北师大版小学六年级数学上册 圆的认识(二)
- 格式:ppt
- 大小:1.35 MB
- 文档页数:13
圆的认识(二)。
(教材第5~6页)1.通过“折一折”活动,探索并发现圆是轴对称图形,理解同一个圆中半径与直径的关系。
2.进一步理解轴对称图形的特征,体会圆的对称性。
3.在“折纸找圆心”“验证圆是轴对称图形”等活动中,发展空间观念。
重点:进一步理解轴对称图形的特征,体会圆的对称性。
难点:在折纸的过程中体会圆的特征。
课件,圆形纸片、长方形纸片、正方形纸片、平行四边形纸片等。
师:同学们,通过上一节课的学习,我们已经知道了圆的各部分名称,知道了在同一个圆中所有的直径长度都相等,所有的半径长度都相等,且直径的长度是半径的2倍,今天这节课我们就一起来研究圆的特征,看看圆是不是轴对称图形。
学生大胆猜测。
师:我们通过怎样的活动,来验证我们的猜测呢?(折纸活动,通过折一折,看折痕两侧的图形是否能完全重合)【设计意图:在学生初步认识圆的基础上,引导学生动手折纸,借助折纸活动调动学生参与数学活动的积极性,为本节课探究圆的特征创设轻松、愉悦的课堂氛围。
】1.圆是轴对称图形。
师:我们一起来做一个小游戏,将圆形纸片对折,打开;换个方向再对折,打开;反复几次。
试试看,你发现了什么?学生动手折纸后,交流汇报。
生1:将圆沿直径对折,正好完全重合,圆是轴对称图形。
生2:圆是轴对称图形,这些折痕都是圆的对称轴。
圆有无数条对称轴。
生3:圆的所有对称轴相交于圆中心的一点。
2.其他轴对称图形。
师:我们学过的图形中哪些是轴对称图形?有几条对称轴?拿出我们的学具做一做,把结果填在教材第5页的表格中。
学生动手操作,填写表格。
教师组织交流汇报,师生共同完成表格。
(课件出示:教材第5页的表格)图形名称 正方形 长方形 等边三角形 等腰三角形 等腰梯形 平行四边形 圆有几条对称轴 4条 2条 3条 1条 1条 0条 无数条3.找圆心。
师:你有办法找出一个圆的圆心吗?先跟同桌讨论一下。
同桌之间进行讨论交流。
师:谁愿意把自己的办法告诉大家呢?学生可能会说:• 我们可以把圆形纸片对折,再对折,打开后两条折痕的交点就是圆心。
教案:圆的认识(二)北师大版六年级上册数学一、教学目标1. 知识与技能:理解圆的半径和直径的概念,掌握圆的特征,能识别圆的半径和直径,并学会用圆规画圆。
2. 过程与方法:通过观察、实验、推理等活动,培养学生的空间观念和几何直观能力,提高学生的动手操作能力和解决问题的能力。
3. 情感态度与价值观:激发学生对圆的探究兴趣,培养学生合作交流、积极参与的意识和习惯,感受数学与生活的紧密联系。
二、教学内容1. 圆的半径和直径的概念2. 圆的特征3. 圆的画法三、教学重点与难点1. 教学重点:圆的半径和直径的概念,圆的特征,圆的画法。
2. 教学难点:理解圆的半径和直径的概念,掌握圆的特征,学会用圆规画圆。
四、教具与学具准备1. 教具:圆规、直尺、圆卡片、多媒体课件。
2. 学具:圆规、直尺、练习本、彩笔。
五、教学过程1. 导入:通过生活中的实例,引导学生关注圆,激发学生对圆的探究兴趣。
2. 新课导入:介绍圆的半径和直径的概念,引导学生观察、实验,发现圆的特征。
3. 深入探究:引导学生通过小组合作,探讨圆的画法,总结圆的画法步骤。
4. 实践操作:学生动手用圆规画圆,巩固圆的画法。
5. 总结提升:通过实例,让学生感受圆在实际生活中的应用,提高学生的几何直观能力。
