放出磷酸来提供细胞内化学能量,并维持细胞内正常生理活动。
三、核酸的合成1. DNA的合成(DNA合成)DNA的合成是DNA聚合酶在DNA模板的引导下,将合适的脱氧核苷酸三磷酸酶与新合成的核甙核苷酸通过磷酸二酯键连接,使DNA链不断延长的过程。
DNA合成是细胞分裂前的准备工作,也是基因工程和分子生物学研究中的重要技术手段。
高中生物核酸知识点归纳分享借鉴.高中生物核酸知识点11.核酸的简介由许多核苷酸聚合而成的生物大分子化合物,为生命的最基本物质之一.最早由米歇尔于_68年在脓细胞中发现和分离出来.核酸广泛存在于所有动物.植物细胞.微生物内.生物体内核酸常与蛋白质结合形成核蛋白.不同的核酸,其化学组成.核苷酸排列顺序等不同.根据化学组成不同,核酸可分为核糖核酸,简称RNA和脱氧核糖核酸,简称DNA.DNA是储存.复制和传递遗传信息的主要物质基础,RNA在蛋白质牲合成过程中起着重要作用,其中转移核糖核酸,简称tRNA,起着携带和转移活化氨基酸的作用;信使核糖核酸,简称mRNA,是合成蛋白质的模板;核糖体的核糖核酸,简称rRNA,是细胞合成蛋白质的主要场所.核酸不仅是基本的遗传物质,而且在蛋白质的生物合成上也占重要位置,因而在生长.遗传.变异等一系列重大生命现象中起决定性的作用.核酸在实践应用方面有极重要的作用,现已发现近_种遗传性疾病都和DNA结构有关.如人类镰刀形红血细胞贫血症是由于患者的血红蛋白分子中一个氨基酸的遗传密码发生了改变,白化病毒者则是DNA分子上缺乏产生促黑色素生成的酷氨酸酶的基因所致.肿瘤的发生.病毒的感染.射线对机体的作用等都与核酸有关.70年代以来兴起的遗传工程,使人们可用人工方法改组DNA,从而有可能创造出新型的生物品种.如应用遗传工程方法已能使大肠杆菌产生胰岛素.干扰素等珍贵的生化药物2.核酸的研究历史核酸是怎么发现的?_69年,F.Miescher从脓细胞中提取到一种富含磷元素的酸性化合物,因存在于细胞核中而将它命名为核质 (nuclein).核酸(nucleic acids),但这一名词于Miescher的发现_年后才被正式启用,当时已能提取不含蛋白质的核酸制品.早期的研究仅将核酸看成是细胞中的一般化学成分,没有人注意到它在生物体内有什么功能这样的重要问题.核酸为什么是遗传物质?_44年,Avery等为了寻找导致细菌转化的原因,他们发现从S 型肺炎球菌中提取的DNA与R型肺炎球菌混合后,能使某些R型菌转化为S型菌,且转化率与DNA纯度呈正相关,若将DNA预先用DNA酶降解,转化就不发生.结论是:S型菌的DNA将其遗传特性传给了R型菌,DNA就是遗传物质.从此核酸是遗传物质的重要地位才被确立, 人们把对遗传物质的注意力从蛋白质移到了核酸上.双螺旋的发现核酸研究中划时代的工作是Watson和Crick于_53年创立的DNA 双螺旋结构模型.模型的提出建立在对DNA下列三方面认识的基础上:1.核酸化学研究中所获得的DNA化学组成及结构单元的知识,特别是Chargaff于_50-_53年发现的DNA化学组成的新事实;DNA中四种碱基的比例关系为A/T=G/C=1;2._线衍射技术对DNA结晶的研究中所获得的一些原子结构的最新参数;3.遗传学研究所积累的有关遗传信息的生物学属性的知识.综合这三方面的知识所创立的DNA双螺旋结构模型,不仅阐明了DNA分子的结构特征,而且提出了DNA作为执行生物遗传功能的分子,从亲代到子代的DNA复制(replication)过程中,遗传信息的传递方式及高度保真性.其正确性于_58年被Meselson和Stahl的著名实验所证实.DNA双螺旋结构模型的确立为遗传学进入分子水平奠定了基础,是现代分子生物学的里程碑.从此核酸研究受到了前所未有的重视.