第五讲 时间序列平滑预测法
- 格式:ppt
- 大小:1.25 MB
- 文档页数:70
时间序列的平滑预测平滑法:简单平均法,移动平均法、指数平滑法。
平滑法既可以用于对时间序列进行平滑以描述序列的趋势,也可对平稳时间序列进行短期预测。
1、 简单平均法根据过去已有的观测值通过简单平均来预测下一期的值;舍时间序列已有的t 期观测值为y1、y2………yt ,那么t+1期的预测值1t F +值为:112111111t+2111(.......),11,1t+2=,t+1tt t i i t t t t t i i F y y y y t t t t e F F y +=+++++==++=++=-∑∑当到了期时,有了期的实际值y 就可以计算误差y 那么期的预测值就为以此类推。
2、 移动平均法通过对时间序列逐期递移求得平均数作为趋势值或者预测值的一种平滑预测方法。
移动平均又包括简单移动平均和加权移动平均。
简单移动平均就是将最近K 期的观测值进行平均,作为下一期的预测值;1<K<t.1211231t+21........,........t k t k t tt t t k t k t t t y y y y F y ky y y y F y k-+-+-+-+-+++++++==++++==同理均方误差MSE 的计算公式为:MSE =误差平方和误差个数移动平均法只使用最近K 期的数据,每次计算都是使用最近K 期数据;这一方法比较适合较为平稳的时间序列数据。
实际中选取不同的K ,比较MSE 的大小来选择合适的步长。
3、 指数平滑法一次指数平滑就是以一段时期的预测值和观测值的线性组合作为t+1期的预测值,预测模型为:说明:通常将11F y =。
1(1)t t t F y F αα+=+-其中,0<<1t t y t t αα为期实际观测值,F 为期的预测值;为平滑系数()。
211111322212433321=(1)(1)=(1)(1)=(1)1-+(1)F y F y y y F y F y y F y F y y F αααααααα∂+-=∂+-=∂+-=∂+-∂+-=∂+-第二期预测值:第三期预测值:第四期预测值:()y 依此类推。
第五讲平均预测方法在时间序列分析中,平均预测方法是一种常用的方法,其基本原则是通过对历史数据的平均值进行预测未来值。
该方法的优点在于简单易懂,计算方便,并且对异常值具有一定的鲁棒性,但是在应对复杂的时间序列模式时效果较差。
本篇文章将详细介绍几种常见的平均预测方法。
1.简单平均法简单平均法是最基本的平均预测方法。
它的原理很简单,即将历史数据的值进行求和,然后除以数据的个数,得到平均值作为未来的预测值。
简单平均法可以用来处理较为稳定和平稳的时间序列,对于一些不规则且没有明显的趋势和季节性的数据有一定的预测能力。
2.加权平均法简单平均法无法处理一些具有明显季节性或趋势性的时间序列,因此,可以采用加权平均法来进行预测。
加权平均法考虑到每个历史数据的权重,通常最近的数据权重较大,而较旧的数据权重较小。
常用的加权平均法有指数加权平均法和移动平均法。
2.1指数加权平均法指数加权平均法是一种常用的平均预测方法,它给予较近期的数据更高的权重,较远期的数据权重逐渐减小。
具体来说,指数加权平均的公式为:$$F_{t}=\alpha D_{t-1}+(1-\alpha)F_{t-1}$$其中$F_{t}$是$t$时刻的预测值,$D_{t-1}$是$t-1$时刻的实际值,$F_{t-1}$是$t-1$时刻的预测值,$\alpha$是平均权重。
$\alpha$的取值在$0 \le \alpha \le 1$之间,一般而言,较大的$\alpha$意味着更高的权重,使得预测值对最近的历史数值更为敏感。
对于稳定的时间序列,可以选择较小的$\alpha$值,而对于复杂的时间序列,可以选择较大的$\alpha$值。
2.2移动平均法移动平均法是另一种常见的加权平均法,它是基于前期数据计算出其中一时间段内的平均值,并将该平均值作为未来其中一点的预测值。
移动平均法相比于指数加权平均法更加平滑,适用于平稳或趋势性较明显的时间序列。
