浙江省中考数学《二次函数》总复习阶段检测试卷含答案
- 格式:doc
- 大小:197.50 KB
- 文档页数:10
【大题精编】2023届浙江省中考数学复习专题7 二次函数综合问题解答题30题专项提分计划(浙江省通用)1.(2022·浙江舟山·统考二模)如图,在平面直角坐标系中,二次函数243y ax x =+-图象的顶点是A ,与x 轴交于B ,C 两点,与y 轴交于点D .点B 的坐标是()1,0.(1)求A ,C 两点的坐标,并根据图象直接写出当0y >时x 的取值范围.(2)将图象向上平移m 个单位后,二次函数图象与x 轴交于E ,F 两点,若6EF =,求m 的值.2.(2022·浙江杭州·校考二模)在平面直角坐标系中,已知二次函数()211y ax a x =+--.(1)若该函数的图象经过点()1,2,求该二次函数图象的顶点坐标.(2)若()()1112,,,x y x y 为此函数图象上两个不同点,当122x x +=-时,恒有12y y =,试求此函数的最值.(3)当0a <且1a ≠-时,判断该二次函数图象的顶点所在象限,并说明理由. 3.(2020·浙江绍兴·模拟预测)一座桥如图,桥下水面宽度AB 是20米,高CD 是4米.(1)如图,若把桥看做是抛物线的一部分,建立如图坐标系.①求抛物线的解析式;①要使高为3米的船通过,则其宽度须不超过多少米?(2)如图,若把桥看做是圆的一部分.①求圆的半径;①要使高为3米的船通过,则其宽度须不超过多少米?4.(2022·浙江温州·温州市第三中学校考模拟预测)如图,在平面直角坐标系中,边长为2的正方形OABC ,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,抛物线2y x bx c =++经过点A 与点C .(1)求这个二次函数的表达式,并求出抛物线的对称轴.(2)现将抛物线向左平移()0m m >个单位,向上平移()0n n >个单位,若平移后的抛物线恰好经过点B 与点C ,求m ,n 的值.5.(2022·浙江宁波·统考一模)如图,在平面直角坐标系中,抛物线2y x mx =+与直线y x b =-+(m 、b 均为常数)交于点()2,0A 和点B .(1)求m 和b 的值;(2)求点B 的坐标,并结合图象写出不等式2x mx x b +>-+的解集;(3)点M 是直线AB 上的一个动点,点N 在点M 正下方(即MN y ∥轴),且2MN =,若线段MN 与抛物线只有一个公共点,请直接写出点M 的横坐标M x 的取值范围. 6.(2022·浙江杭州·杭州绿城育华学校校考二模)设二次函数2y mx nx m n =+--(m ,n 为常数,0m ≠).(1)判断该抛物线与x 轴的交点的个数,并说明理由.(2)若0m n +<,点()()2,>0P a a 在该二次函数图象上,求证:>0m(3)设()11,M x y ,()22,N x y 是该函数图象上的两点,其中12x x <,若12y y <且0m n +=,求12x x +的取值范围.7.(2022·浙江杭州·校考二模)在平面直角坐标系中,点()1A m ,和点()2,B n 在二次函数21y ax bx =++()0a ≠的图像上.(1)若13m n ==,,求二次函数的表达式及图像的对称轴.(2)若点()00C x y ,是二次函数图像上的任意一点且满足0y m ≥,当0mn <时,求证:1a >. (3)若点()()()2,2,13,1c c c --+,,在该二次函数的图像上,试比较m ,n 的大小. 8.(2020·浙江衢州·统考二模)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y (元)与销售单价x (元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本⨯每天的销售量)9.(2021·浙江宁波·校考三模)如图,直线1122y x =-+与x 轴交于点B .抛物线2212y x bx c =-++与该直线交于A 、B 两点,交y 轴于点D (0,4),顶点为C .(1)求抛物线的函数解析式,并求出点A 的坐标.(2)求二次函数图像与x 轴的交点E 的坐标,并结合图像,直接写出当12·0y y ≤时,x 的取值范围.10.(2021·浙江宁波·校考三模)如图,抛物线21(3)3y ax a x a =---(a 为常数)与x轴的正半轴交于点A ,与y 轴的负半轴交于点B ,直线AB 的函数表达式为23y kx=﹣(k为常数).(1)求a 的值;(2)求直线AB 的函数表达式;(3)根据图象写出当12y y ≥时x 的取值范围.11.(2022·浙江衢州·统考二模)在新农村建设过程中,渣濑湾村采用“花”元素打造了一座花都村庄.如图,一农户用长为25m 的篱笆,一面利用墙,围成有两个小门且中间隔有一道篱笆的长方形花圃.已知小门宽为1m ,设花圃的宽AB 为x (m ),面积为S (m 2).(1)求S 关于x 的函数表达式.(2)如果要围成面积为54 m 2的花圃,AB 的长为多少米?(3)若墙的最大长度为10m ,则能围成的花圃的最大面积为多少?并求此时AB 的长.12.(2022·浙江温州·统考二模)如图,将抛物线21:2P y x x m =++平移后得到抛物线22:5P y x x n =-+,两抛物线与y 轴分别交于点C ,D .抛物线1P ,2P 的交点E 的横坐标是1,过点E 作x 轴的平行线,分别交抛物线1P ,2P 于点A ,B .(1)求抛物线1P 的对称轴和点A 的横坐标.(2)求线段AB 和CD 的长度.13.(2022·浙江温州·温州市第十二中学校考二模)疫情期间,某口罩公司生产A 、B 两种类型医用口罩.一家超市4月份向该公司订购了1500件A 型口罩和1500件B 型口罩,一共花了5700元;5月份又花5600元订购了2000件A 型口罩和1000件B 型口罩.(1)求该公司A 、B 两种类型医用口罩的单价.(2)6月份,该超市决定只卖A 型口罩.经调查发现,当销售单价定为2元时,每天可售出100件,销售单价每涨价0.1元,每天销售量减少10件.设每天销售量为y 件,销售单价为x 元(2 2.5x ≤≤).①求y 与x 的函数关系式.①该超市决定每销售一件口罩便向某慈善机构捐赠a 元(0.20.4a ≤≤).当销售单价为多少元时,当月获得的利润最大?最大利润为多少元?14.(2022·浙江台州·统考二模)鹰眼系统能够追踪、记录和预测球的轨迹,如图分别为足球比赛中某一时刻的鹰眼系统预测画面(如图1)和截面示意图(如图2),攻球员位于点O ,守门员位于点A ,OA 的延长线与球门线交于点B ,且点A ,B 均在足球轨迹正下方,足球的飞行轨迹可看成抛物线.已知OB =28m ,AB =8m ,足球飞行的水平速度为15m /s ,水平距离s (水平距离=水平速度×时间)与离地高度h 的鹰眼数据如下表:(1)根据表中数据预测足球落地时,s = m ;(2)求h 关于s 的函数解析式;(3)守门员在攻球员射门瞬间就作出防守反应,当守门员位于足球正下方时,足球离地高度不大于守门员的最大防守高度视为防守成功.已知守门员面对足球后退过程中速度为2.5m /s ,最大防守高度为2.5m ;背对足球向球门前进过程中最大防守高度为1.8m . ①若守门员选择面对足球后退,能否成功防守?试计算加以说明;①若守门员背对足球向球门前进并成功防守,求此过程守门员的最小速度. 15.(2022·浙江绍兴·统考一模)如图1,一个移动喷灌架喷射出的水流可以近似地看成抛物线.图2是喷灌架为一坡地草坪喷水的平面示意图,喷水头的高度(喷水头距喷灌架底部的距离)是1米,当喷射出的水流与喷灌架的水平距离为10米时,达到最大高度6米,现将喷灌架置于坡地底部点O 处,草坡上距离O 的水平距离为15米处有一棵高度为1.2米的小树,AB AB 垂直水平地面且A 点到水平地面的距离为3米.(1)计算说明水流能否浇灌到小树后面的草地.(2)记水流的高度为1y ,斜坡的高度为2y ,求12y y -的最大值.(3)如果要使水流恰好喷射到小树顶端的点B ,那么喷射架应向后平移多少米? 16.(2019·浙江湖州·校联考一模)如图,已知在平面直角坐标系xOy 中,抛物线22(0)y x x c c =--+>的图象与x 轴交于A B ,两点,与y 轴交于点C .抛物线的顶点为E ,若点B 的坐标是()1,0,点D 是该抛物线在第二象限图象上的一个动点.(1)求该抛物线的解析式和顶点E 的坐标;(2)设点D 的横坐标是a ,问当a 取何值时,四边形AOCD 的面积最大;(3)如图,若直线OD 的解析式是3y x =-,点P 和点Q 分别在抛物线上和直线OD 上,问:是否存在以点P Q O C ,,,为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点Q 的坐标17.(2022·浙江丽水·一模)如图,已知(1,3)A ,抛物线22y x ax =++与y 轴交于点D ,连接AD 并延长交x 轴于点C ,过A 作AB x ⊥轴于点B .(1)求点C 的坐标;(2)若抛物线经过点B ,求抛物线的函数表达式;(3)点E 为抛物线与线段AC 的一个交点(不与点D 重合),设点E 到y 轴的距离为m ,点E 到抛物线对称轴的距离为n ,若5m n =,求a 的值.18.(2022·浙江丽水·统考二模)如图,已知抛物线2y ax bx c =++(a ≠0)的对称轴为直线x =﹣1,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B .(1)若直线y =mx +n 经过B ,C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴x =﹣1上找一点M ,使MA +MC 的值最小,求点M 的坐标;(3)设P 为抛物线的对称轴x =﹣1上的一个动点,求使①BPC 为直角三角形的点P 的坐标.19.(2021·浙江湖州·模拟预测)在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++≠与x 轴交于A ,B 两点,与y 轴交于点C ,连结CA 和CB .若射线CO ,CA ,CB 中的一条平分另两条组成的角,则称该抛物线为“倍角抛物线”.(1)求证:抛物线y =a 2x +c (ac ≠0)是倍角抛物线;(2)如图,已知抛物线()20y ax bx c a =++≠是倍角抛物线,点A (3,0),B (8,0),将△ABC 沿着直线AC 翻折,得到△ADC .①求该抛物线的解析式;①点E 为抛物线对称轴上的一个动点,连结AE ,AC .是否存在这样的点E ,使得tan①CEA =12?若存在,直接写出点E 的坐标;若不存在,请说明理由20.(2019·浙江嘉兴·统考二模)如图 1,抛物线2y x mx n =-++ 交 x 轴于点 (2,0)A -和点B ,交 y 轴于点 (0,2)C .(1)求抛物线的函数表达式.(2)若点M 在抛物线上,且2AOM BOC S S =,求点M 的坐标.(3)如图 2,设点N 是线段AC 上的一动点,作DN ①x 轴,交抛物线于点D ,求线段DN 长度的最大值.21.(2022·浙江丽水·统考一模)如图,抛物线与x 轴,y 轴分别交于A ,D ,C 三点,已知点A (4,0),点C (0,4).若该抛物线与正方形OABC 交于点G 且CG :GB =3:1.(1)求抛物线的解析式和点D 的坐标;(2)若线段OA ,OC 上分别存在点E ,F ,使EF ①FG .已知OE =m ,OF =t .①当t 为何值时,m 有最大值?最大值是多少?①若点E 与点R 关于直线FG 对称,点R 与点Q 关于直线OB 对称.问是否存在t ,使点Q 恰好落在抛物线上?若存在,直接写出t 的值;若不存在,请说明理由. 22.(2022·浙江丽水·模拟预测)如图,已知抛物线2y x bx c =-++与x 轴交于A 、B 两点,AB =4,交y 轴于点C ,对称轴是直线1x =.(1)求抛物线的关系式;(2)请在抛物线的对称轴上找一点P ,使ACP △的周长最小,并求此时点P 的坐标.(3)动点M 从点O 出发,以每秒2个单位长度的速度向点B 运动(到点B 停止),过M 作x 轴的垂线交抛物线于点N ,交线段BC 于点Q .设运动时间为t (0t >)秒.①BOQ 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由.23.(2022·浙江丽水·统考一模)开口向下的抛物线2y ax bx c =++与x 轴交于点A ,B ,与y 轴交于点C ,ABC 是等腰直角三角形,面积为4.并与一次函数()0y kx k =>的图象相交于点M ,N .(1)求抛物线的解析式;(2)若12k =,平移直线12y x =,使得该直线平分ABC 的面积,求平移后直线解析式. (3)在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由.24.(2022·浙江温州·温州市第十二中学校考二模)如图,抛物线2y x bx c =++与x 轴交于点(1,0)A -,(5,0)B ,与y 轴交于点C .(1)求抛物线的解析式和顶点D 的坐标.(2)连结AD ,点E 是对称轴与x 轴的交点,过E 作EF AD ∥交抛物线于点F (F 在E 的右侧),过点F 作FG x ∥轴交ED 于点H ,交AD 于点G ,求HF 的长. 25.(2022·浙江杭州·校考一模)在平面直角坐标系中,设二次函数2()12y x m m =--+-(m 是实数)(1)当1m =-时,若点(2)A n ,在该函数图象上,求n 的值.(2)已知(22)A -,,(12)B ,,(11)C -,,从中选择一个点作为该二次函数图象的顶点,判断此时(22)-,是否在该二次函数的图象上. (3)已知点(1)P a p -,,(21)Q m a p +-,都在该二次函数图象上,求证:2p ≤.26.(2022·浙江金华·校联考一模)已知二次函数220y ax bx a =++≠()交x 轴于点A ,B(点A 在点B 左侧)3AB =,交y 轴于点C ,设抛物线的对称轴为直线x m =,且m ≥0.(1)用含m 的代数式表示出点A 、点B 的坐标;(2)若抛物线上存在点P 使得3ABP ABC S S ==(点P 与点C 不重合),且这样的点P 恰好存在两个,求此时抛物线的解析式;(3)我们将平面直角坐标系中横坐标、纵坐标都为整数的点叫做整点. 当点A 、点B 都在x 轴正半轴上,且ABC 内部存在2个整点(不包括边),试写出1个符合题意的实数m 的值,并直接写出m 的取值规律.27.(2022·浙江杭州·校考模拟预测)设二次函数215y ax bx a =++-(a b ,为常数,0a ≠),已知23a b +=.(1)若该函数的对称轴为直线3x =,求该二次函数的表达式.(2)无论a b ,为何值,该二次函数一定过一个定点,请求出该定点坐标.(3)已知点()0P x m ,和()1,Q n 都在函数1y 的图像上,若01x <,且m n >,求0x 的取值范围(用含a 的代数式表示).28.(2023·浙江金华·校考一模)在平面直角坐标系中,点A 是抛物线21222y x mx m =-+++与y 轴的交点,点B 在该抛物线上,将该抛物线A ,B 两点之间(包括A ,B 两点)的部分记为图像G ,设点B 的横坐标为21m -.(1)当1m =时,①图像G 对应的函数y 的值随x 的增大而 (填“增大”或“减小”),自变量x 的取值范围为 ;①图像G 最高点的坐标为 .(2)当0m <时,若图像G 与x 轴只有一个交点,求m 的取值范围.(3)当0m >时,设图像G 的最高点与最低点的纵坐标之差为h ,直接写出h 与m 之间的函数关系式.29.(2022·浙江金华·校联考二模)在平面直角坐标系中,二次函数226y x mx m =-+(2x m ≤,m 为常数)的图象记作G ,图象G 上点A 的横坐标为2m .(1)当1m =,求图象G 的最低点坐标;(2)平面内有点()2,2C -.当AC 不与坐标轴平行时,以AC 为对角线构造矩形ABCD ,AB 与x 轴平行,BC 与y 轴平行.①若矩形ABCD 为正方形时,求点A 坐标;①图象G 与矩形ABCD 的边有两个公共点时,求m 的取值范围.30.(2020·浙江温州·统考模拟预测)如图,直线l :112y x =-+ 与x 轴、y 轴分别交于点B 、C ,经过B 、C 两点的抛物线 2y x bx c =++ 与x 轴的另一个交点为A .(1)求该抛物线的解析式;PE y轴交l于点E,(2)若点P在直线l下方的抛物线上,过点P作//PD x轴交l于点D,//求PD PE的最大值;(3)设F为直线l上的点,点P仍在直线l下方的抛物线上,以A、B、P、F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.。