对核酸研究有突出贡献的科学家沃森Watson, James Dewey美国生物学家克里克Crick, Francis Harry Compton英国生物物理学家3.核酸的分子结构一. 核酸的一级结构核酸是由核苷酸聚合而成的生物大分子.组成DNA的脱氧核糖核苷酸主要是dAMP.dGMP.dCMP和dTMP,组成RNA的核糖核苷酸主要是AMP.GMP.CMP和UMP.核酸中的核苷酸以3’,5’磷酸二酯键构成无分支结构的线性分子.核酸链具有方向性,有两个末端分别是5’末端与3’末端.5’末端含磷酸基团,3’末端含羟基.核酸链内的前一个核苷酸的3’羟基和下一个核苷酸的5’磷酸形成3’,5’磷酸二酯键,故核酸中的核苷酸被称为核苷酸残基..通常将小于50个核苷酸残基组成的核酸称为寡核苷酸(oligonucleotide),大于50个核苷酸残基称为多核苷酸(polynucleotide).二. DNA的空间结构(一)DNA的二级结构DNA二级结构即双螺旋结构(double heli_structure)._世纪50年代初Chargaff等人分析多种生物DNA的碱基组成发现的规则.DNA双螺旋模型的提出不仅揭示了遗传信息稳定传递中DNA半保留复制的机制,而且是分子生物学发展的里程碑.DNA双螺旋结构特点如下:①两条DNA互补链反向平行.②由脱氧核糖和磷酸间隔相连而成的亲水骨架在螺旋分子的外侧,而疏水的碱基对则在螺旋分子内部,碱基平面与螺旋轴垂直,螺旋旋转一周正好为_个碱基对,螺距为 3.4nm,这样相邻碱基平面间隔为0.34nm并有一个36?的夹角.③DNA双螺旋的表面存在一个大沟(majorgroove)和一个小沟(minorgroove),蛋白质分子通过这两个沟与碱基相识别.④两条DNA链依靠彼此碱基之间形成的氢键而结合在一起.根据碱基结构特征,只能形成嘌呤与嘧啶配对,即A 与T相配对,形成2个氢键;G与C相配对,形成3个氢键.因此G与C之间的连接较为稳定.⑤DNA双螺旋结构比较稳定.维持这种稳定性主要靠碱基对之间的氢键以及碱基的堆集力(stackingforce).生理条件下,DNA双螺旋大多以B型形式存在.右手双螺旋DNA除B型外还有A 型.C型.D型.E型.此外还发现左手双螺旋Z型DNA.Z型DNA是_79年Rich等在研究人工合成的CGCGCG的晶体结构时发现的.Z-DNA的特点是两条反向平行的多核苷酸互补链组成的螺旋呈锯齿形,其表面只有一条深沟,每旋转一周是_个碱基对.研究表明在生物体内的DNA分子中确实存在Z-DNA区域,其功能可能与基因表达的调控有关.DNA二级结构还存在三股螺旋DNA,三股螺旋DNA中通常是一条同型寡核苷酸与寡嘧啶核苷酸-寡嘌呤核苷酸双螺旋的大沟结合,三股螺旋中的第三股可以来自分子间,也可以来自分子内.三股螺旋DNA存在于基因调控区和其他重要区域,因此具有重要生理意义.(二) DNA三级结构——超螺旋结构DNA三级结构是指DNA链进一步扭曲盘旋形成超螺旋结构.生物体内有些DNA 是以双链环状DNA形式存在,如有些病毒DNA,某些噬菌体DNA,细菌染色体与细菌中质粒DNA,真核细胞中的线粒体DNA.叶绿体DNA都是环状的.环状DNA分子可以是共价闭合环,即环上没有缺口,也可以是缺口环,环上有一个或多个缺口.在DNA双螺旋结构基础上,共价闭合环DNA(covalentlyclose circular DNA)可以进一步扭曲形成超螺旋形(super helicalform).根据螺旋的方向可分为正超螺旋和负超螺旋.正超螺旋使双螺旋结构更紧密,双螺旋圈数增加,而负超螺旋可以减少双螺旋的圈数.几乎所有天然DNA中都存在负超螺旋结构.