6. 课堂小结:回顾本节课所学内容,引导学生总结圆的半径和直径的概念,圆的特征及画法。
六、板书设计1. 圆的半径和直径的概念2. 圆的特征3. 圆的画法七、作业设计1. 课内练习:完成练习册上的相关习题,巩固圆的半径和直径的概念,圆的特征及画法。
2. 课外拓展:观察生活中的圆,思考圆在实际生活中的应用,并举例说明。
八、课后反思本节课通过观察、实验、推理等活动,让学生掌握了圆的半径和直径的概念,圆的特征及画法。
在教学过程中,注重培养学生的动手操作能力和解决问题的能力,激发学生对圆的探究兴趣。
但在教学过程中,也存在一些不足之处,如对学生的个别辅导不够,部分学生对圆的画法掌握不够熟练。
北师大版数学六年级上册1.2《圆的认识(二)》教学设计一. 教材分析《圆的认识(二)》这一节的内容,是在学生已经掌握了圆的基本概念、圆的周长和面积的计算方法的基础上进行讲解的。
本节课的主要内容有:圆的半径、直径的性质,圆周率的定义,以及圆的面积的计算方法。
这些内容对于学生来说,既是对圆的基本知识的巩固,又是进一步学习圆的复合知识的基础。
二. 学情分析六年级的学生,已经具备了一定的逻辑思维能力和空间想象能力,对于圆的基本概念和计算方法已经有了一定的了解。
但是在具体的操作和应用中,可能还存在一些问题。
比如,对于圆的半径和直径的理解可能还不是很清晰,对于圆周率的定义可能还不是很理解,对于圆的面积的计算方法可能还不是很熟练。
三. 教学目标1.让学生掌握圆的半径、直径的性质,理解圆周率的定义。
2.让学生学会计算圆的面积,并能应用于实际问题中。
3.培养学生的空间想象能力,提高学生的解决问题的能力。
四. 教学重难点1.圆的半径、直径的性质,圆周率的定义。
2.圆的面积的计算方法。
五. 教学方法采用问题驱动法,让学生在解决问题的过程中,掌握圆的性质和计算方法。
同时,采用实例教学法,让学生通过实际例子,理解圆的面积的计算方法。
六. 教学准备1.准备一些圆的模型,用于展示圆的性质。
2.准备一些实际的例子,用于讲解圆的面积的计算方法。
七. 教学过程1.导入(5分钟)通过一些实际例子,让学生感受圆的性质和计算方法的重要性。
比如,讲解自行车轮子的原理,让学生理解圆的周长的计算方法。
2.呈现(10分钟)通过PPT或者黑板,呈现圆的半径、直径的性质,圆周率的定义,以及圆的面积的计算方法。
让学生理解并掌握这些知识。
3.操练(10分钟)让学生通过实际操作,加深对圆的性质和计算方法的理解。
比如,让学生测量一些圆的半径和直径,计算圆的周长和面积。
4.巩固(10分钟)通过一些练习题,让学生巩固对圆的性质和计算方法的理解。
比如,让学生计算一些圆的周长和面积,并解释计算的原理。
第一单元圆第2课时圆的认识(二)一、学情分析学生在低年级已经认识了什么是轴对称图形,通过知识迁移,学生能更快速掌握圆的对称性。
二、教学目标1.认识圆是轴对称图形,圆有无数条对称轴,体会圆的对称性。
2.通过对圆的学习,发展空间观念。
三、重点难点【教学重点】理解圆的对称性。
【教学难点】会找组合图形的对称轴。
四、教学过程设计第一板块【复习旧知引入新课】1.说一说这些图片都有什么特点?师:这些在我们生活中的图形很美,它们有什么特点呢?生:它们都是轴对称图形。
师:什么是轴对称图形呢?轴对称图形有什么特点?生:沿着对称轴折叠,左右两边能够完全重合。