中考数学一轮复习《二次函数》综合复习练习题(含答案)一、单选题1.二次函数223y x x =-+的一次项系数是( ) A .1B .2C .2-D .32.抛物线22(9)3y x =+-的顶点坐标是( ) A .(9,3)-B .(9,3)--C .(9,3)D .(9,3)-3.如图,一抛物线型拱桥,当拱顶到水面的距离为2m 时,水面宽度为4m .那么水位下降1m 时,水面的宽度为( )A 6mB .26mC .)64mD .()264m4.二次函数()225y x =+-的图象的顶点坐标是( ) A .2,5B .()2,5C .()2,5--D .()2,5-5.在平面直角坐标系xOy 中,点123(1)(2)(4)y y y -,,,,,在抛物线22y ax ax c =-+上,当0a >时,下列说法一定正确的是( ) A .若120y y <,则30y > B .若230y y >,则10y < C .若130y y <,则20y >D .若1230y y y =,则20y =6.抛物线221y x x =-+的顶点坐标是( ) A .(1,0)B .(-1,0)C .(1,2)D .(-1,2)7.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .()2323y x =++B .()2323y x =-+C .()2332y x =++D .()2332y x =-+8.小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为21(3)9y x k =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离.已知该同学出手点A 的坐标为16(0)9,,则实心球飞行的水平距离OB 的长度为( )A .7mB .7.5mC .8mD .8.5m9.关于抛物线2(1)y x =-,下列说法错误的是( ) A .开口向上B .当1x >时,y 随x 的增大而减小C .对称轴是直线1x =D .顶点()1,010.一次函数y x a =+与二次函数2y ax a =-在同一平面直角坐标系中的图象可能是( )A .B .C .D .11.如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高OD 为14的奖杯,杯体轴截面ABC 是抛物线2459y x =+的一部分,则杯口的口径AC 为( )A .7B .8C .9D .1012.下表中列出的是一个二次函致的自变量x 与函数y 的几组对应值:下列各选项中,正确的是( ) x … 2- 0 1 3 …y … 6- 4 6 4 …A .函数的图象开口向上B .函数的图象与x 轴无交点C .函数的最大值大于6D .当12x -≤≤时,对应函数y 的取值范围是36y ≤≤二、填空题13.已知函数221y mx mx =++在32x -上有最大值4,则常数m 的值为 __.14.二次函数2y ax bx c =++的图象如图所示.当0y >时,自变量x 的取值范围是 _____.15.某园艺公司准备围建一个矩形花圃,其中一边靠墙(墙长20米),另外三边用篱笆围成如图所示,所用的篱笆长为32米.请问当垂直于墙的一边的长为____米时,花圃的面积有最大值,最大值是____.16.如图是抛物线型拱桥,当拱顶高距离水面2m 时,水面宽4m ,如果水面上升1.5m ,则水面宽度为________.17.如图,某拱桥呈抛物线形状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是___________米.18.在平面直角坐标系中,抛物线2yx 的图象如图所示,已知A 点坐标()1,1,过点A 作1AA x ∥轴交抛物线于点1A ,过点1A 作12A A OA ∥交抛物线于点2A ,过点2A 作23A A x ∥轴交抛物线于点3A ,过点3A 作34A A OA ∥交抛物线于点4A ,…,依次进行下去,则点2022A 的坐标为______.19.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,如果水面下降0.5m ,那么水面宽度增加________m .20.如图,某单位的围墙由一段段形状相同的抛物线形栅栏组成,为了牢固,每段栅栏间隔0.2米设置一根立柱(即AB 间间隔0.2米的7根立柱)进行加固,若立柱EF 的长为0.28米,则拱高OC 为_____米三、解答题21.已知关于x 的方程2(23)0mx m x m +-+=有两个不相等的实数根,求m 的取值范围.22.已知关于x 的一元二次方程x 2+x −m =0.(1)设方程的两根分别是x 1,x 2,若满足x 1+x 2=x 1•x 2,求m 的值. (2)二次函数y =x 2+x −m 的部分图象如图所示,求m 的值.23.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售。
专题一 求二次函数的解析式[见A 本P6]一 利用一般式y =ax 2+bx +c (a≠0)求二次函数的解析式(教材P33目标与测定题第2题)已知二次函数y =ax 2+bx +c ,当x =1时,y =3;当x =-2时,y =7;当x =3时,y =-3,求a ,b ,c 的值,并写出该二次函数的表达式、 解:依题意,得⎩⎪⎨⎪⎧3=a +b +c ,7=4a -2b +c ,-3=9a +3b +c ,解得⎩⎪⎨⎪⎧a =-13,b =-53,c =5所求的函数解析式为y =-13x 2-53x +5[2013·徐州]二次函数y =ax 2+bx +c 图象上部分点的坐标满足下表∶x…-3 -2 -1 01…y…-3-2-3-6-11…则该函数图象的顶点坐标为( B )A 、(-3,-3)B 、(-2,-2)C 、(-1,-3)D 、(0,-6) 【解析】 ∵x =-3和-1时的函数值都是-3,相等, ∴二次函数的对称轴为直线x =-2, ∴顶点坐标为(-2,-2)、 故选B.如图1,抛物线的函数表达式是( D )图1A 、y =x 2-x +2B 、y =x 2+x +2C 、y =-x 2-x +2D 、y =-x 2+x +2 【解析】 根据题意,设二次函数的表达式为y =ax 2+bx +c ,因为抛物线过点(-1,0),(0,2),(2,0),所以⎩⎪⎨⎪⎧a -b +c =0,c =2,4a +2b +c =0, 解得a =-1,b =1,c =2,所以这个二次函数的表达式为y =-x 2+x +2.[2012·绥化]如图2,二次函数y =ax 2-4x +c 的图象经过坐标原点,与x 轴交于点A (-4,0)、(1)求二次函数的解析式;(2)在抛物线上存在点P ,满足S △AOP =8,请直接写出点P 的坐标、图2解:(1)由已知条件得∶⎩⎪⎨⎪⎧c =0,a ×(-4)2-4×(-4)+c =0,解得⎩⎪⎨⎪⎧c =0,a =-1,∴此二次函数的解析式为y =-x 2-4x .(2)∵点A 的坐标为(-4,0),∴AO =4. 设点P 的坐标为(x ,h ),则S △AOP =12AO ·|h |=12×4×|h |=8,解得|h |=4.①当点P 在x 轴上方时,-x 2-4x =4,解得x =-2, ∴点P 的坐标为(-2,4);②当点P 在x 轴下方时,-x 2-4x =-4,解得x1=-2+22,x2=-2-22,∴点P的坐标为(-2+22,-4)或(-2-22,-4),综上所述,点P的坐标为(-2,4)或(-2+22,-4)或(-2-22,-4)、[2013·临沂]如图3,抛物线经过A(-1,0),B(5,0),C(0,-52)三点、(1)求抛物线的解析式;(2)点M为x轴上一动点,在抛物线上是否存在一点N,使A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由、图3解:(1)设抛物线的解析式为y=ax2+bx+c,根据题意,得⎩⎪⎨⎪⎧a-b+c=025a+5b+c=0c=-52,解得⎩⎪⎨⎪⎧a=12b=-2c=-52,∴抛物线的解析式为y=12x2-2x-52;(2)存在、(Ⅰ)当存在的点N在x轴的下方,如图所示,∵四边形ACNM是平行四边形,∴CN∥x轴,∴点C与点N关于对称轴x=2对称,∵C点的坐标为(0,-52),∴点N 的坐标为(4,-52)、(Ⅱ)当存在的点N ′在x 轴上方时,如图所示,作N ′H ⊥x 轴于点H , ∵四边形ACM ′N ′是平行四边形, ∴AC =M ′N ′,∠N ′M ′H =∠CAO , ∴Rt △CAO ≌Rt △N ′M ′H ,∴N ′H =OC , ∵点C 的坐标为(0,-52),∴N ′H =52,即N 点的纵坐标为52,∴12x 2-2x -52=52, 解得x 1=2+14,x 2=2-14.∴点N ′的坐标为(2-14,52)和(2+14,52)、综上所述,满足题目条件的点N 共有三个, 分别为(4,-52),(2-14,52)和(2+14,52)、二 利用顶点式y =a (x -h )2+k (a≠0)求二次函数的解析式(教材P23作业题第5题)根据下列条件,分别求二次函数的解析式∶(1)已知图象的顶点坐标为(-1,-8),且过点(0,-6); (2)已知图象经过点(3,0),(2,-3),并以直线x =0为对称轴、解:(1)设y =a (x +1)2-8,把点(0,-6)代入,得-6=a -8,解得a =2, ∴y =2x 2+4x -6.(2)设y =ax 2+c ,则⎩⎪⎨⎪⎧9a +c =0,4a +c =-3, 解得⎩⎨⎧a =35,c =-275,∴y =35x 2-275.【思想方法】 若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),可设所求二次函数的解析式为y =a (x +m )2+k ,将已知条件代入,求出待定系数,最后将解析式化为一般形式即可、已知某二次函数的图象如图4所示,则这个二次函数的解析式为( D )图4A 、y =2(x +1)2+8B 、y =18(x +1)2-8C 、y =29(x -1)2+8 D 、y =2(x -1)2-8一抛物线的形状、开口方向与y =12x 2-4x +3相同,顶点在(-2,1),则此抛物线的解析式为( C )A 、y =12(x -2)2+1B 、y =12(x +2)2-1C 、y =12(x +2)2+1D 、y =-12(x +2)2+1【解析】 抛物线的形状、开口方向与y =12x 2-4x +3相同,所以a =12.顶点在(-2,1),所以抛物线的解析式是y =12(x +2)2+1.已知抛物线经过两点A (1,0),B (0,3),且对称轴是直线x =2,求其解析式、 解: ∵抛物线对称轴是直线x =2且经过点A (1,0), 由抛物线的对称性可知:抛物线还经过点(3,0), 设抛物线的解析式为y =a (x -x 1)(x -x 2)(a ≠0), 即y =a (x -1)(x -3), 把B (0,3)代入得3=3a , ∴a =1.∴抛物线的解析式为:y =x 2-4x +3.三 利用平移规律求二次函数的解析式(教材P34目标与评定第8题)将y =4x 2的图象先向左平移32个单位,再向下平移34个单位,求最终所得图象的函数解析式,并说出它的二次项系数、一次项系数和常数项、解:y =4x 2的图象向左平移32个单位,得到y =4⎝⎛⎭⎫x +322的图象,再向下平移34个单位,得到y =4⎝⎛⎭⎫x +322-34的图象,即最终所得图象的解析式为y =4⎝⎛⎭⎫x +322-34,化为一般式为y =4x 2+12x +334,所以它的二次项系数是4,一次项系数是12,常数项是334.【思想方法】 (1)可按照口诀“左加右减,上加下减”写出平移后的解析式;(2)平移所得函数的解析式与平移的先后顺序无关、[2013·恩施州]把抛物线y =12x 2-1先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为( B )A 、y =12(x +1)2-3B 、y =12(x -1)2-3C 、y =12(x +1)2+1D 、y =12(x -1)2+1[2013·湖南邵阳]如图5所示,已知抛物线y =-2x 2-4x 的图象E ,将其向右平移两个单位后得到图象F .求图象F 所表示的抛物线的解析式、图5解:方法一:由平移知图象F 的二次项系数为-2,y =-2x 2-4x =-2(x +1)2+2,顶点坐标为(-1,2),平移后图象F 的顶点坐标为(1,2),所以图象F 的解析式为y =-2x (x -1)2+2;方法二:y =0时,即-2x 2-4x =0,x =0或x =-2,平移后图象F 与x 轴交点为(0,0)和(2,0),所以图象F 的解析式为y =-2(x -2);方法三:根据图象平移之间的关系,可是图象F 的解析式为y =-2(x -2)2-4(x -2)=-2x 2+4x . .已知二次函数y =ax 2+bx -3的图象经过点A (2,3),B (-1,0)、(1)求二次函数的解析式;(2)填空∶要使二次函数的图象与x 轴只有一个交点,应把图象沿y 轴向上平移________个单位、解:(1)∵二次函数y =ax 2+bx -3的图象经过点A (2,3),B (-1,0), ∴把A (2,3),B (-1,0)分别代入解析式,得⎩⎪⎨⎪⎧4a +2b -3=3,a -b -3=0,解得⎩⎪⎨⎪⎧a =2,b =-1, 则二次函数的解析式为y =2x 2-x -3. (2)∵y =2x 2-x -3=2⎝⎛⎭⎫x -142-258, 设应把图象沿y 轴向上平移m 个单位, 则平移后的解析式为y =2⎝⎛⎭⎫x -142-258+m , 此时二次函数的顶点坐标为⎝⎛⎭⎫14,-258+m . 要使二次函数的图象与x 轴只有一个交点,则此交点必为抛物线的顶点, ∴-258+m =0,即m =258,∴应把图象沿y 轴向上平移258个单位、。
新浙教版九年级数学上册《二次函数》测试卷(附答案)二次函数测试卷(100分,90分钟)一、选择题(每题3分,共30分)1.下列函数中,y是x的二次函数的是()A。
y = (2x-1) - (2x+1)(2x-1)B。
y = x-1C。
y = 1/2D。
x-2y-2 = 2x-12.(2012,德阳,一题多解)在同一平面直角坐标系内,将函数图象沿x轴方向向右平移2个单位后再沿y轴向下平移1个单位,得到图象的顶点坐标是()A。
(-1,1)B。
(1,-2)C。
(2,-2)D。
(1,-1)3.(2012,滨州)抛物线y = -3x^2 - x + 4与坐标轴的交点个数是()A。
3B。
2C。
1D。
04.(2012,桂林)如图1,把抛物线y = x^2沿直线y=x平移2个单位后,其顶点在直线上的点A处,则平移后的抛物线表达式是()A。
y = (x+1)^2 - 1B。
y = (x+1)^2 + 1C。
y = (x-1)^2 + 1D。
y = (x-1)^2 - 15.设二次函数y = x^2 + bx + c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是()A。
c=3B。
c≥3C。
1≤c≤3D。
c≤36.(2013,菏泽)已知b<0,二次函数y = ax^2 + bx + a^2-1的图象为如图2所示的四个图象之一.试根据图象分析,a的值应等于()A。
-2B。
-1C。
1D。
27.(2013,内江)若抛物线y = x^2 - 2x + c与y轴的交点坐标为(0,-3),则下列说法不正确的是()A。
抛物线开口向上B。
抛物线的对称轴是直线x=1C。
当x=1时,y的最大值为-4D。
