2机翼和叶栅的升力理论
- 格式:ppt
- 大小:2.36 MB
- 文档页数:12
机翼和叶栅工作原理机翼和叶栅是飞行器中最重要的部件之一,它们的工作原理直接影响着飞机的稳定性和飞行性能。
机翼和叶栅的设计和构造非常复杂,需要考虑多种因素,如气动力学、材料力学、热力学等,同时也需要使用高科技的材料和先进的制造工艺。
本文将详细介绍机翼和叶栅的工作原理。
一、机翼的工作原理机翼是飞机最重要的部件之一,它的主要作用是提供升力和推力,让飞机能够飞行。
机翼的基本结构包括大翼板、前缘板、后缘板和翼肋等。
在飞行时,机翼的上表面比下表面更加弯曲,使得上表面的气流速度要比下表面的气流速度更快,从而形成了压力差,产生了升力。
机翼的前缘板和后缘板也起到了非常重要的作用,它们能够使气流保持在合适的角度,避免气流的分离和逆流,从而增加了升力的产生。
机翼的工作原理也与伯努利原理密切相关。
伯努利原理是流体力学中的一个重要原理,它描述了流体在速度和压力之间的关系。
在机翼的上表面,气流的速度更快,压力更小,而在机翼的下表面,气流的速度较慢,压力较大。
这种速度和压力的差异使得机翼产生了升力。
机翼的设计也是非常关键的。
对于不同的飞行器和飞行条件,机翼的设计也需要有所不同。
机翼的形状、厚度、长度、后缘角度等都需要考虑到不同的因素,如飞行速度、气流参数、飞机质量等。
现代飞机的机翼也使用了尖锐的前缘、切削的后缘和复杂的结构,以提高机翼的流线型和气动效率。
二、叶栅的工作原理叶栅是飞机发动机的关键部件之一,它起到了限制和调节气流的作用。
叶栅的主要结构由多个叶片组成,叶栅内有高温高压的气流通过,叶片的开启和关闭可以调节气流的流量和速度。
叶栅的作用除了控制气流外,还可以起到控制噪音和降低引擎的燃油消耗等作用。
叶栅的工作原理也与伯努利原理有关。
在叶栅内,气流的速度和压力也存在着差异。
当叶栅的叶片打开时,气流能够顺畅地通过,气体速度增加,压力下降。
当叶栅的叶片关闭时,气流被限制,气体的速度减小,压力升高。
通过控制叶栅的叶片开合,能够达到有效地控制气流的目的。
第四章 轴流式通风机图4-1为轴流式风机,由集风器1,、叶轮2,、导叶3,、扩散筒4等组成。
叶轮和导叶组成级,轴流通风机,因为压力较低,一般都用单级,例如低压轴流通风机在490Pa 以下,高压轴流通风机一般在4900Pa 以下。
其特点:压力系数低ψ<0.6,流量系数高φ=0.3~0.6,比转速高n s =18~90(100~500)(单级)全压效率高达η=90%以上,单向扩散筒的单级风机效率为83~85%。
不过目前轴流风机逐渐向高压发展,例如国际上已造出动叶可调轴流通风机ΔP =14210Pa,许多大型离心式风机有被轴流式风机取代的趋势。
图4-1轴流式风机§1 基元级一、基元级上的速度三角形图4-2 轴流式通风机的基元级轴流式通风机的基元级由叶轮和导叶所组成的。
对于不同半径的圆柱面上,由于离心力不同,那么气流的参数是变化的,叶片沿叶高方向(径向)是扭曲的。
为了研究不同半径上的流动,用一圆柱面去切开轴流式通风机,会得到圆柱面上的环形叶删,可以展开成平面叶栅,如图4-2所示,这种平面动叶和导叶所组成的叶栅,称为基元级 与离心通风机一样,在动叶前后形成速度三角形:不过在圆柱面上:u 1 = u 2 = u ,C 1z = C 2z = C z ,ρ1 = ρ2 = ρ(β2 >β1,α2 < α1)对于多级轴流风机,一般要求后导叶出口的流速C 3和气流角α3等于叶轮前的状态C 3 = C 1,α3 =α1可以得出叶流前后平均的相对速度W m 及方向角βmβm = tg(C z / W mu ) (4-1) W mu = u – ΔW u /2 –C 1u (4-2)22muZ W C Wm +=式(5-2)的推导可出图3-2b 时:u = u 1 = u 2 ΔW u = W 1u – W 2u = C 2u - C 1u = ΔC u (4-3) ΔW u 或ΔC u 称为相速。
华北水利水电大学2021年硕士研究生入学考试初试科目考试大纲工程流体力学(科目代码:955)考试大纲一、试卷分值及考试时间考试时间180分钟(3个小时),满分150分。
二、考试基本要求本考试大纲适用于报考华北水利水电大学“动力工程及工程热物理”、“流体机械及工程”、“动力机械及工程”、“水利工程”等学术型硕士和“能源动力(专业学位)”研究生入学考试。
闭卷考试,允许使用计算器,但不得使用带有公式和文本存储功能的计算器。
本科目考试主要测试考生掌握流体力学的基本概念、基本理论的扎实程度,考查考生能熟练运用这些概念与理论分析解决现实生产中流体力学相关问题的能力。
考察范围包括流体静力学、流体运动学、流体动力学、量纲分析、流动测量与显示技术、理想流体运动以及边界层理论、黏性流体流动基础以及流体力学工程应用等方面。
要求考生掌握流体力学的基础概念、基本原理、基本计算方法和基本方程的推导,并具有综合运用所学知识分析问题和解决问题的能力。