(三) DNA的四级结构——DNA与蛋白质形成复合物在真核生物中其基因组DNA要比原核生物大得多,如原核生物大肠杆菌的DNA 约为4.7_1_kb,而人的基因组DNA约为3_1_kb,因此真核生物基因组DNA通常与蛋白质结合,经过多层次反复折叠,压缩近__0倍后,以染色体形式存在于平均直径为5μm的细胞核中.线性双螺旋DNA折叠的第一层次是形成核小体(nucleosome).犹如一串念珠,核小体由直径为_nm_5.5nm的组蛋白核心和盘绕在核心上的DNA构成.核心由组蛋白H2A.H2B.H3和H4各2分子组成,为八聚体,_6 bp长的DNA以左手螺旋盘绕在组蛋白的核心1.75圈,形成核小体的核心颗粒,各核心颗粒间有一个连接区,约有60bp双螺旋DNA和1个分子组蛋白H1构成.平均每个核小体重复单位约占DNA _bp.DNA组装成核小体其长度约缩短7倍.在此基础上核小体又进一步盘绕折叠,最后形成染色体.高中生物核酸知识点2遗传信息的携带者——核酸一核酸的分类细胞生物含两种核酸:DNA和RNA病毒只含有一种核酸:DNA或RNA核酸包括两大类:一类是脱氧核糖核酸(DNA);一类是核糖核酸(RNA).二.核酸的结构1.核酸是由核苷酸连接而成的长链(C H O NP).DNA的基本单位脱氧核糖核苷酸,RNA的基本单位核糖核苷酸.核酸初步水解成许多核苷酸.基本组成单位—核苷酸(核苷酸由一分子五碳糖.一分子磷酸.一分子含氮碱基组成).根据五碳糖的不同,可以将核苷酸分为脱氧核糖核苷酸(简称脱氧核苷酸)和核糖核苷酸.2.DNA由两条脱氧核苷酸链构成.RNA由一条核糖核苷酸连构成.3.核酸中的相关计算:(1)若是在含有DNA和RNA的生物体中,则碱基种类为5种;核苷酸种类为8种.(2)DNA的碱基种类为4种;脱氧核糖核苷酸种类为4种.(3)RNA的碱基种类为4种;核糖核苷酸种类为4种.三.核酸的功能:核酸是细胞内携带遗传信息的物质,在生物体的遗传.变异和蛋白质的生物合成中具有极其重要的作用.核酸在细胞中的分布——观察核酸在细胞中的分布:材料:人的口腔上皮细胞试剂:甲基绿.吡罗红混合染色剂原理:DNA主要分布在细胞核内,RNA大部分存在于细胞质中.甲基绿使DNA呈绿色,吡罗红使RNA呈现红色.盐酸能够改变细胞膜的通透性,加速染色剂进入细胞,同时使染色质中的DNA与蛋白质分离.结论:真核细胞的DNA主要分布在细胞核中.线粒体.叶绿体内含有少量的DNA.RNA主要分布在细胞质中.高中生物核酸知识点3一.核酸的种类:脱氧核糖核酸(DNA)和核糖核酸(RNA)二.核酸:是细胞内携带遗传信息的物质,对于生物的遗传.变异和蛋白质的合成具有重要作用.三.组成核酸的基本单位是:核苷酸,是由一分子磷酸.一分子五碳糖(DNA为脱氧核糖.RNA为核糖)和一分子含氮碱基组成;组成DNA的核苷酸叫做脱氧核苷酸,组成RNA的核苷酸叫做核糖核苷酸.四.DNA所含碱基有:腺嘌呤(A).鸟嘌呤(G)和胞嘧啶(C).胸腺嘧啶(T)RNA所含碱基有:腺嘌呤(A).鸟嘌呤(G)和胞嘧啶(C).尿嘧啶(U)五.核酸的分布:真核细胞的DNA主要分布在细胞核中;线粒体.叶绿体内也含有少量的DNA;RNA主要分布在细胞质中.高中生物核酸知识点。
核酸检测物理知识点总结一、核酸的结构与性质1.1 核酸的化学结构核酸是一种由核苷酸经过磷酸二脂酸酯键连接形成的生物大分子,包括DNA和RNA两种类型。
DNA由脱氧核糖核苷酸组成,RNA由核糖核苷酸组成。
核苷酸由核苷和磷酸二脂酸组成,核苷包括一个含氮碱基和一个糖分子,磷酸二脂酸作为链的连接部分。
1.2 核酸的物理性质核酸具有许多特殊的物理性质,如双螺旋结构、碱基配对、DNA超螺旋等。