抛物线与x轴的交点坐标为(-1,0),(3,0)8.(2013,日照)如图3,已知抛物线y = -x^2 + 4x和直线y = 2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有()A。
2024年中考数学总复习:二次函数一.选择题(共25小题)1.抛物线y=(x+1)2﹣1的对称轴是()A.直线x=0B.直线x=1C.直线x=﹣1D.直线y=12.将抛物线y=﹣x2+2向左平移2个单位,再向下平移3个单位,得到抛物线解析式为()A.y=﹣(x+2)2﹣1B.y=﹣(x﹣2)2﹣1C.y=﹣(x+2)2+5D.y=﹣(x﹣2)2+53.已知二次函数y=kx2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<1且k≠0B.k≤1C.k≥1D.k≤1且k≠0 4.把抛物线y=x2+bx+2的图象向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x2﹣4x+7,则b=()A.2B.4C.6D.85.已知点(﹣3,y1),(2,y2),(−12,y3)都在函数y=x2﹣1的图象上,则()A.y2<y1<y3B.y1<y3<y2C.y1<y2<y3D.y3<y2<y1 6.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①当x>﹣1时,y的值随x值的增大而增大;②a﹣b+c>0;③4a+b=0;④9a+c>3b;其中正确的结论是()A.①B.②C.③D.④7.已知二次函数y=3(x﹣1)2+k的图像上有三点A(√2,y1),B(3,y2),A(0,y3),则y1,y2,y3为的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y2>y3>y18.A(−12,y1),B(1,y2),C(4,y3)三点都在二次函数y=﹣(x﹣1)2+k的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y3<y2<y1第1页(共17页)。
2019年浙教版数学中考复习二次函数的图象与性质综合测试一.选择题1.抛物线y=x2+bx+c的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数表达式为y =(x-1)2-4,则b,c的值为( )A.b=2,c=-6 B.b=2,c=0C.b=-6,c=8 D.b=-6,c=22.将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( )A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位3.已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4.其中正确的结论有( )A.1个B.2个C.3个D.4个4.(易错题)将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为( )A.y=(x+1)2+4 B.y=(x+1)2+2C.y=(x-1)2+4 D.y=(x-1)2+25.对于二次函数y=-(x-1)2+2的图象与性质,下列说法正确的是( )A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=-1,最小值是2D.对称轴是直线x=-1,最大值是26.(2018·湖南益阳中考)已知二次函数y=ax2+bx+c的图象如图所示,则下列说法正确的是( )A.ac<0 B.b<0C.b2-4ac<0 D.a+b+c<07.在平面直角坐标系xOy 中,二次函数y =ax 2+bx +c 的图象如图所示,下列说法正确的是( )A .abc<0,b 2-4ac>0B .abc>0,b 2-4ac>0C .abc<0,b 2-4ac<0D .abc>0,b 2-4ac<08.已知二次函数y =ax 2-bx -2(a≠0)的图象的顶点在第四象限,且过点(-1,0),当a -b 为整数时,ab 的值为( ) A.34或1B.14或1 C.34或12D.14或349.(2018·山东德州中考)如图,函数y =ax 2-2x +1和y =ax -a(a 是常数,且a≠0)在同一平面直角坐标系的图象可能是( )10.如图,反比例函数y =k x 的图象经过二次函数y =ax 2+bx 图象的顶点(-12,m)(m>0),则有( )A .a =b +2kB .a =b -2kC .k<b<0D .a<k<0 二.填空题11.抛物线y =-x 2+2x +3的顶点坐标是______________.12.如图是一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线表达式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线表达式是_________________________.13. 已知函数y =-(x -1)2图象上两点A(2,y 1),B(a ,y 2),其中a>2,则y 1与y 2的大小关系是y 1______y 2(填“<”“>”或“=”).14.(2019·改编题)矩形ABCD 的两条对称轴为坐标轴,点A 的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为y =x 2,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为________________________.15.比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y(m)与水平距离x(m)之间满足关系y =-29x 2+89x +109,则羽毛球飞出的水平距离为______m.16.如图所示,抛物线y =ax 2+bx +c 的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间,以下结论:①b 2-4ac =0;②a +b +c >0;③2a -b =0;④c -a =3,其中正确的有________.(填序号)17.(2018·四川南充中考)如图,抛物线y =ax 2+bx +c(a ,b ,c 是常数,a≠0)与x 轴交于A ,B 两点,顶点P(m ,n).给出下列结论: ①2a +c <0;②若(-32,y 1),(-12,y 2),(12,y 3)在抛物线上,则y 1>y 2>y 3;③关于x 的方程ax 2+bx +k =0有实数解,则k >c -n ; ④当n =-1a 时,△ABP 为等腰直角三角形.其中正确结论是________(填写序号).18. (2017泸州)若二次函数y=2x2-4x-1的图象与x轴交于A(x1,0)、B(x2,0)两点,则1x1+1x2的值为________.19. 如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+c>x+m 的解集为____________.20. 若二次函数y=ax2-2ax+c的图象经过点(-1,0),则方程ax2-2ax+c=0的解为____________.三.解答题21.(2018·浙江杭州中考)设二次函数y=ax2+bx-(a+b)(a,b是常数,a≠0).(1)判断该二次函数图象与x轴的交点的个数,说明理由;(2)若该二次函数图象经过A(-1,4),B(0,-1),C(1,1)三个点中的其中两个点,求该二次函数的表达式;(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.22. (2017宁波)如图,已知抛物线y=-x2+mx+3与x轴交于点A,B两点,与y轴交于点C,点B的坐标为(3,0).(1)求m的值及抛物线的顶点坐标;(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.23. 正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O,P,A三点坐标;②求抛物线L的解析式;(2)求△OAE与△OCE面积之和的最大值.24. 如图,抛物线y=x2+bx+c与x轴交于A,B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的表达式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.25.已知二次函数y =ax 2-2ax +c(a>0)的图象与x 轴的负半轴和正半轴分别交于A 、B 两点,与y 轴交于点C ,它的顶点为P ,直线CP 与过点B 且垂直于x 轴的直线交于点D ,且CP ∶PD =2∶3. (1)求A 、B 两点的坐标;(2)若tan ∠PDB =54,求这个二次函数的关系式.参考答案 1-5 BDBDB 6-10 BBABD 11. (1,4)12. y =-19(x +6)2+413. >14. y =x 2+8x +14 15. 5 16. ③④ 17. ②④ 18. -4 19. x<1或x>3 20. x 1=-1,x 2=321. 解:(1)由题意知Δ=b 2-4a[-(a +b)]=b 2+4ab +4a 2=(2a +b)2≥0, ∴该二次函数图象与x 轴的交点的个数有2个或1个. (2)当x =1时,y =a +b -(a +b)=0 ∴该二次函数图象不经过点C. 把点A(-1,4),B(0,-1)分别代入得⎩⎪⎨⎪⎧4=a -b -(a +b ),-1=-(a +b ),解得⎩⎪⎨⎪⎧a =3,b =-2. ∴该二次函数的表达式为y =3x 2-2x -1. (3)证明:当x =2时,m =4a +2b -(a +b)=3a +b >0,① ∵a +b <0,∴-a -b >0.② ① +②得2a >0,∴a >0.22. 解:(1)把B(3,0)代入抛物线解析式,得0=-32+3m +3, 解得m =2, ∴y =-x 2+2x +3,∵y =-x 2+2x +3=-(x -1)2+4, ∴顶点坐标为(1,4).(2)如解图,连接BC 交抛物线对称轴l 于点P ,连接AP ,此时PA +PC 的值最小. 由抛物线y =-x 2+2x +3得点C 的坐标为(0,3),设直线 BC 的解析式为 y =kx +b(k≠0),把点B(3,0),C(0,3)的坐标代入,得⎩⎪⎨⎪⎧0=3k +b 3=b , ∴⎩⎪⎨⎪⎧k =-1b =3, ∴直线BC 的解析式为y =-x +3. 当x =1时,y =-1+3=2.∴当PA +PC 的值最小时,点P 的坐标为(1,2).23. 解:如解图,以OA 所在的直线为横轴,水平向右为正方向,以OC 所在直线为纵轴,垂直向上为正方向,建立平面直角坐标系.①O(0,0),P(2,2),A(4,0);②设抛物线L 的解析式为y =ax 2+bx +c , 将点O ,P ,A 的坐标分别代入y =ax 2+bx +c ,得 ⎩⎪⎨⎪⎧c =04a +2b +c =216a +4b +c =0, 解得⎩⎪⎨⎪⎧a =-12b =2c =0,∴抛物线L 的解析式为y =-12x 2+2x.(2)【思路分析】用点E 的横坐标表示△OAE 与△OCE 的面积之和,根据二次函数的性质即可确定最大值. 解:设点E 的横坐标为m. ∵点E 在正方形内的抛物线上, ∴点E 的纵坐标为-12m 2+2m,∴S △OAE +S △OCE =12×4×(-12m 2+2m)+12×4×m =-m 2+6m =-(m -3)2+9.(10分)∴当m =3时,△OAE 与△OCE 的面积之和的值最大,最大值是9.24. 解:(1)由题意得⎩⎪⎨⎪⎧32+3b +c =0,c =3,解得⎩⎪⎨⎪⎧b =-4,c =3,∴抛物线的表达式为y =x 2-4x +3.(2)方法1:如图1,过点P 作PG ∥CF 交CB 于点G ,由题意知∠BCO =∠CFE =45°,F(0,m),C(0,3), ∴△CFE 和△GPE 均为等腰直角三角形, ∴EF =22CF =22(3-m),PE =22PG. 设x P =t(1<t<3), 则PE =22PG =22(-t +3-t -m) =22(-m -2t +3),t 2-4t +3=t +m , ∴PE +EF =22(-m -2t +3)+22(3-m)=22(-2t -2m +6)=-2(t +m -3)=-2(t 2-4t)=-2(t -2)2+42,∴当t =2时,PE +EF 的最大值为4 2.方法2:(几何法)如图2,由题易知直线BC 的表达式为y =-x +3,OC =OB =3, ∴∠OCB =45°. 同理可知∠OFE =45°, ∴△CEF 为等腰直角三角形,以BC 为对称轴将△FCE 对称得到△F′CE ,作PH ⊥CF′于点H ,则PE +EF =PF′=2PH. 又PH =y C -y P =3-y P ,∴当y P 最小时,PE +EF 取最大值, ∵抛物线的顶点坐标为(2,-1),∴当y P =-1时,(PE +EF)max =2×(3+1)=4 2. (3)①由(1)知对称轴x =2,设D(2,n),如图3.当△BCD 是以BC 为直角边的直角三角形时,D 在BC 上方D 1位置时,由勾股定理得CD 2+BC 2=BD 2, 即(2-0)2+(n -3)2+(32)2=(3-2)2+(0-n)2,解得n =5;当△BCD 是以BC 为直角边的直角三角形时,D 在BC 下方D 2位置时,由勾股定理得BD 2+BC 2=CD 2, 即(2-3)2+(n -0)2+(32)2=(2-0)2+(n -3)2,解得n =-1.∴当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1).②如图4,以BC 的中点T(32,32),12BC 为半径作⊙T ,与对称轴x =2交于D 3和D 4,由直径所对的圆周角是直角,得∠CD 3B =∠CD 4B =90°. 设D(2,m),由DT =12BC =322得(32-2)2+(32-m)2=(322)2, 解得m =32±172,∴D 3(2,32+172),D 4(2,32-172).又由①得D 1为(2,5),D 2(2,-1),∴若△BCD 是锐角三角形,D 点在线段D 1D 3或D 2D 4上时(不与端点重合),则点D 的纵坐标的取值范围是-1<y D <32-172或32+172<y D <5.25. 解:(1)y =ax 2-2ax +c=a(x 2-2x)+c =a(x -1)2+c -a ∴P 点坐标为(1,c -a).如解图,过点C 作CE ⊥PQ ,垂足为E ,延长CE 交BD 于点F ,则CF ⊥BD. ∵P(1,c -a),∴CE =OQ =1.∵PQ ∥BD ,∴△CEP ∽△CFD ,∴CP CD =CE CF. 又∵CP ∶PD =2∶3,∴CE CF =CP CD =22+3=25, ∴CF =2.5,∴OB =CF =2.5,∴BQ =OB -OQ =1.5,∴AQ =BQ =1.5,∴OA =AQ -OQ =1.5-1=0.5,∴A(-0.5,0),B(2.5,0).(2)∵tan ∠PDB =54, ∴CF DF =54, ∴DF =45CF =45×2.5=2, ∵△CFD ∽△CEP ,∴PE DF =CE CF, ∴PE =DF·CE CF =2×12.5=0.8. ∵P(1,c -a),C(0,c),∴PE =PQ -OC =c -(c -a)=a ,∴a =0.8,∴y =0.8x 2-1.6x +c.把A(-0.5,0)代入得:0.8×(-0.5)2-1.6×(-0.5)+c =0, 解得c =-1.(9分)∴这个二次函数的关系式为:y =0.8x 2-1.6x -1.。