三、试卷内容及结构(一)流体的定义和特征(约占5%)1.流体作为连续介质的假设;2.流体的定义和特征;3.作用在流体上的力;4.流体的物理性质。
(二)流体静力学(约占10%)1.流体静压强及其特性;2.流体平衡微分方程式;3.流体静力学基本方程;4.绝对压强,相对压强;5.液柱式测压计;6.静止液体作用在平面、曲面上的总压力;7.液体的相对平衡。
(三)流体运动的基本概念和基本方程(约占15%)1.研究流体流动的两种方法、流动的分类;2.流动概念如迹线与流线、流速、流量、系统与控制体等;3.连续方程、动量方程、能量方程;4.伯努利方程及其意义和应用,动量方程及其应用;5.动量矩方程、叶轮机械欧拉方程、速度三角形及其应用等。
(四)相似原理和量纲分析(约占10%)1.模型试验、量纲分析法;2.相似原理、重要相似准则。
(五)管流损失和水力计算(约占15%)1.粘性流体的两种流动状态:层流、紊流,雷诺数;2.沿程损失、局部损失的实验研究;3.管内流动的能量损失,沿程损失、局部损失的计算;4.圆管中的层流、湍流流动理论分析;5.管道水力计算;6.水击现象;7.管嘴与孔口的出流。
飞机机翼产生升力的原理飞机机翼产生升力的原理是基于伯努利定律和牛顿第三定律。
机翼与气流之间存在一个由上下表面之间的压差所产生的升力。
首先,根据伯努利定律,当气流通过机翼上下表面时,由于机翼上表面更加凸起,气流在上表面流动速度较快,而在下表面流动速度较慢。
根据伯努利定律,流动速度较快的区域气流压力较低,而流动速度较慢的区域气流压力较高。
因此,在机翼上表面的气流速度较快,气流压力较低,在机翼下表面的气流速度较慢,气流压力较高。
根据牛顿第三定律,当气流与机翼表面发生相互作用时,产生一个与气流作用方向相反的等大反作用力。
气流在机翼的上表面流动时,由于流动速度快,压力低,从而使机翼表面受到向下的压力。
同样,在机翼的下表面,气流流动速度慢,压力高,因此机翼下表面受到向上的压力。
这两个力的合力即为升力。
此外,还需要考虑机翼形状对升力的影响。
机翼通常采用个人梯形翼型,即厚度向前增大,厚度向后逐渐减小,同时上表面与下表面都呈现出一定的曲率。
这样的设计有利于增加升力的产生。
当气流通过机翼时,由于上表面的曲率较大,气流流速相对较快,导致压力较低。
而下表面的曲率较小,气流流速相对较慢,导致压力较高。
这种形状设计使得机翼上表面产生的压差更大,从而增加了升力的大小。
升力的大小还与机翼的攻角有关。
攻角是机翼与来流气流方向之间的夹角。
当攻角增大时,气流相对机翼的上表面流动的速度也会增大,从而压差增大,升力也会增大。
然而,当攻角过大时,气流会分离并形成气流脱落区域,进而导致升力的减小和失速。
除了上述原理外,还有一种解释机翼产生升力的理论,即“流下假设”。
根据流下假设,机翼上下表面之间的气体流动是分离的。
当空气从机翼上表面流向下表面时,会形成一个叫做流下层的气流。
而在下表面,由于气流速度较慢,流下层会分离并向下流动,形成一个被称为下层的气流。
而在上表面,由于气流速度较快,受到上层气流的引导,附着在机翼上表面,形成一个叫做上层的层流。
飞机升力产生原理飞机的升力产生原理是航空学中的一个重要概念,它是飞机能够在空中飞行的基础。
飞机的升力是由机翼产生的,机翼的形状和气流的流动状态是产生升力的关键因素。
下面我们将详细介绍飞机升力产生的原理。
首先,我们来了解一下机翼的形状对升力产生的影响。
机翼的上表面比下表面要凸出一些,这种凸出的形状被称为翼型。
当飞机飞行时,空气流经机翼上表面和下表面时,由于翼型的作用,空气在上表面的流速要比下表面快,同时在上表面和下表面的压强也有所不同。
这种压强的差异导致了一个向上的压力,从而产生了升力。
其次,气流的流动状态也对升力产生有着重要的影响。
当飞机在空中飞行时,机翼前部的气流会分开,一部分流经上表面,一部分流经下表面。
这种分离的气流会导致上表面的气流流速加快,从而产生了升力。
同时,机翼的后部也会产生一个向下的气流,这也会对升力产生产生影响。
除了机翼的形状和气流的流动状态,气流的密度也是产生升力的重要因素。
当飞机在不同高度飞行时,空气的密度会有所不同,密度越大,产生的升力也就越大。
因此,飞机在不同高度飞行时,需要根据空气密度的变化来调整飞行姿态,以保持稳定的升力。
另外,飞机的速度也会对升力产生影响。
一般来说,飞机的速度越快,产生的升力也就越大。
这是因为当飞机的速度增加时,机翼上的气流流速也会增加,从而产生更大的升力。
总的来说,飞机的升力产生原理是一个复杂的物理过程,涉及到机翼的形状、气流的流动状态、气流的密度以及飞机的速度等多个因素。
只有充分理解这些因素之间的相互作用关系,才能更好地掌握飞机的升力产生原理,从而更安全、高效地进行飞行操作。
在实际飞行中,飞行员需要根据飞机的性能和飞行环境的变化,灵活地调整飞行姿态,以确保飞机能够产生足够的升力,从而实现安全、平稳的飞行。
同时,航空工程师也需要根据升力产生原理,设计出更加高效的飞机机翼,以提高飞机的性能和燃油利用率。
总之,飞机的升力产生原理是航空学中的重要概念,它是飞机能够在空中飞行的基础。