师:上节课我们学习了圆,根据轴对称图形的特点,圆是轴对称图形吗?今天我们就来学习一下圆的对称性。
(板书课题:圆的认识(二))设计意图:利用已经学过的知识,唤起学生已有的知识经验,进一步为新知识的学习奠定基础。
第二板块【合作交流探索新知】1.圆是轴对称图形吗?有几条对称轴?用一个圆形纸片,折一折。
师:拿出准备好的圆形纸片,折一折。
圆是轴对称图形吗?并说出你的理由。
(小组合作)生:对折后,圆的左右两边能够完全重合,所以圆是轴对称图形。
师:圆有多少条对称轴呢?试一试,把刚刚折叠的圆形纸片换一种折叠方式,还能否重合?(小组实际操作并交流)生:圆有无数条对称轴。
2.我们学过的图形哪些是轴对称图形?有几条对称轴?做一做,填一填。
正方形图形名称有几条对称轴师:回顾一下我们以前学习的几种图形,拿出准备好的图形纸片折一折,这些图形哪些是轴对称图形?哪些不是轴对称图形?是轴对称图形的画出对称轴。
(小组分工协作)师引导:数一数,其中是轴对称图形的你能画出几条对称轴? 生齐声回答:正方形有4条对称轴 ,长方形有2条对称轴,等腰三角形有1条对称轴,等边三角形有3条对称轴,等腰梯形有1条对称轴,圆有无数条对称轴。
图形名称 正方形 长方形 等边三角形等腰三角形 等腰梯形 圆有几条对称轴4 2 3 11无数小结:圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。
课后反思:一、六年级数学上册应用题解答题1.佳惠超市按商品标价的80%进行促销。
光明小学在此超市按促销价购买了200支钢笔,共付2040元。
(1)每支钢笔的标价是多少元?(2)如果每支钢笔超市的进价是8.5元,问超市是在进价基础上加价百分之几将这200支钢笔卖给光明小学的?2.如图是光明小学的运动场的示意图,阴影部分为跑道.求跑道的占地面积.3.如图,用两个完全相同的正方形拼成一个长方形,图1是在长方形内所作的最大半圆,图2是长方形外的最小半圆。
我们知道:①图1中,长方形的面积与半圆的面积比为 4π 。
②图2中,半圆的面积与长方形的面积比为 2π。
请从上面两个结论中选择一个,写出你的证明过程。
4.图中两个正方形的面积相差400平方厘米,则圆A 与圆B 的面积相差多少?5.列出综合算式,不计算。
一根电线先截去它的40%,还剩下12米,再截去多少米后,这时正好剩下这根电线全长的1?46.工程队挖一条水渠,第一天挖了全长的20%,第二天比第一天多挖72米,这时已挖的部分与未挖部分的比是4∶3,这条水渠长多少米?7.一辆快车与一辆慢车分别从甲、乙两站同时相对开出,在距中点5千米处相遇.已知快、慢车的速度比是3:2,甲、乙两站相距多少千米?(用方程解)8.一玩具商从批发行购进两种大小不同的玩具熊100个,共花了3600元。
在零售时,其中70个大号玩具熊以每个54元卖出。
(1)如果余下的小号玩具熊以每个15元售出,求玩具商在这次买卖中的盈利率。
(2)如果在大号玩具熊卖完后,每个小号玩具熊应定价多少元,才能使盈利率达到25%。
9.如图所示,大圆不动,小圆贴合着大圆沿顺时针方向不断滚动。
小圆的半径是2cm,大圆的半径是6cm。
(1)当小圆从大圆上的点A出发,沿着大圆滚动,第一次回到点A时,小圆的圆心走过路线的长度是多少厘米?(2)小圆未滚动时,小圆上的点M与大圆上的点A重合,从小圆滚动后开始计算,当点M 第10次与大圆接触时,点M更接近大圆上的点()。