移动平均法的公式如下:$$F_{t}=\frac{D_{t-k}+D_{t-k+1}+...+D_{t-2}+D_{t-1}+D_{t}}{k} $$其中$F_{t}$是$t$时刻的预测值,$D_{t-k}$到$D_{t}$是历史数据,$k$是移动平均窗口的大小。
时间序列平滑预测法时间序列平滑预测法是一种通过对时间序列数据进行平滑处理来预测未来趋势的方法。
该方法基于以下假设:过去的数据可以反映未来的趋势,而将过去的数据进行平滑处理可以消除噪声和随机波动,并揭示出数据背后的潜在规律。
时间序列平滑预测法可以应用于各种领域,比如经济学、金融学、工程学等。
在经济学中,时间序列平滑预测法可以用于预测经济指标的未来趋势,如国内生产总值(GDP)、消费者物价指数(CPI)等。
在金融学中,该方法可以用于预测股票价格、利率、汇率等金融指标的未来走势。
在工程学中,时间序列平滑预测法可以用于预测能源消耗、交通流量等工程指标的未来变化。
时间序列平滑预测法的基本思想是通过对时间序列数据进行平滑处理,得到一个平滑的曲线,然后根据这个曲线来预测未来的值。
平滑处理的方法有很多种,常见的方法有移动平均法、指数平滑法和季节性指数平滑法等。
移动平均法是最简单、最常用的一种平滑处理方法。
它的原理是在一定时间窗口内计算数据的平均值,然后将平均值作为平滑后的值。
移动平均法适用于数据变化较为缓慢、无明显趋势和季节性的情况。
移动平均法的优点是计算简单,缺点是不能很好地处理有趋势的数据。
指数平滑法是另一种常用的平滑处理方法。
它的原理是将过去的数据赋予不同的权重,较近期的数据权重较大,较远期的数据权重较小。
指数平滑法适用于数据变化较为快速、有明显趋势和季节性的情况。
指数平滑法的优点是对趋势有较好的适应性,缺点是计算复杂度较高。
季节性指数平滑法是指在指数平滑法的基础上考虑季节性因素进行预测。
它的原理是在指数平滑法的基础上引入季节性指数,用于对季节性因素进行处理。
季节性指数平滑法适用于数据具有季节性变化的情况,如每月销售额、每周客流量等。
季节性指数平滑法的优点是对季节性变化有较好的适应性,缺点是需要进行较复杂的计算。
时间序列平滑预测法的步骤一般包括以下几步:数据预处理、平滑处理、预测和评估。
数据预处理包括对原始数据进行清洗、处理缺失值和异常值等。
时间序列平滑预测法原理时间序列平滑预测法是一种常用的预测方法,它基于时间序列数据的特征,通过对数据进行平滑处理,来预测未来的趋势。
该方法适用于一些具有趋势性、季节性或周期性的数据,如销售额、股票价格、气温等。
时间序列平滑预测法的原理可以概括为以下几个步骤:1. 数据平滑:首先,对原始时间序列数据进行平滑处理,以减少数据中的噪声和突发波动。
常用的平滑方法包括移动平均法和指数平滑法。
移动平均法是通过计算一定时间窗口内数据的平均值来平滑数据。
例如,可以计算每个月的销售额的移动平均值,以获得销售额的趋势。
指数平滑法是通过加权平均的方式来平滑数据,其中较近期的数据具有较大的权重。
指数平滑法适用于数据具有较强的趋势性的情况。
常用的指数平滑方法有简单指数平滑法和双指数平滑法。
2. 趋势分析:在进行数据平滑后,可以对数据的趋势进行分析。
趋势分析可以帮助我们了解数据的整体变化趋势,以及未来的发展方向。
常用的趋势分析方法包括线性回归分析、多项式拟合和移动平均法。
线性回归分析是通过建立线性方程来描述数据的趋势。
通过拟合回归模型,可以预测未来的数据趋势。
多项式拟合是通过建立多项式方程来描述数据的趋势。
多项式拟合可以更好地适应非线性趋势的数据。
移动平均法是通过计算一定时间窗口内数据的平均值来估计数据的趋势。
移动平均法适用于数据具有周期性或季节性的情况。
3. 季节性调整:对于具有明显季节性的数据,需要进行季节性调整。
季节性调整可以帮助我们更准确地预测未来的数据。
常用的季节性调整方法包括加法模型和乘法模型。
加法模型是将趋势项、季节项和随机项相加来描述数据的季节性。
加法模型适用于季节性的波动与趋势无关的情况。
乘法模型是将趋势项、季节项和随机项相乘来描述数据的季节性。
乘法模型适用于季节性的波动与趋势有关的情况。
4. 预测未来:在完成数据的平滑处理、趋势分析和季节性调整后,可以利用得到的模型来预测未来的数据。
预测方法包括移动平均法、指数平滑法和回归分析等。