浙教版九年级数学上册第一章二次函数检测题含答案第1章二次函数检测卷一、选择题(本大题共10小题,每小题4分,共40分) 1.下列各点不在抛物线y=x2-2图象上的是( ) A.(-1,-1) B.(2,2) C.(-2,0) D.(0,-2)2.二次函数y=(x-3)(x+2)的图象的对称轴是( ) A.x=3 B.x=-2 C.x=-12 D.x=123.抛物线y=-3x2+2x-1与坐标轴的交点个数为( )A.0个B.1个C.2个D.3个4.童装专卖店销售一种童装,若这种童装每天获利y(元)与销售单价x(元)满足关系y=-x2+50x-500,若要想获得最大利润,则销售单价x为( )A.25元B.20元C.30元D.40元5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是( )第5题图A.a>0B.当-1<x<3时,y>0C.c<0D.当x≥1时,y随x的增大而增大6.若A(-134,y1)、B(-1,y2)、C(53,y3)为二次函数y=-x2-4x+k的图象上的三点,则y1、y2、y3的大小关系是( )A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y37.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为( )A.y=2(x+3)2+4 B.y=2(x+3)2-4C.y=2(x-3)2-4 D.y=2(x-3)2+48.若二次方程(x-a)(x-b)-2=0的两根是m,n,且a<b,m<n,则实数a,b,m,n的大小关系是( ) A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b9.(资阳中考)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:第9题图①4ac-b2<0;②4a+c<2b;③3b+2c<0;④m(am +b)+b<a(m≠-1),其中正确结论的个数是( ) A.4个B.3个C.2个D.1个10.如图,抛物线y1=a(x+2)2-3与y2=12(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:第10题图①无论x取何值,y2的值总是正数;②a=1;③当x =0时,y2-y1=4;④2AB=3AC;其中正确结论是( ) A.①②B.②③C.③④D.①④二、填空题(本大题共6小题,每小题5分,共30分) 11.抛物线y=49(x-3)2与x轴的交点为A,与y轴的交点为B,则△AOB的面积为______.12.某二次函数的图象与x轴交于点(-1,0),(4,0),且它的形状与抛物线y=-x2形状相同.则这个二次函数的解析式为____ .13.某人乘雪橇沿如图所示的斜坡笔直滑下,滑下的路程s(米)与时间t(秒)间的关系式为s=10t+t2,若滑到坡底的时间为2秒,则此人下滑的高度为____米.第13题图14.如图,在平面直角坐标系中,二次函数y=ax2+c(a<0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是____.第14题图15.(荆州中考)若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为.16.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:x …-1 0 1 3 …y …-1 3 5 3 …下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小;③3是方程ax2+(b-1)x+c=0的一个根;④当-1<x<3时,ax2+(b-1)x+c>0.其中正确的是____.三、解答题(本大题共8小题,共80分)17.(8分)已知二次函数y=-x2+4x-3,其图象与y轴交于点B,与x轴交于A,C两点.求△ABC的周长和面积.18.(8分)在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.第18题图19.(8分)在关于x,y的二元一次方程组x+2y=a,2x-y=1中.(1)若a=3,求方程组的解;(2)若S=a(3x+y),当a为何值时,S有最值.20.(8分)在平面直角坐标系中,△AOB的位置如图所示.已知∠AOB=90°,AO=BO,点A的坐标为(-3,1).第20题图(1)求点B的坐标;(2)求过A,O,B三点的抛物线的函数表达式;(3)设点B关于抛物线的对称轴l的对称点为B′,求△AB′B的面积.21.(10分)某校九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高209m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运动的轨迹为抛物线,篮圈距地面3m.(1)建立如图所示的平面坐标系,求抛物线的解析式并判断此球能否准确投中?(2)此时,若对方队员乙在甲前面1米处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?第21题图22.(12分)(衢州中考)已知二次函数y=x2+x的图象,如图所示.(1)根据方程的根与函数图象之间的关系,将方程x2+x=1的根在图上近似地表示出来(描点),并观察图象,写出方程x2+x=1的根(精确到0.1);(2)在同一直角坐标系中画出一次函数y=12x+32的图象,观察图象写出自变量x取值在什么范围时,一次函数的值小于二次函数的值;(3)如图,点P是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在P点上,写出平移后二次函数图象的函数表达式,并判断点P是否在函数y=12x+32的图象上,请说明理由.第22题图23.(12分)某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:价格x(元/个) …30 40 50 60 …销售量y(万个) … 5 4 3 2 …同时,销售过程中的其他开支(不含造价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式;(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?24.(14分)如图,抛物线y=ax2+bx与x轴交于O、A两点,与直线y=x交于点B,点A、B的坐标分别为(3,0)、(2,2).点P在抛物线上,过点P作y轴的平行线交射线OB于点Q,以PQ为边向右作矩形PQMN,且PN=1,设点P的横坐标为m(m>0,且m≠2).第24题图(1)求这条抛物线的解析式;(2)求矩形PQMN的周长C与m之间的函数关系式;(3)当矩形PQMN是正方形时,求m的值.活页参考答案上册第1章二次函数检测卷1.C 2.D 3.B 4.A 5.B 6.C 7.A 8.A 9.B 10.D11.612.y=-x2+3x+4或y=x2-3x-413.1214.-215.-1或2或116.①③④17.令x=0,得y=-3,故B点坐标为(0,-3),解方程-x2+4x-3=0,得x1=1,x2=3.故A、C两点的坐标为(1,0),(3,0).所以AC=3-1=2,AB=12+32=10,BC=32+32=32,OB=│-3│=3.C△ABC =AB+BC+AC=2+10+32;S△ABC=12AC•OB=12×2×3=3.18.(1)y=(x-1)2-4,即y=x2-2x-3; (2)令y=0,得x2-2x-3=0,解方程,得x1=-1,x2=3.所以二次函数图象与x轴的两个交点坐标分别为(3,0)和(-1,0).所以二次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与x轴的另一个交点坐标为(4,0).19.(1)a=3时,方程组为x+2y=3①,2x-y=1②;②×2得,4x-2y=2③,①+③得,5x=5,解得x =1,把x=1代入①得,1+2y=3,解得y=1,所以,方程组的解是x=1,y=1;(2)方程组的两个方程相加得,3x+y=a+1,所以S=a(3x+y)=a(a+1)=a2+a,所以,当a=-12×1=-12时,S有最小值.20.第20题图(1)过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为C,D,则∠ACO=∠ODB=90°,∴∠AOC+∠OAC =90°.∵∠AOB=90°,∴∠AOC+∠BOD=90°.∴∠OAC=∠BOD.又∵AO=BO,∴△ACO≌△ODB(AAS).∴OD=AC=1,DB=OC=3.∴点B的坐标为(1,3);(2)∵抛物线过原点,∴可设抛物线的函数表达式为y=ax2+bx.将点A(-3,1),B(1,3)的坐标代入,得9a-3b=1,a+b=3,解得a=56,b=136.∴所求抛物线的函数表达式为y=56x2+136x; (3)由(2)得,抛物线的对称轴为直线x=-1310,点B的坐标为(1,3),∴点B′的坐标为-185,3.设BB′边上的高为h,则h=3-1=2.|BB′|=1+185=235.∴S △AB′B=12BB′•h=12×235×2=235. 21.(1)根据题意可知,抛物线经过(0,209),顶点坐标为(4,4),则可设其解析式为y=a(x-4)2+4,解得a=-19.则所求抛物线的解析式为y=-19(x-4)2+4.又篮圈的坐标是(7,3),代入解析式得,y=-19(7-4)2+4=3.所以能够投中;(2)当x=1时,y=3,此时3.1>3,故乙队员能够拦截成功.22.(1)∵令y=0得:x2+x=0,解得:x1=0,x2=-1,∴抛物线与x轴的交点坐标为(0,0),(-1,0).作直线y=1,交抛物线于A、B两点,分别过A、B两点,作AC⊥x轴,垂足为C,BD⊥x轴,垂足为D,点C 和点D的横坐标即为方程的根.根据图1可知方程的解为x1≈-1.6,x2≈0.6;(2)∵将x=0代入y=12x +32得y=32,将x=1代入得:y=2,∴直线y=12x +32经过点(0,32),(1,2).直线y=12x+32的图象如图2所示,由函数图象可知:当x<-1.5或x>1时,一次函数的值小于二次函数的值;(3)先向上平移54个单位,再向左平移12个单位,平移后的顶点坐标为P(-1,1).平移后的表达式为y=(x+1)2+1,即y=x2+2x+2.点P在y=12x+32的函数图象上.理由:∵把x=-1代入得y=1,∴点P的坐标符合直线的解析式.∴点P在直线y=12x+32的函数图象上.第22题图23.(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,则30a+b=5,40a+b =4,解得:a=-110,b=8.∴函数解析式为:y=-110x+8; (2)根据题意得:z =(x-20)y-40=(x-20)(-110x+8)-40=-110x2+10x-200=-110(x2-100x)-200=-110[(x-50)2-2500]-200=-110(x-50)2+50,∵-110<0,∴x =50,z最大=50.∴该公司销售这种计算器的净得利润z与销售价格x的函数解析式为z=-110x2+10x -200,销售价格定为50元/个时净得利润最大,最大值是50万元;第23题图(3)当公司要求净得利润为40万元时,即-110(x-50)2+50=40,解得:x1=40,x2=60.作函数图象的草图,通过观察函数y=-110(x-50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y与x的函数关系式为:y =-110x+8,y随x的增大而减少,∴若还需考虑销售量尽可能大,销售价格应定为40元/个.24.(1)把A(3,0)、B(2,2)两点坐标代入y=ax2+bx,得9a+3b=0,4a+2b=2,计算得出a=-1,b=3.故抛物线所对应的函数表达式为y=-x2+3x. (2)∵点P在抛物线y=-x2+3x上,∴可以设P(m,-m2+3m),∵PQ∥y轴,∴Q(m,m).①当0<m<2时,如图1中,PQ=-m2+3m-m=-m2+2m,C=2(-m2+2m)+2=-2m2+4m+2. ②当m>2时,如图2中,PQ=m-(-m2+3m)=m2-2m,C=2(m2-2m)+2=2m2-4m+2. (3)∵矩形PQMN是正方形,∴PQ=PN=1,当0<m<2时,如图3中,-m2+2m=1,计算得出m=1.当m>2时,如图4中,m2-2m=1,计算得出m=1+2(或1-2不合题意舍弃).第24题图。
浙江省2020年中考二轮专题复习:二次函数解答题综合训练1.(2019•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C 分别在x轴和y轴的正半轴上,连结AC,OA=3,tan∠OAC=,D是BC的中点.(1)求OC的长和点D的坐标;(2)如图2,M是线段OC上的点,OM=OC,点P是线段OM上的一个动点,经过P,D,B三点的抛物线交x轴的正半轴于点E,连结DE交AB于点F.①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.2.(2019•金华)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y=﹣(x﹣m)2+m+2的顶点.(1)当m=0时,求该抛物线下方(包括边界)的好点个数.(2)当m=3时,求该抛物线上的好点坐标.(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m 的取值范围.3.(2019•杭州)设二次函数y=(x﹣x1)(x﹣x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=时,y=﹣.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<.4.(2019•宁波)如图,已知二次函数y=x2+ax+3的图象经过点P(﹣2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.5.(2019•温州)如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n的值.6.(2019•嘉兴)某农作物的生长率p与温度t(℃)有如下关系:如图1,当10≤t≤25时可近似用函数p=t﹣刻画;当25≤t≤37时可近似用函数p=﹣(t﹣h)2+0.4刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率p满足函数关系:生长率p0.20.250.30.35提前上市的天数m(天)051015①请运用已学的知识,求m关于p的函数表达式;②请用含t的代数式表示m.(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w(元)与大棚温度t(℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).7.(2019•湖州)已知抛物线y=2x2﹣4x+c与x轴有两个不同的交点.(1)求c的取值范围;(2)若抛物线y=2x2﹣4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由.8.(2019•台州)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值.9.(2019•舟山)某农作物的生长率p与温度t(℃)有如下关系:如图,当10≤t≤25时可近似用函数p=t﹣刻画;当25≤t≤37时可近似用函数p=﹣(t﹣h)2+0.4刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率p之间满足已学过的函数关系,部分数据如下:生长率p0.20.250.30.35提前上市的天数m(天)051015求:①m关于p的函数表达式;②用含t的代数式表示m.③天气寒冷,大棚加温可改变农作物生长速度.大棚恒温20℃时每天的成本为100元,计划该作物30天后上市,现根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此决定给大棚继续加温,但加温导致成本增加,估测加温到20≤t≤25时的成本为200元/天,但若欲加温到25<t≤37,由于要采用特殊方法,成本增加到400元/天.问加温到多少度时增加的利润最大?并说明理由.(注:农作物上市售出后大棚暂停使用)10.(2019•衢州)某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为60间.