其中双螺旋结构是DNA的典型结构,由两条螺旋形成,而碱基配对是通过氢键将两条链连接在一起,碱基的配对规律是腺嘌呤(A)与胸腺嘧啶(T)之间形成两个氢键,鸟嘌呤(G)与胞嘧啶(C)之间形成三个氢键。
此外,DNA还具有超螺旋结构,这种结构形式使得DNA在细胞分裂时更容易分离。
1.3 核酸的光学性质核酸具有一定的光学性质,如吸收光谱、荧光光谱等。
DNA和RNA在紫外光下有显著的吸收,其中DNA在260nm处有最大吸收峰,而RNA在260nm处有一个稍微红移的吸收峰。
此外,核酸还具有荧光发射的性质,一些荧光染料可以与核酸结合产生荧光信号,用于核酸的检测和定量分析。
二、核酸检测的原理与技术2.1 核酸检测的原理核酸检测的原理是通过特定的技术手段来识别和检测样品中的核酸序列,常用的技术包括PCR(聚合酶链式反应)、分子杂交、核酸电泳、原位杂交等。
PCR是最常用的核酸扩增技术,通过模拟细胞内DNA复制的过程来扩增目标DNA序列,从而实现对目标基因的检测和分析。
2.2 核酸检测的技术手段核酸检测的技术手段包括一系列的实验方法和设备,如核酸提取、PCR扩增、凝胶电泳、原位杂交、微阵列技术等。
其中核酸提取是核酸检测的首要环节,其目的是从样品中提取出目标DNA或RNA序列,为后续的PCR扩增和检测做准备;PCR扩增是一种快速、高效、特异性强的核酸扩增技术,可将目标核酸的复制数量扩大上百万倍,从而实现对微量核酸的检测和分析。
2.3 核酸检测的应用核酸检测技术在临床医学、疾病预防和控制、食品安全监测等领域有着广泛的应用,如临床诊断中的传染病检测、肿瘤基因检测、遗传病筛查等;疾病预防和控制中的病毒核酸监测、病原微生物检测、环境污染监测等;食品安全监测中的食源性疾病的检测、转基因食品的检测等。
高一生物核酸知识点梳理介绍:在高一生物学习中,核酸是一个重要的知识点。
核酸是生命体中的重要物质,它不仅参与了遗传信息的传递和转录翻译过程,还具有其他许多重要的生物学功能。
本文将对高一生物的核酸知识点进行梳理,并介绍相关的概念和重要内容。
一、核酸的基本概念核酸是由核苷酸组成的生物大分子,分为脱氧核酸(DNA)和核糖核酸(RNA)两类。
DNA是遗传物质的主要组成部分,存在于细胞核中;RNA则广泛存在于细胞质中,参与了遗传信息的转录和翻译过程。
二、核酸的结构1. DNA结构:DNA由两条互补的链以螺旋形式相互缠绕而成,形成了双螺旋结构。
每条链由磷酸、脱氧核糖和四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)组成,通过碱基间的氢键相互连接。
2. RNA结构:RNA呈单链结构,一条RNA链上的碱基序列由脱氧核糖和四种碱基组成。
与DNA不同的是,RNA中的胸腺嘧啶被尿嘧啶取代。
三、DNA的复制DNA的复制是遗传信息传递的基础过程,包括以下关键步骤:1. 解旋:DNA双链解旋,形成两条单链。
2. 模板配对:通过碱基配对规则,合成新链的碱基与模板链上的碱基互补配对。
3. 连接:新合成的碱基通过磷酸二酯键连接,形成新的DNA 链。
四、DNA的转录DNA的转录是生物体利用DNA遗传信息合成RNA的过程,包括以下关键步骤:1. 初始和启动:RNA聚合酶结合到DNA上,寻找转录起始点,并进行反转录酶链中的RNA合成。
2. 链延伸:RNA聚合酶沿DNA链向下滑动,合成RNA链并与DNA模板链上的核酸配对。
3. 终止:RNA聚合酶到达终止信号序列,停止合成,释放RNA链。
五、RNA的翻译RNA的翻译是将RNA中的遗传信息转化为蛋白质的过程,包括以下关键步骤:1. 转运RNA(tRNA)的适配:tRNA携带特定氨基酸与相应的密码子匹配,适配到核糖体上。
2. 构建蛋白质链:核糖体依次阅读mRNA的密码子,将相应的氨基酸连接在一起,形成多肽链。