第五章时间序列平滑预测法第五章时间序列平滑预测法基本内容一、一次移动平均法和一次指数平滑法(一) 一次移动平均法1、一次移动平均方法是收集一组观察值,计算这组观察值的均值,利用这一均值作为下一期的预测值。
2、移动平均法有两种极端情况:① 在移动平均值的计算中包括的过去观察值的实际个数N=1,这时利用最新的观察值作为下一期的预测值;② N=n,这时利用全部n个观察值的算术平均值作为预测值;当数据的随机因素较大时,宜选用较大的N,这样有利于较大限度地平滑由随机性所带来的严重偏差;反之,当数据的随机因素较小时,宜选用较小的N,这有利于跟踪数据的变化,并且预测值滞后的期数也少。
3、由移动平均法计算公式可以看出,每一新预测值是对前一移动平均预测值的修正,N越大平滑效果愈好。
4、移动平均法的优点:①计算量少;②移动平均线能较好地反映时间序列的趋势及其变化。
5、移动平均法的两个主要限制:①计算移动平均必须具有N个过去观察值,当需要预测大量的数值时,就必须存储大量数据;②N个过去观察值中每一个权数都相等,而早于(t-N+1)期的观察值的权数等于0,而实际上往往是最新观察值包含更多信息,应具有更大权重。
(二)、一次指数平滑法1、一次指数平滑法是利用前一期的预测值代替得到预测的通式,即这是一种加权预测,权数为α。
它既不需要存储全部历史数据,也不需要存储一组数据,从而可以大大减少数据存储问题,甚至有时只需一个最新观察值、最新预测值和α值,就可以进行预测。
它提供的预测值是前一期预测值加上前期预测值中产生的误差的修正值。
2、一次指数平滑法的初值的确定有几种方法:①取第一期的实际值为初值;②取最初几期的平均值为初值;3、一次指数平滑法比较简单,但也有问题。
问题之一便是力图找到最佳的α值,以使均方差最小,这需要通过反复试验确定。
二、线性二次移动平均法和线性二次指数平滑法(一)线性二次移动平均法基本原理:为了避免利用移动平均法预测有趋势的数据时产生系统误差,发展了线性二次移动平均法。
第五章 时间序列的指数平滑预测技术本章重点内容:常数模型的指数平滑法的基本公式与预测方程,初值对预测值的影响及其选择,基本公式的误差校正式,霍尔特指数平滑法,布朗二次指数平滑法,布朗适应性平滑法,各种平滑法之间的关系,比例模型的指数平滑法。
5.1常用模型的指数平滑法5.1.1基本公式与预测方程利用时间序列前t 期的观察值x 1 , x 2 ,…, x t 预测第t +1期的值x t +1时,设赋予第i 期的权重为w t +1-I (i=1,2…t), w 1>w 2 >… >w t ,计算诸观察值的加权平均: 并取第t+1期预测值为 这就是所谓加权平均法。
加权平均法的缺点:(1)权重不易确定(2)要记忆的数据太多(3)计算较繁权重不易确定自动取权重的方法:自当前期向前,各期权重按指数规律下降,即第t 期,第t-1期…的权重依次为由上式看出,为使计算方便,使权数之和等于1。
我们使这一条件当t 趋近∞时成立,即使得各期权重依次为上述办法显然解决了自动选权重的问题,但尚未克服记忆数据多和计算繁两个缺点。
为此,我们考虑t 充分大时的情形,这时得到:将滞后一期拿出:得到即:上式称为指数平滑法的基本公式,这个公式是用递推公式给出的,α叫做平滑常数,0 <α<1,其值可由预测者任意指定。
T t 称为T 的(实际上也是x 的)第t 期的指数平滑值。
指数平滑法的预测方程是:即把第t 期的指数平滑值作为第t+1期的预测值。
指数平滑法的基本做法用公式的形式表述出来就是:新的估计值=平滑常数×利用当前期资料的估计值+(1-平滑常数) ×只利用历史资料的估t...t ...t t t x x x W ωωωωωω+++++-+=211121tt W x ˆ=+1)10,0,...(,,2<<>βααβαβα12=+++...αβαβα +-+-+=--221)1()1(t t t t x x x T ααααα...t t t t x )(x )(x T +-+-+=----3221111αααααttt x T T αα=---1)1(1)1(--+=tttT xT ααtt t x ˆ)(x x ˆαα-+=+11t t T x ˆ=+1计值指数平滑法优点:既继承加权平均法重视近期数据的思想,又能克服以上三个缺点。