经市场调查表明,该馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数y(间)与每间标准房的价格x(元)的数据如下表:x(元)…190200210220…y(间)…65605550…(1)根据所给数据在坐标系中描出相应的点,并画出图象.(2)求y关于x的函数表达式,并写出自变量x的取值范围.(3)设客房的日营业额为w(元).若不考虑其他因素,问宾馆标准房的价格定为多少元时,客房的日营业额最大?最大为多少元?11.(2018•金华)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB 在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.12.(2018•杭州)设二次函数y=ax2+bx﹣(a+b)(a,b是常数,a≠0).(1)判断该二次函数图象与x轴的交点的个数,说明理由.(2)若该二次函数图象经过A(﹣1,4),B(0,﹣1),C(1,1)三个点中的其中两个点,求该二次函数的表达式.(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.13.(2018•宁波)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.14.(2018•温州)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.15.(2018•温州)如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K的范围.16.(2018•舟山)已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小.17.(2018•湖州)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b 的值.18.(2018•衢州)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.19.(2018•台州)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.参考答案与试题解析1.(2019•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C 分别在x轴和y轴的正半轴上,连结AC,OA=3,tan∠OAC=,D是BC的中点.(1)求OC的长和点D的坐标;(2)如图2,M是线段OC上的点,OM=OC,点P是线段OM上的一个动点,经过P,D,B三点的抛物线交x轴的正半轴于点E,连结DE交AB于点F.①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.【分析】(1)由OA=3,tan∠OAC==,得OC=,由四边形OABC是矩形,得BC=OA=3,所以CD=BC=,求得D(,);(2)①由易知得ACB=∠OAC=30°,设将△DBF沿DE所在的直线翻折后,点B恰好落在AC上的B'处,则DB'=DB=DC,∠BDF=∠B'DF,所以∠BDB'=60°,∠BDF =∠B'DF=30°,所以BF=BD•tan30°=,AF=BF=,因为∠BFD=∠AEF,所以∠B=∠F AE=90°,因此△BFD≌△AFE,AE=BD=,点E的坐标(,0);②动点P在点O时,求得此时抛物线解析式为y=﹣x2+x,因此E(,0),直线DE:y=﹣x+,F1(3,);当动点P从点O运动到点M时,求得此时抛物线解析式为y=﹣x2+x+,所以E(6,0),直线DE:y=﹣x+,所以F2(3,);所以点F运动路径的长为F1F2==,即G运动路径的长为.【解答】解:(1)∵OA=3,tan∠OAC==,∴OC=,∵四边形OABC是矩形,∴BC=OA=3,∵D是BC的中点,∴CD=BC=,∴D(,);(2)①∵tan∠OAC=,∴∠OAC=30°,∴∠ACB=∠OAC=30°,设将△DBF沿DE所在的直线翻折后,点B恰好落在AC上的B'处,则DB'=DB=DC,∠BDF=∠B'DF,∴∠DB'C=∠ACB=30°∴∠BDB'=60°,∴∠BDF=∠B'DF=30°,∵∠B=90°,∴BF=BD•tan30°=,∵AB=,∴AF=BF=,∵∠BFD=∠AEF,∴∠B=∠F AE=90°,∴△BFD≌△AFE(ASA),∴AE=BD=,∴OE=OA+AE=,∴点E的坐标(,0);②动点P在点O时,∵抛物线过点P(0,0)、D(,)、B(3,)求得此时抛物线解析式为y=﹣x2+x,∴E(,0),∴直线DE:y=﹣x+,∴F1(3,);当动点P从点O运动到点M时,∵抛物线过点P(0,)、D(,)、B(3,)求得此时抛物线解析式为y=﹣x2+x+,∴E(6,0),∴直线DE:y=﹣x+,∴F2(3,);∴点F运动路径的长为F1F2==,如图,当动点P从点O运动到点M时,点F运动到点F',点G也随之运动到G'.连接GG'.当点P向点M运动时,抛物线开口变大,F点向上线性移动,所以G也是线性移动.即GG'=FF'.∵△DFG、△DF'G'为等边三角形,∴∠GDF=∠G'DF'=60°,DG=DF,DG'=DF',∴∠GDF﹣∠GDF'=∠G'DF'﹣∠GDF',即∠G'DG=∠F'DF在△DFF'与△FGG'中,,∴△DFF'≌△FGG'(SAS),∴GG'=FF'=即G运动路径的长为.2.(2019•金华)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y=﹣(x﹣m)2+m+2的顶点.(1)当m=0时,求该抛物线下方(包括边界)的好点个数.(2)当m=3时,求该抛物线上的好点坐标.(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m 的取值范围.【分析】(1)如图1中,当m=0时,二次函数的表达式y=﹣x2+2,画出函数图象,利用图象法解决问题即可.(2)如图2中,当m=3时,二次函数解析式为y=﹣(x﹣3)2+5,如图2,结合图象即可解决问题.(3)如图3中,∵抛物线的顶点P(m,m+2),推出抛物线的顶点P在直线y=x+2上,由点P在正方形内部,则0<m<2,如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),求出抛物线经过点E或点F时m的值,即可判断.【解答】解:(1)如图1中,当m=0时,二次函数的表达式y=﹣x2+2,函数图象如图1所示.∵当x=0时,y=2,当x=1时,y=1,∴抛物线经过点(0,2)和(1,1),观察图象可知:好点有:(0,0),(0,1),(0,2),(1,0),(1,1),共5个.(2)如图2中,当m=3时,二次函数解析式为y=﹣(x﹣3)2+5.如图2.∵当x=1时,y=1,当x=2时,y=4,当x=4时,y=4,∴抛物线经过(1,1),(2,4),(4,4),根据图象可知,抛物线上存在好点,坐标分别为(1,1),(2,4),(4,4).(3)如图3中,∵抛物线的顶点P(m,m+2),∴抛物线的顶点P在直线y=x+2上,∵点P在正方形内部,则0<m<2,如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),当抛物线经过点E时,﹣(2﹣m)2+m+2=1,解得m=或(舍弃),当抛物线经过点F时,﹣(2﹣m)2+m+2=2,解得m=1或4(舍弃),∴当≤m<1时,顶点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点.3.(2019•杭州)设二次函数y=(x﹣x1)(x﹣x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=时,y=﹣.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<.【分析】(1)将(0,0),(1,0)代入y=(x﹣x1)(x﹣x2)求出函数解析式即可求解;(2)对称轴为x=,当x=时,y=﹣是函数的最小值;(3)将已知两点代入求出m=x1x2,n=1﹣x1﹣x2+x1x2,再表示出mn=[﹣][﹣],由已知0<x1<x2<1,可求出0<﹣≤,0<﹣≤,即可求解.【解答】解:(1)当x=0时,y=0;当x=1时,y=0;∴二次函数经过点(0,0),(1,0),∴x1=0,x2=1,∴y═x(x﹣1)=x2﹣x,当x=时,y=﹣,∴乙说点的不对;(2)对称轴为x=,当x=时,y=﹣是函数的最小值;(3)二次函数的图象经过(0,m)和(1,n)两点,∴m=x1x2,n=1﹣x1﹣x2+x1x2,∴mn=[﹣][﹣]∵0<x1<x2<1,∴0<﹣≤,0<﹣≤,∵m与n不能同时取到,∴0<mn<.4.(2019•宁波)如图,已知二次函数y=x2+ax+3的图象经过点P(﹣2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.【分析】(1)把点P(﹣2,3)代入y=x2+ax+3中,即可求出a;(2)①把m=2代入解析式即可求n的值;②由点Q到y轴的距离小于2,可得﹣2<m<2,在此范围内求n即可;【解答】解:(1)把点P(﹣2,3)代入y=x2+ax+3中,∴a=2,∴y=x2+2x+3,∴顶点坐标为(﹣1,2);(2)①当m=2时,n=11,②点Q到y轴的距离小于2,∴|m|<2,∴﹣2<m<2,∴2≤n<11;5.(2019•温州)如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n的值.【分析】(1)把y=0代入二次函数的解析式中,求得一元二次方程的解便可得A、B两点的坐标,再根据函数图象不在x轴下方的x的取值范围得y≥0时x的取值范围;(2)根据题意写出B2,B3的坐标,再由对称轴方程列出n的方程,求得n,进而求得m 的值.【解答】解:(1)令y=0,则﹣,解得,x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),由函数图象得,当y≥0时,﹣2≤x≤6;(2)由题意得,B1(6,m),B2(6﹣n,m),B3(﹣n,m),函数图象的对称轴为直线,∵点B2,B3在二次函数图象上且纵坐标相同,∴,∴n=1,∴,∴m,n的值分别为,1.6.(2019•嘉兴)某农作物的生长率p与温度t(℃)有如下关系:如图1,当10≤t≤25时可近似用函数p=t﹣刻画;当25≤t≤37时可近似用函数p=﹣(t﹣h)2+0.4刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率p满足函数关系:生长率p0.20.250.30.35提前上市的天数m(天)051015①请运用已学的知识,求m关于p的函数表达式;②请用含t的代数式表示m.(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w(元)与大棚温度t(℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).【分析】(1)把(25,0.3)代入p=﹣(t﹣h)2+0.4,解方程即可得到结论;(2)①由表格可知,m是p的一次函数,于是得到m=100p﹣20;②当10≤t≤25时,p=t﹣,求得m=100(t﹣)﹣20=2t﹣40;当25≤t≤37时,根据题意即可得到m=100[﹣(t﹣h)2+0.4]﹣20=﹣(t﹣29)2+20;(3)(Ⅰ)当20≤t≤25时,(Ⅱ)当25≤t≤37时,w=300,根据二次函数的性质即可得到结论.【解答】解:(1)把(25,0.3)代入p=﹣(t﹣h)2+0.4得,0.3=﹣(25﹣h)2+0.4,解得:h=29或h=21,∵h>25,∴h=29;(2)①由表格可知,m是p的一次函数,∴m=100p﹣20;②当10≤t≤25时,p=t﹣,∴m=100(t﹣)﹣20=2t﹣40;当25≤t≤37时,p=﹣(t﹣h)2+0.4,∴m=100[﹣(t﹣h)2+0.4]﹣20=﹣(t﹣29)2+20;(3)(Ⅰ)当20≤t≤25时,由(20,200),(25,300),得w=20t﹣200,∴增加利润为600m+[200×30﹣w(30﹣m)]=40t2﹣600t﹣4000,∴当t=25时,增加的利润的最大值为6000元;(Ⅱ)当25≤t≤37时,w=300,增加的利润为600m+[(w﹣200)×(30﹣m)﹣w(30﹣m)]=﹣500(t﹣29)2+10000;∴当t=29时,增加的利润最大值为10000元,综上所述,当t=29时,提前上市20天,增加的利润最大值为10000元.7.(2019•湖州)已知抛物线y=2x2﹣4x+c与x轴有两个不同的交点.(1)求c的取值范围;(2)若抛物线y=2x2﹣4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由.【分析】(1)由二次函数与x轴交点情况,可知△>0;(2)求出抛物线对称轴为直线x=1,由于A(2,m)和点B(3,n)都在对称轴的右侧,即可求解;【解答】解:(1)∵抛物线y=2x2﹣4x+c与x轴有两个不同的交点,∴△=b2﹣4ac=16﹣8c>0,∴c<2;(2)抛物线y=2x2﹣4x+c的对称轴为直线x=1,∴A(2,m)和点B(3,n)都在对称轴的右侧,当x≥1时,y随x的增大而增大,∴m<n;8.(2019•台州)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值.【分析】(1)将点(﹣2,4)代入y=x2+bx+c,c=2b;(2)m=﹣,n=,得n=2b﹣m2;(3)y=x2+bx+2b=(x+)2﹣+2b,当b≤0时,c≤0,函数不经过第三象限,则c =0;此时y=x2,最大值与最小值之差为25;当b>0时,c>0,函数不经过第三象限,则△≤0,得0≤b≤8当﹣5≤x≤1时,函数有最小值﹣+2b,当﹣5≤﹣<﹣2时,函数有最大值1+3b,当﹣2<﹣≤1时,函数有最大值25﹣3b;当最大值1+3b时,1+3b+﹣2b=16,b=6;当最大值25﹣3b时,b=2;【解答】解:(1)将点(﹣2,4)代入y=x2+bx+c,得﹣2b+c=0,∴c=2b;(2)m=﹣,n=,∴n=,∴n=2b﹣m2=﹣4m﹣m2;(3)y=x2+bx+2b=(x+)2﹣+2b,对称轴x=﹣,当b≤0时,c≤0,函数不经过第三象限,则c=0;此时y=x2,当﹣5≤x≤1时,函数最小值是0,最大值是25,∴最大值与最小值之差为25;(舍去)当b>0时,c>0,函数不经过第三象限,则△≤0,∴0≤b≤8,∴﹣4≤x=﹣≤0,当﹣5≤x≤1时,函数有最小值﹣+2b,当﹣5≤﹣<﹣2时,函数有最大值1+3b,当﹣2<﹣≤1时,函数有最大值25﹣3b;函数的最大值与最小值之差为16,当最大值1+3b时,1+3b+﹣2b=16,∴b=6或b=﹣10,∵4≤b≤8,∴b=6;当最大值25﹣3b时,25﹣3b+﹣2b=16,∴b=2或b=18,∵2≤b≤4,∴b=2;综上所述b=2或b=6;9.(2019•舟山)某农作物的生长率p与温度t(℃)有如下关系:如图,当10≤t≤25时可近似用函数p=t﹣刻画;当25≤t≤37时可近似用函数p=﹣(t﹣h)2+0.4刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率p之间满足已学过的函数关系,部分数据如下:生长率p0.20.250.30.35提前上市的天数m(天)051015求:①m关于p的函数表达式;②用含t的代数式表示m.③天气寒冷,大棚加温可改变农作物生长速度.大棚恒温20℃时每天的成本为100元,计划该作物30天后上市,现根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此决定给大棚继续加温,但加温导致成本增加,估测加温到20≤t≤25时的成本为200元/天,但若欲加温到25<t≤37,由于要采用特殊方法,成本增加到400元/天.问加温到多少度时增加的利润最大?并说明理由.(注:农作物上市售出后大棚暂停使用)【分析】(1)把(25,0.3)代入p=﹣(t﹣h)2+0.4中,便可求得h;(2)①由表格可知,m是p的一次函数,由待定系数法可解;②分别求出当10≤t≤25时和当25≤t≤37时的函数解析式即可;③分别求出当20≤t≤25时,增加的利润和当25<t≤37时,增加的利润,然后比较两种情况下的最大值,即可得结论.【解答】解:(1)把(25,0.3)代入p=﹣(t﹣h)2+0.4得:0.3=(25﹣h)2+0.4解得:h=29或h=21,∵25≤t≤37∴h=29.(2)①由表格可知,m是p的一次函数,设m=kp+b把(0.2,0),(0.3,10)代入得解得∴m=100p﹣20.②当10≤t≤25时,p=t﹣∴m=100(t﹣)﹣20=2t﹣40;当25≤t≤37时,p=﹣(t﹣h)2+0.4∴m=100[﹣(t﹣h)2+0.4]﹣20=(t﹣29)2+20∴m=③当20≤t≤25时,增加的利润为:600m+[100×30﹣200(30﹣m)]=800m﹣3000=1600t﹣35000当t=25时,增加的利润的最大值为1600×25﹣35000=5000元;当25<t≤37时,增加的利润为:600m+[100×30﹣400(30﹣m)]=1000m﹣9000=﹣625(t﹣29)2+11000∴当t=29时,增加的利润的最大值为11000元.综上,当t=29时,提前20天上市,增加的利润最大,最大值为11000元.10.(2019•衢州)某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为60间.经市场调查表明,该馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数y(间)与每间标准房的价格x(元)的数据如下表:x(元)…190200210220…y(间)…65605550…(1)根据所给数据在坐标系中描出相应的点,并画出图象.(2)求y关于x的函数表达式,并写出自变量x的取值范围.(3)设客房的日营业额为w(元).若不考虑其他因素,问宾馆标准房的价格定为多少元时,客房的日营业额最大?最大为多少元?【分析】(1)描点、连线即可得;(2)待定系数法求解可得;(3)由营业额=入住房间数量×房价得出函数解析式,再利用二次函数的性质求解可得.【解答】解:(1)如图所示:(2)设y=kx+b,将(200,60)、(220,50)代入,得:,解得,∴y=﹣x+160(170≤x≤240);(3)w=xy=x(﹣x+160)=﹣x2+160x,∴对称轴为直线x=﹣=160,∵a=﹣<0,∴在170≤x≤240范围内,w随x的增大而减小,∴当x=170时,w有最大值,最大值为12750元.11.(2018•金华)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB 在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣t2+t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G,H中有一点落在线段AD或BC上时,直线GH不可能将矩形面积平分;当点G,H分别落在线段AB,DC上时,直线GH过点P,必平分矩形ABCD的面积.∵AB∥CD,∴线段OD平移后得到线段GH.∴线段OD的中点Q平移后的对应点是P.∴DP=PB,由平移知,PQ∥OB∴PQ是△ODB的中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.12.(2018•杭州)设二次函数y=ax2+bx﹣(a+b)(a,b是常数,a≠0).(1)判断该二次函数图象与x轴的交点的个数,说明理由.(2)若该二次函数图象经过A(﹣1,4),B(0,﹣1),C(1,1)三个点中的其中两个点,求该二次函数的表达式.(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.【分析】(1)利用一元二次方程根的判别式.(2)当x=1时,y=0,所以抛物线过点AB(3)把x=2代入用ab表示m,由m的范围结合a+b>0可解.【解答】解:(1)设y=0∴0=ax2+bx﹣(a+b)∵△=b2﹣4•a[﹣(a+b)]=b2+4ab+4a2=(2a+b)2≥0∴方程有两个不相等实数根或两个相等实根.∴二次函数图象与x轴的交点的个数有两个或一个(2)当x=1时,y=a+b﹣(a+b)=0∴抛物线不经过点C把点A(﹣1,4),B(0,﹣1)分别代入得解得∴抛物线解析式为y=3x2﹣2x﹣1(3)当x=2时m=4a+2b﹣(a+b)=3a+b>0①∵a+b<0∴﹣a﹣b>0②①②相加得:2a>0∴a>013.(2018•宁波)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【分析】(1)把已知点的坐标代入抛物线解析式求出b与c的值即可;(2)指出满足题意的平移方法,并写出平移后的解析式即可.【解答】解:(1)把(1,0),(0,)代入抛物线解析式得:,解得:,则抛物线解析式为y=﹣x2﹣x+;(2)抛物线解析式为y=﹣x2﹣x+=﹣(x+1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=﹣x2.14.(2018•温州)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲65﹣x2(65﹣x)15乙x x130﹣2x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.【分析】(1)根据题意列代数式即可;(2)根据(1)中数据表示每天生产甲乙产品获得利润根据题意构造方程即可;(3)根据每天甲、丙两种产品的产量相等得到m与x之间的关系式,用x表示总利润利用二次函数性质讨论最值.【解答】解:(1)由已知,每天安排x人生产乙产品时,生产甲产品的有(65﹣x)人,共生产甲产品2(65﹣x)130﹣2x件.在乙每件120元获利的基础上,增加x人,利润减少2x元每件,则乙产品的每件利润为120﹣2(x﹣5)=130﹣2x.故答案为:65﹣x;130﹣2x;130﹣2x;(2)由题意15×2(65﹣x)=x(130﹣2x)+550∴x2﹣80x+700=0解得x1=10,x2=70(不合题意,舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m人W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200∵2m=65﹣x﹣m∴m=∵x、m都是非负整数∴取x=26时,m=13,65﹣x﹣m=26即当x=26时,W最大值=3198答:安排26人生产乙产品时,可获得的最大利润为3198元.15.(2018•温州)如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横。
九年级上册数学第一章综合练习卷一、选择题(每小题3分,共30分)1. 下列函数中,是二次函数的是()A. B. C. D.2. 将抛物线平移,得到抛物线,下列平移方式中,正确的是()A. 先向左平移1个单位,再向上平移2个单位B. 先向左平移1个单位,再向下平移2个单位C. 先向右平移1个单位,再向上平移2个单位D. 先向右平移1 个单位,再向下平移2个单位3. 下列函数中,属于二次函数的是()A. B.C. D.4. 如图是二次函数的图象,使成立的的取值范围是()A. B.C. D. 或5. 向上发射一枚炮弹,经秒后的高度为公尺,且高度与时间关系为.若此炮弹在第秒与第秒时的高度相等,则在下列哪一个时间的高度是最高的()A. 第秒B. 第秒C. 第秒D. 第秒6. 图(1)是一个横断面为抛物线形状的拱桥,当水面在时,拱顶(拱桥洞的最高点)离水面,水面宽.如图(2)建立平面直角坐标系,则抛物线的关系式是()A. B.B.C. D.7. 设函数(,,是实数,),当时,;当时,,()A. 若,则B. 若,则C. 若,则D. 若,则8. 矩形的两条对称轴为坐标轴,点的坐标为.一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点重合,此时抛物线的函数表达式为,再次平移透明纸,使这个点与点重合,则该抛物线的函数表达式变为()A. B. C. D.9. 如图,二次函数的图象与轴交于,两点,与轴正半轴交于点,它的对称轴为直线.则下列选项中正确的是()A.B.C.D. 当(为实数)时,10. 如图是二次函数的部分图象,由图象可知不等式的解集是()A. B.C. 且D. 或二、填空题(共6小题;共24分)11. 抛物线的顶点坐标是.12. 把抛物线先向右平移个单位,再向上平移个单位,平移后抛物线的表达式是.13. 如图,直线与抛物线交于,两点,则关于的不等式的解集是.14. 若函数是二次函数,则的值为.15. 某花圃用花盆培育某种花苗,经过试验发现每盆的盈利与每盆的株数构成一定的关系,每盆植入株时,平均单株盈利元,以同样的栽培条件,若每盆增加株,平均单株盈利就减少元(可以每盆增加一株),则每盆植株时能使单盆取得最大盈利;若需要单盆盈利不低于元,则每盆需要植株.16. 如图,以扇形的顶点为原点,半径所在的直线为轴,建立平面直角坐标系,点的坐标为,若抛物线与扇形的边界总有两个公共点,则实数的取值范围是.三、解答题(共7小题;共66分)17. 已知函数.(1)当函数是二次函数时,求的值;(2)当函数是一次函数时,求的值.18. 已知二次函数的图象的对称轴是直线,且图象过点,与一次函数的图象交于.(1)求两个函数解析式;(2)求两个函数图象的另一个交点.19. 已知抛物线经过点.(1)求此抛物线的函数解析式;(2)写出这个二次函数图象的顶点坐标、对称轴;(3)判断点是否在此抛物线上;(4)求出此抛物线上纵坐标为的点的坐标.20. 已知抛物线经过点,.(1)求该抛物线的函数表达式;(2)将抛物线平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.21. 如图,排球场长为,宽为,网高为,队员站在底线点处发球,球从点的正上方的点发出,运动路线是抛物线的一部分,当球运动到最高点时,高度为,即,这时水平距离,以直线为轴,直线为轴,建立平面直角坐标系,如图.(1)若球向正前方运动(即轴垂直于底线),求球运动的高度与水平距离之间的函数关系式(不必写出取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地号位内的点(如图,点距底线,边线),问发球点在底线上的哪个位置?(参考数据:取)22. 如图,顶点在轴上的抛物线与直线相交于,两点,且点在轴上,点的横坐标为,连接,.(1)求抛物线的函数关系式;(2)判断的形状,并说明理由;(3)把抛物线与直线的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为,当满足什么条件时,平移后的抛物线总有不动点.23. 如图,在平面直角坐标系中,的顶点,分别是直线与坐标轴的交点,点的坐标为,点是边上的一点,于点,点在边上,且,两点关于轴上的某点成中心对称,连接,.设点的横坐标为,为,请探究:①线段长度是否有最小值.②能否成为直角三角形.小明尝试用“观察—猜想—验证—应用”的方法进行探究,请你一起来解决问题.(1)小明利用“几何画板”软件进行观察,测量,得到随变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图).请你在图中连线,观察图象特征并猜想与可能满足的函数类别.(2)小明结合图,发现应用三角形和函数知识能验证()中的猜想,请你求出关于的函数表达式及自变量的取值范围,并求出线段长度的最小值.(3)小明通过观察,推理,发现能成为直角三角形,请你求出当为直角三角形时的值.参考答案第一部分1. D2. D3. C4. D 【解析】由图可知,或时,5. B6. C7. C 【解析】当时,;当时,;代入函数式得:,整理得:,若,则,故A错误;若,则,故B错误;若,则,故C正确;若,则,故D错误.8. A9. D 【解析】由图象开口向上,可知,与轴的交点在轴的上方,可知,又对称轴方程为,所以,所以,,故A错误;一次函数的图象与轴交于,两点,,,故B错误;,,当时,,,,故C错误;当(为实数)时,,,,,,故D正确.10. A【解析】由图象可知,抛物线与轴的一个交点为,对称轴是,根据抛物线的对称性可知抛物线与轴的另一个交点的坐标为.由图象看出当时,函数图象在轴上方,所以不等式的解集是.第二部分11.12.【解析】抛物线的顶点坐标为,点向右平移个单位,再向上平移个单位所得对应点的坐标为,所以平移后抛物线的表达式为.13. 或14.15. 或,或或或16.【解析】由图可知,,则直线的解析式为.将解析式联立成方程组消掉得.,即时,抛物线与有一个交点,此交点的横坐标为.点的坐标为,,点的坐标为,交点在线段上;当抛物线经过点,解得.要使抛物线与扇形的边界总有两个公共点,实数的取值范围是.第三部分17. (1)【解析】依题意,得,解得或;又因,解得或;因此.(2)【解析】依题意,得,解得;又因,解得或;因此.18. (1)二次函数的图象的对称轴是直线,且图象过点,,.的图象交于...(2)由题意得,解得或.两个函数图象的另一个交点.19. (1)抛物线经过点,,,此抛物线对应的函数解析式为.(2)由题可得,抛物线的顶点坐标为,对称轴为轴.(3)把代入得,,点不在此抛物线上.(4)把代入,解得,抛物线上纵坐标为的点的坐标为或.20. (1)把和代入,得解得抛物线的函数表达式为.(2),顶点坐标为.将抛物线平移,使其顶点恰好落在原点的一种平移方法:先向右平移个单位长度,再向下平移个单位长度.(答案不唯一)平移后的函数表达式为.21. (1)设抛物线的表达式为:,将,代入上式并解得:,故抛物线的表达式为:,当时,,当时,,故这次发球过网,但是出界了.(2)如图,分别过点作底线、边线的平行线,交于点,在中,,当时,,解得:舍去),,而,故,,发球点在底线上且距右边线米处.22. (1)点为直线与轴的交点,.又点横坐标为,代入可求得,.抛物线顶点在轴上,可设抛物线解析式为.把,两点坐标代入可得解得抛物线解析式为.(2)为直角三角形.理由如下:由(1)抛物线解析式为可知点坐标为,,,..为直角三角形.(3)当抛物线平移后顶点坐标为时,其解析式为,即,联立,可得消去整理可得.平移后的抛物线总有不动点,方程总有实数根.,即.解得,即当时,平移后的抛物线总有不动点.23. (1)用描点法画出图形如图,由图象可知函数类别为二次函数.(2)如图,过点,分别作,垂直于轴,垂足分别为,,则,记交轴于点,因为点与点关于轴上的点成中心对称,所以,因为,所以,所以,因为直线的解析式为,所以时,,所以,又因为,设直线的解析式为,所以解得所以直线的解析式为,过点作轴于点,所以点的橫坐标为,所以,所以,,因为,所以,令,得,所以.当时,的最小值为,所以的最小值为.(3)①为定角,不可能为直角.②时,点与点重合,点与点,点重合,此时.③如图,时,有.由()得,又因为,,所以,又因为,所以,化简得,,解得,(不合题意,舍去),所以.综合以上可得,当为直角三角形时,或.。
2019--2020学年浙江省九年级上册数学(浙教版)《二次函数》试题分类——解答题(1)一.解答题1.(2019秋•海曙区期末)如图1,已知抛物线yx2+4与x轴交于点A,B,与y轴交于点Q,点P为OQ 的中点,经过点A,P,B的圆的圆心为点M,点C为圆M优弧AB上的一个动点.(1)直接写出点P,A,B的坐标:P;A;B;(2)求tan∠ACB的值;(3)将抛物线yx2+4沿x轴翻折所得的抛物线交y轴与点D,若BC经过点D时,求线段AC,PC的长;(4)若BC的中点为E,AE交翻折后的抛物线于点F,直接写出AE的最大值和此时点F的坐标.2.(2019秋•海曙区期末)自2019年3月开始,我国生猪、猪肉价格持续上涨,某大型菜场在销售过程中发现,从2019年10月1日起到11月9日的40天内,猪肉的每千克售价与上市时间的关系用图1的一条折线表示:猪肉的进价与上市时间的关系用图2的一段抛物线y=a(x﹣30)2+100表示.(1)a=;(2)求图1表示的售价p与时间x的函数关系式;(3)问从10月1日起到11月9日的40天内第几天每千克猪肉利润最低,最低利润为多少?3.(2020春•拱墅区期末)把一个足球垂直地面向上踢,t(秒)后该足球的高度h(米)适用公式h=20t ﹣5t2.(1)经过多少秒后足球回到地面?(2)圆圆说足球的高度能达到21米,方方说足球的高度能达到20米.你认为圆圆和方方的说法对吗?为什么?4.(2019秋•海曙区期末)已知二次函数y=﹣x2+bx+c的图象与直线y=﹣x+3相交于x轴上的点A,y轴上的点B.顶点为P.(1)求这个二次函数的解析式;(2)现将抛物线向左平移m个单位,当抛物线与△PBA有且只有一个公共点时,求m的值.5.(2019秋•拱墅区校级期末)一个斜抛物体的水平运动距离为x(m),对应的高度记为h(m),且满足h=ax2+bx﹣2a(其中a≠0).已知当x=0时,h=2;当x=10时,h=2.(1)求h关于x的函数表达式;(2)求斜抛物体的最大高度和达到最大高度时的水平距离.6.(2019秋•拱墅区校级期末)在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A(0,﹣4)和B(2,0)两点.(1)求c的值及a,b满足的关系式;(2)若抛物线在A和B两点间,y随x的增大而增大,求a的取值范围;(3)抛物线同时经过两个不同的点M(p,m),N(﹣2﹣p,n).①若m=n,求a的值;②若m=﹣2p﹣3,n=2p+1,点M在直线y=﹣2x﹣3上,请验证点N也在y=﹣2x﹣3上并求a的值.7.(2019秋•西湖区校级期末)对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.现有点A(2,0)和抛物线E上的点B(﹣1,n),请完成下列任务:(1)当t=2时,抛物线E的顶点坐标是;(2)判断点A是否在抛物线E上;(3)求n的值.(4)通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,这个定点的坐标是.(5)二次函数y=﹣3x2+5x+2是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.(6)以AB为一边作矩形ABCD,使得其中一个顶点落在y轴上,若抛物线E经过点A、B、C、D中的三点,求出所有符合条件的t的值.8.(2019秋•柯桥区期末)我国互联网发展走到了世界的前列,尤其是电子商务,据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量y(件)与销售单价x(元)之间的函数关系如图所示:(1)当销售单价定为50元时,求每月的销售件数;(2)设每月获得的利润为W(元),求利润的最大值;(3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量)9.(2019秋•柯桥区期末)如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c 经过B、C两点,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使△EDC的周长最小,求符合条件的E点坐标;(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出PB2的值;若不存在,请说明理由.10.(2019秋•玉环市期末)2019年11月20日,“美丽玉环,文旦飘香”号冠名列车正式发车,为广大旅客带去“中国文旦之乡”的独特味道根据市场调查,在文旦上市销售的30天中,其销售价格m(元/公斤)与第x天之间满足函数(其中x为正整数);销售量n(公斤)与第x天之间的函数关系如图所示,如果文旦上市期间每天的其他费用为100元.(1)求销售量n与第x天之间的函数关系式;(2)求在文旦上市销售的30天中,每天的销售利润y与第x天之间的函数关系式;(日销售利润=日销售额﹣日维护费)(3)求日销售利润y的最大值及相应的x的值.11.(2019秋•江干区期末)已知一个二次函数y1的图象与x轴的交点为(﹣2,0),(4,0),形状与二次函数相同,且y1的图象顶点在函数y=2x+b的图象上(a,b为常数),则请用含有a的代数式表示b.12.(2019秋•江干区期末)已知,二次函数y=x2+2mx+n(m,n为常数且m≠0).(1)若n=0,请判断该函数的图象与x轴的交点个数,并说明理由;(2)若点A(n+5,n)在该函数图象上,试探索m,n满足的条件;(3)若点(2,p),(3,q),(4,r)均在该函数图象上,且p<q<r,求m的取值范围.13.(2019秋•温州期末)总公司将一批衬衫由甲、乙两家分店共同销售,因地段不同,甲店一天可售出20件,每件盈利40元;乙店一天可售出32件,每件盈利30元.经调查发现,每件衬杉每降价1元,甲、乙两家店一天都可多售出2件.设甲店每件衬衫降价a元时,一天可盈利y1元,乙店每件衬衫降价b元时,一天可盈利y2元.(1)当a=5时,求y1的值.(2)求y2关于b的函数表达式.(3)若总公司规定两家分店下降的价格必须相同,请求出每件衬衫下降多少元时,两家分店一天的盈利和最大,最大是多少元?14.(2019秋•诸暨市期末)如图已知直线yx与抛物线y=ax2+bx+c相交于A(﹣1,0),B(4,m)两点,抛物线y=ax2+bx+c交y轴于点C(0,),交x轴正半轴于D点,抛物线的顶点为M.(1)求抛物线的解析式;(2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求△PAB的面积及点P的坐标;(3)若点Q为x轴上一动点,点N在抛物线上且位于其对称轴右侧,当△QMN与△MAD相似时,求N 点的坐标.15.(2019秋•江北区期末)每年十月的第二个周四是世界爱眼日,为预防近视,超市决定对某型号护眼台灯进行降价销售.降价前,进价为30元的护眼台灯以80元售出,平均每月能售出200盏,调查表明:这种护眼台灯每盏售价每降低1元,其月平均销售量将增加10盏.(1)写出月销售利润y(单位:元)与销售价x(单位:元/盏)之间的函数表达式;(2)当销售价定为多少元时,所得月利润最大?最大月利润为多少元?16.(2019秋•黄岩区期末)某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第x天的成本y(元/件)与x(天)之间的关系如图所示,并连续50天均以80元/件的价格出售,第x天该产品的销售量z(件)与x(天)满足关系式z=x+10.(1)第40天,该商家获得的利润是元;(2)设第x天该商家出售该产品的利润为w元.①求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在出售该产品的过程中,当天利润不低于1000元的共有多少天?17.(2019秋•黄岩区期末)已知二次函数y=x2﹣2kx+2.(1)当k=2时,求函数图象与x轴的交点坐标.(2)若函数图象的对称轴与原点的距离为2,求k的值.18.(2019秋•丽水期末)已知,二次三项式﹣x2+2x+3.(1)关于x的一元二次方程﹣x2+2x+3=﹣mx2+mx+2(m为整数)的根为有理数,求m的值;(2)在平面直角坐标系中,直线y=﹣2x+n分别交x,y轴于点A,B,若函数y=﹣x2+2|x|+3的图象与线段AB只有一个交点,求n的取值范围.19.(2019秋•江北区期末)已知二次函数y=x2﹣2x﹣3(1)求函数图象的顶点坐标,与坐标轴的交点坐标,并画出函数的大致图象;(2)根据图象直接回答:当y<0时,求x的取值范围;当y>﹣3时,求x的取值范围.20.(2019秋•温州期末)如图,在平面直角坐标系中,抛物线yx2+2x+a交x轴于点A,B,交y轴于点C,点A的横坐标为﹣2.(1)求抛物线的对称轴和函数表达式.(2)连结BC线段,BC上有一点D,过点D作x轴的平行线交抛物线于点E,F,若EF=6,求点D的坐标.2019--2020学年浙江省九年级上册数学(浙教版)《二次函数》试题分类——解答题(1)参考答案与试题解析一.解答题(共20小题)1.【答案】见试题解答内容【解答】解:(1)对于抛物线yx2+4,令x=0,得到y=4,令y=0,得到x=±4,∴Q(0,4),A(﹣4,0),B(4,0),∴OP=PQ,∴P(0,2),故答案为(0,2),(﹣4,0),(4,0).(2)如图1中,连接MA,MB,设⊙M的半径为r.在Rt△OMB中,BM=r,OB=4,OM=r﹣2由勾股定理得到,r2=42+(r﹣2)2,解得r=5,∵MA=BM,MO⊥AB,∴∠AMO=∠BMO∠AMB,∵∠ACB∠AMB,∴∠ACB=∠OMB,∵tan∠OMB,∴tan∠ACB.(3)如图2中,连接AD,过点C作CH⊥y轴于H.∵OA=OB=OD=4,∴∠ADB=90°∴AD=BD=4,∴CD=AD•tan∠ACB=3,∴AC=5.∵∠CHD=∠BOD=90°,∠CDH=∠ODB,∴△CHD∽△BOD,∴,∴CH=3,DH=4,∴PH=9,∴PC3.(4)如图3中,连接CM,BM,EM,取BM的中点J,连接AJ,JE.∵MC=MB,CE=EB,∴ME⊥CB,∵MJ=JB,∴JEBM,∵B(4,0),M(0,﹣3),A(﹣4,0),∴J(2,),∴AJ,∵AE≤AJ+JE,∴AE,∴AE的最大值为,∵直线AJ的解析式为yx﹣1,翻折后的抛物线的解析式为yx2﹣4,由,解得或,∴F(3,).2.【答案】见试题解答内容【解答】解:(1)把(10,60)代入y=a(x﹣30)2+100,得到a,故答案为.(2)当0≤x<30时,设P=kx+b,把(0,60),(10,80)代入得到,解得,∴P=2x+60.当30≤x≤40时,设P=k′x+b′,把(30,120),(40,100)代入得到,解得,∴P=﹣2x+180.综上所述,P.(3)设利润为w.当0≤x<30时,w=2x+60﹣(x2+6x+10)x2﹣4x+50(x﹣20)2+10,∴当x=20时,w有最小值,最小值为10(元/千克).当30≤x≤40时,w=﹣2x+180﹣(x2+6x+10)x2﹣8x+170(x﹣40)2+10,∴当x=40时,最小利润w=10(元/千克),综上所述,当20天或40天,最小利润为10元/千克.3.【答案】见试题解答内容【解答】解:(1)当h=0时,20t﹣5t2=0,解得:t=0或t=4,答:经4秒后足球回到地面;(2)方方的说法对,理由:将h=21代入公式得:21=20t﹣5t25t2﹣20t+21=0,由判别式计算可知:△=(﹣20)2﹣4×5×21=﹣20<0,方程无解,将h=20代入公式得:20=20t﹣5t25t2﹣20t+20=0,解得:t=2(负值舍去),所以足球确实无法到达21米的高度,能达到20米,故方方的说法对.4.【答案】见试题解答内容【解答】解:(1)∵直线y=﹣x+3交于x轴上的点A,y轴上的点B,∴A(3,0),B(0,3),把A、B的坐标代入y=﹣x2+bx+c得,解得,∴二次函数的解析式为y=﹣x2+2x+3;(2)当抛物线经过点B时,抛物线与△PBA有且只有一个公共点,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴P(1,4),将抛物线向左平移m个单位,P对应点为(1﹣m,4),∴平移后的抛物线解析式为y=﹣(x﹣1+m)2+4,把B(0,3)代入得,3═﹣(﹣1+m)2+4,解得m1=2,m2=0(舍去),把A(3,0)代入得0=﹣(2+m)2+4,解得m3=﹣4,m4=0(舍去)故m的值为2或﹣4.5.【答案】见试题解答内容【解答】解:(1)∵当x=0时,h=2;当x=10时,h=2.∴解得:∴h关于x的函数表达式为:h=﹣x2+10x+2;(2)∵h=﹣x2+10x+2=﹣(x﹣5)2+27,∴斜抛物体的最大高度为27,达到最大高度时的水平距离为5.6.【答案】见试题解答内容【解答】解:(1)令x=0,则c=﹣4,将点B(2,0)代入y=ax2+bx+c可得4a+2b﹣4=0,∴2a+b=2;(2)当a>0时,∵A(0,﹣4)和B(2,0),∴对称轴x10,∴0<a≤1;当a<0时,对称轴x=12,∴﹣1≤a<0;综上所述:﹣1≤a≤1且a≠0;(3)①当m=n时,M(p,m),N(﹣2﹣p,n)关于对称轴对称,∴对称轴x=11,∴a;②将点N(﹣2﹣p,n)代入y=﹣2x﹣3,∴n=4+2p﹣3=1+2p,∴N点在y=﹣2x﹣3上,联立y=﹣2x﹣3与y=ax2+(2﹣2a)x﹣4有两个不同的实数根,∴ax2+(4﹣2a)x﹣1=0,∵p+(﹣2﹣p),∴a=1.7.【答案】见试题解答内容【解答】解:(1)将t=2代入抛物线E中,得:y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=2x2﹣4x=2(x﹣1)2﹣2,∴此时抛物线的顶点坐标为:(1,﹣2).故答案为:(1,﹣2);(2)将x=2代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得y=0,∴点A(2,0)在抛物线E上.(3)将x=﹣1代入抛物线E的解析式中,得:n=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=6.(4)将抛物线E的解析式展开,得:y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=t(x﹣2)(x+1)﹣2x+4∴抛物线E必过定点(2,0)、(﹣1,6).故答案为:A(2,0)、B(﹣1,6);(5)将x=2代入y=﹣3x2+5x+2,y=0,即点A在抛物线上.将x=﹣1代入y=﹣3x2+5x+2,计算得:y=﹣6≠6,即可得抛物线y=﹣3x2+5x+2不经过点B,二次函数y=﹣3x2+5x+2不是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”.(6)如图,作矩形ABC1D1和矩形ABC2D2,过点B作BK⊥y轴于K,过点D1作D1G⊥x轴于G,过点C2作C2H⊥y轴于H,过点B作BM⊥x轴于M,C2H与BM交于点T.∵∠AMB=∠BKC1,∠KBC1=∠ABM,∴△KBC1∽△MBA,∴,∵AM=3,BM=6,BN=1,∴,∴C1K,∴点C1(0,).∵BC1=AD1,∠AGD1=∠BKC1=90°,∠GAD1=∠KBC1,∴△KBC1≌△GAD1(AAS),∴AG=1,GD1,∴点D1(3,).同理△OAD2∽△GAD1,∴,∵AG=1,OA=2,GD1,∴OD2=1,∴点D2(0,﹣1).同理△TBC2≌△OD2A,∴TC2=AO=2,BT=OD2=1,∴点C2(﹣3,5).∵抛物线E总过定点A(2,0)、B(﹣1,6),∴符合条件的三点可能是A、B、C或A、B、D.当抛物线E经过A、B、C1时,将C1(0,)代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),解得t1;当抛物线经过A、B、D1时,将D1(3,)代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得到t,当抛物线经过A、B、C2时,将C2(﹣3,5)代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得到t,当抛物线经过A、B、D2时,将D2(0,﹣1)代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得到t,∴满足条件的所有t的值为:,,,.8.【答案】见试题解答内容【解答】解:(1)设y=kx+b,把(40,600),(75,250)代入可得,解得:,∴y=﹣10x+1000,当x=50时,y=﹣10×50+1000=500(件);(2)根据题意得,W=(x﹣40)(﹣10x+1000)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000.当x=70时,利润的最大值为9000;(3)由题意,解得60≤x≤75,设成本为S,∴S=40(﹣10x+1000)=﹣400x+40000,∵﹣400<0,∴S随x增大而减小,∴x=75时,S有最小值=10000元,答:每月的成本最少需要10000元.9.【答案】见试题解答内容【解答】解:(1)直线y=﹣x+3与x轴、y轴分别交于B、C两点,则点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式得:,解得:,故函数的表达式为:y=﹣x2+2x+3,(2)如图1,作点C关于x轴的对称点C′,连接CD′交x轴于点E,此时EC+ED为最小,则△EDC 的周长最小,抛物线的顶点D坐标为(1,4),点C′(0,﹣3),将C′、D的坐标代入一次函数表达式并解得:∴直线C′D的表达式为:y=7x﹣3,当y=0时,x,故点E(,0),(3)①当点P在x轴上方时,如图2,∵OB=OC=3,则∠OCB=45°=∠APB,过点B作BH⊥AP于点H,设PH=BH=a,则PB=PAa,由勾股定理得:AB2=AH2+BH2,16=a2+(a﹣a)2,解得:a2=8+4,则PB2=2a2=16+8.②当点P在x轴下方时,同理可得.综合以上可得,PB2的值为16+8.10.【答案】见试题解答内容【解答】解:(1)当1≤x≤10时,设n=kx+b,由图知可知,解得,∴n=20x+100,同理得,当10<x≤30时,n=﹣14x+440∴销售量n与第x天之间的函数关系式:n;(2)∵y=mn﹣100∴y;整理得,y;(3)当1≤x≤10时,∵y=4x2+60x+100的对称轴x,∴此时,在对称轴的右侧y随x的增大而增大∴x=10时,y取最大值,则y10=1100,当10<x<15时∵yx2+60x+780的对称轴是x∴x在x=11时,y取得最大值,此时y=1101.2,当15≤x≤30时∵yx2x+2540的对称轴为x,∴此时,在对称轴的左侧y随x的增大而减小∴x=15时,y取最大值,y的最大值是y15=1050,综上,文旦销售第11天时,日销售利润y最大,最大值是1102.2元.11.【答案】见试题解答内容【解答】解:由题意得:y1=a(x+2)(x﹣4)=a(x﹣1)2﹣9a,顶点坐标为:(1,﹣9a),将顶点坐标代入函数y=2x+b表达式得:﹣9a=2+b,故b=﹣9a﹣2.12.【答案】见试题解答内容【解答】解:(1)n=0时,△=b2﹣4ac=4m2>0,故该函数的图象与x轴的交点个数为2;(2)将点A的坐标代入抛物线表达式得:n=(n+5)2+2m(n+5)+n,解得:n=﹣5或n=﹣5﹣2m;(3)a=1>0,故抛物线开口向上,而p<q<r,即函数y随x的增大而增大,故则点(2,p),(3,q),(4,r)在函数对称轴的右侧,抛物线的对称轴为:x=﹣m,即x=﹣m<2.5,解得:m>﹣2.5且m≠0.13.【答案】见试题解答内容【解答】解:(1)由题意可得,y1=(40﹣a)(20+2a),当a=5时,y1=(40﹣5)×(20+2×5)=1050,即当a=5时,y1的值是1050;(2)由题意可得,y2=(30﹣b)(32+2b)=﹣2b2+28b+960,即y2关于b的函数表达式为y2=﹣2b2+28b+960;(3)设两家下降的价格都为x元,两家的盈利和为w元,w=(40﹣x)(20+2x)+(﹣2x2+28x+960)=﹣4x2+88x+1760=﹣4(x﹣11)2+2244,∴当x=11时,w取得最大值,此时w=2244,答:每件衬衫下降11元时,两家分店一天的盈利和最大,最大是2244元.14.【答案】见试题解答内容【解答】解:(1)将点B(4,m)代入yx,∴m,将点A(﹣1,0),B(4,),C(0,)代入y=ax2+bx+c,解得a,b=﹣1,c,∴函数解析式为yx2﹣x;(2)设P(n,n2﹣n),则经过点P且与直线yx垂直的直线解析式为y=﹣2xn2+n,直线yx与其垂线的交点G(n2n,n2n),∴GP(﹣n2+3n+4),当n时,GP最大,此时△PAB的面积最大,∴P(,),∵AB,PG,∴△PAB的面积;(3)∵M(1,﹣2),A(﹣1,0),D(3,0),∴AM=2,AD=4,MD=2,∴△MAD是等腰直角三角形,∵△QMN与△MAD相似,∴△QMN是等腰直角三角形,设N(t,t2﹣t)①如图1,当MQ⊥QN时,N(3,0);②如图2,当QN⊥MN时,过点N作NR⊥x轴,过点M作MS⊥RN交于点S,∵QN=MN,∠QNM=90°,∴△MNS≌△NMS(AAS)∴t﹣1t2+t,∴t=±,∴t>1,∴t,∴N(,1);③如图3,当QN⊥MQ时,过点Q作x轴的垂线,过点N作NS∥x轴,过点M作MR∥x轴,与过Q点的垂线分别交于点S、R;∵QN=MQ,∠MQN=90°,∴△MQR≌△QNS(AAS),∴SQ=QR=2,∴t+2=1t2﹣t,∴t=5,∴N(5,6);④如图4,当MN⊥NQ时,过点M作MR⊥x轴,过点Q作QS⊥x轴,过点N作x轴的平行线,与两垂线交于点R、S;∵QN=MN,∠MNQ=90°,∴△MNR≌△NQS(AAS),∴SQ=RN,∴t2﹣tt﹣1,∴t=2±,∵t>1,∴t=2,∴N(2,1);综上所述:N(3,0)或N(2,1)或N(5,6)或N(,1).15.【答案】见试题解答内容【解答】解:(1)设售价为x元/盏,月销售利润y元,根据题意得:y=(x﹣30)[200+10(80﹣x)]=﹣10x2+1300x﹣30000;(2)∵y=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,∴当销售价定为65元时,所得月利润最大,最大月利润为12250元.16.【答案】见试题解答内容【解答】解:(1)由图象可知,此时的产量为z=40+10=50,设直线BC的关系为y=kx+b,∴,∴,∴y=x+20,则第40天的利润为:(80﹣60)×50=1000元;故答案为1000;(2)①(Ⅰ)当0≤x≤20时w=(80﹣40)(x+10)=40x+400,当x=20时,w最大=1200元;(Ⅱ)当20<x≤50时,w=[80﹣x﹣20)](x+10)=﹣x2+50x+600=﹣(x﹣25)2+1225∴当x=25时,w最大值=1225;综上所述,第25天的利润最大,最大利润为1225元;②(Ⅰ)当0≤x≤20时,若w=1000,则x=15,第15天至20天的利润都不低于1000元;(Ⅱ)当20<x≤50时,令﹣(x﹣25)2+1225=1000,解得x1=40,x2=10(不合题意舍去),∴第21天至40天的利润都不低于1000元,此时,当天利润不低于1000元的天数为:26天.17.【答案】见试题解答内容【解答】解:(1)当k=2时,此函数为y=x2﹣4x+2.令x2﹣4x+2=0,解得x1=2,x2=2,所以此函数图象与x轴的交点坐标为(2,0),(2,0);(2)∵函数图象的对称轴与原点的距离为2,∴±2,解得k=2或﹣2.18.【答案】见试题解答内容【解答】解:(1)方程化为(m﹣1)x2+(2﹣m)x+1=0,由已知可得m≠1,△=m2﹣8m+8=(m﹣4)2﹣8,∵m为整数,方程的根为有理数,∴m﹣4=±3,∴m=7或m=1(舍);(2)由已知可得A(,0),B(0,n),∵函数y=﹣x2+2|x|+3的图象与线段AB只有一个交点,当3,n<3时,∴n≤﹣6;当3,n≥3时,∴n≥3;当3,n≤3时,n不存在;当3,n≥3时,3≤n<6;当直线与抛物线y=﹣x2+2x+3相切时,也满足条件,可得n=7,综上所述:n≤﹣6或3≤n<6或7.19.【答案】见试题解答内容【解答】解:(1)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4),当x=0时,y=x2﹣2x﹣3=﹣3,则抛物线与y轴的交点坐标为(0,﹣3),当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则抛物线与x轴的交点坐标为(﹣1,0),(3,0),如图,(2)当﹣1<x<3时,y<0;当x<0或x>2时,y>﹣3.20.【答案】见试题解答内容【解答】解:(1)∵A点的横坐标为﹣2,∴A(﹣2,0),∵点A在抛物线yx2+2x+a上,∴﹣2﹣4+a=0,解得:a=6,∴函数的解析式为:yx2+2x+6,∴对称轴为x2;(2)∵A(﹣2,0),对称轴为x=2,∴点B的坐标为(6,0),∴直线BC的解析式为y=﹣x+6,∵点D在BC上,∴设点D的坐标为(m,﹣m+6),∴点E和点F的纵坐标为﹣m+6,∴yx2+2x+6=﹣m+6,解得:x=2±,∴EF=2(2)=2,∵EF=6,∴26,解得:m=2.5,∴点D的坐标为(2.5,3.5).。
浙江省中考数学《二次函数》总复习阶段检测试卷含答案
阶段检测4二次函数
一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)
1.在同一平面直角坐标系中,函数y=ax+b与y=ax2-bx的图象可能是()
2.对于二次函数y=-1
4x
2+x-4,下列说法正确的是()
A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值-3
C.图象的顶点坐标为(-2,-7) D.图象与x轴有两个交点
3.设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+a上的三点,则y1,y2,y3的大小关系为()
A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2
4.如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式不可能的是()
A.y=x2-1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+17
5.如图是二次函数y=ax2+bx+c的图象,下列结论:
第5题图
①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c =1的两根之和为-1;④使y≤3成立的x的取值范围是x≥0.
其中正确的个数有()
A .1个
B .2个
C .3个
D .4个 6.二次函数y =ax 2+bx +c ,自变量x 与函数y 的对应值如表:
x … -5 -4 -3 -2 -1 0 … y
…
4
-2
-2
4
…
下列说法正确的是( )
A .抛物线的开口向下
B .当x >-3时,y 随x 的增大而增大
C .二次函数的最小值是-2
D .抛物线的对称轴是x =-5
2
7.二次函数y =ax 2+bx +c 的图象如图,点C 在y 轴的正半轴上,且OA =OC ,则 ( )
第7题图
A .ac +1=b
B .ab +1=c
C .bc +1=a
D .以上都不是 8.(2017·宜宾)如图,抛物线y 1=1
2(x +1)2+1与y 2=a(x -4)2-3交于点A(1,3),过点
A 作x 轴的平行线,分别交两条抛物线于
B 、
C 两点,且
D 、
E 分别为顶点.则下列结论
第8题图
①a =2
3;②AC =AE ;③△ABD 是等腰直角三角形;④当x >1时,y 1>y 2,其中正确
结论的个数是( )
A .1个
B .2个
C .3个
D .4个
9.二次函数y =x 2+bx 的图象如图,对称轴为直线x =1,若关于x 的一元二次方程x 2
+bx -t =0(t 为实数)在-1<x <4的范围内有解,则t 的取值范围是( )
A .t ≥-1
B .-1≤t <3
C.-1≤t<8 D.3<t<8
第9题图第10题图
10.如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD 的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是()
A.y=2
25x
2B.y=
4
25x
2
C.y=2
5x
2D.y=
4
5x
2
二、填空题(本大题有6小题,每小题5分,共30分)
11.科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长量l/mm与温度t/℃之间是二次函数关系:l=-t2-2t+49.由此可以推测最适合这种植物生长的温度为℃.
第11题图
12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc<0;
②b<a+c;③4a+2b+c>0;④2c<3b,其中正确结论的序号有.
第12题图第13题图第14题图第15题图
13.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2-2x-3,AB为半圆的
直径,则这个“果圆”被y 轴截得的弦CD 的长为 .
14.如图,四边形ABCD 是矩形,A 、B 两点在x 轴的正半轴上,C 、D 两点在抛物线y =-x 2+6x 上.设OA =m(0<m <3),矩形ABCD 的周长为l ,则l 与m 的函数解析式为 .
15.如图,边长为1的正方形OABC 的顶点A 在x 轴的正半轴上,将正方形OABC 绕顶点O 顺时针旋转75°,使点B 落在抛物线y =ax 2(a <0)的图象上,则该抛物线的解析式为 .
16.已知:抛物线y =a(x -2)2+b(ab <0)的顶点为A ,与x 轴的交点为B 、C. (1)抛物线对称轴方程为 ;
(2)若D 点为抛物线对称轴上一点,若以A ,B ,C ,D 为顶点的四边形是正方形,则a ,b 满足的关系式是 .
三、解答题(本大题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)
17.已知抛物线y =x 2-2x +1. (1)求它的对称轴和顶点坐标;
(2)根据图象,确定当x >2时,y 的取值范围.
第18题图
18.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y =ax 2+bx(a ≠0)表示.已知抛物线上B ,C 两点到地面的距离均为3
4m ,
到墙边的距离分别为12m ,3
2
m .
(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;
(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?
第19题图
19.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).
(1)求a,b的值;
(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.
20.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.
(1)求y关于x的函数表达式;
(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.
21.某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:
产品每件售价(万元) 每件成本(万元)
每年其他费用(万
元) 每年最大产销量
(件)
甲 6 a 20 200
乙20 10 40+0.05x280 其中a为常数,且3≤a≤5.
(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;
(2)分别求出产销两种产品的最大年利润;
(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.
22.A、B两个水管同时开始向一个空容器内注水.如图是A、B两个水管各自注水量y(m3)与注水时间x(h)之间的函数图象,已知B水管的注水速度是1m3/h,1小时后,A水管的注水量随时间的变化是一段抛物线,其顶点是(1,2),且注水9小时,容器刚好注满.请根据图象所提供的信息解答下列问题:
(1)直接写出A、B注水量y(m3)与注水时间x(h)之间的函数解析式,并注明自变量的取值范围:
第22题图
y A =⎩
⎪⎨⎪⎧2x (0≤x ≤1) ( ) y B =________( )
(2)求容器的容量;
(3)根据图象,通过计算回答,当y A >y B 时,直接写出x 的取值范围.
23.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O 点正上方1m 的P 处发出一球,羽毛球飞行的高度y(m )与水平距离x(m )之间满足函数表达式y =a(x -4)2+h ,已知点O 与球网的水平距离为5m ,球网的高度为1.55m .
(1)当a =-1
24
时,①求h 的值;②通过计算判断此球能否过网;
(2)若甲发球过网后,羽毛球飞行到与点O 的水平距离为7m ,离地面的高度为12
5m 的Q
处时,乙扣球成功,求a 的值.
第23题图
24.如图,对称轴为直线x =7
2
的抛物线经过点A(6,0)和B(0,-4).
第24题图
(1)求抛物线解析式及顶点坐标;。