当前位置:文档之家› 常用算法(二)——穷举搜索法

常用算法(二)——穷举搜索法

常用算法(二)——穷举搜索法
常用算法(二)——穷举搜索法

常用算法——穷举搜索法

二、穷举搜索法

穷举搜索法是对可能是解的众多候选解按某种顺序进行逐一枚举和检验,并从众找出那些符合要求的候选解作为问题的解。

【问题】将A、B、C、D、E、F这六个变量排成如图所示的三角形,这六个变量分别取[1,6]上的整数,且均不相同。求使三角形三条边上的变量之和相等的全部解。如图就是一个解。

程序引入变量a、b、c、d、e、f,并让它们分别顺序取1至6的证书,在它们互不相同的条件下,测试由它们排成的如图所示的三角形三条边上的变量之和是否相等,如相等即为一种满足要求的排列,把它们输出。当这些变量取尽所有的组合后,程序就可得到全部可能的解。细节见下面的程序。

【程序1】

# include

void main()

{ int a,b,c,d,e,f;

for (a=1;a<=6;a++)

for (b=1;b<=6;b++) {

if (b==a) continue;

for (c=1;c<=6;c++) {

if (c==a)||(c==b) continue;

for (d=1;d<=6;d++) {

if (d==a)||(d==b)||(d==c) continue;

for (e=1;e<=6;e++) {

if (e==a)||(e==b)||(e==c)||(e==d) continue;

f=21-(a+b+c+d+e);

if ((a+b+c==c+d+e))&&(a+b+c==e+f+a)) {

printf(“%6d,a);

printf(“%4d%4d”,b,f);

printf(“%2d%4d%4d”,c,d,e);

scanf(“%*c”);

}

}

}

}

}

}

按穷举法编写的程序通常不能适应变化的情况。如问题改成有9个变量排成三角形,每条边有4个变量的情况,程序的循环重数就要相应改变。

对一组数穷尽所有排列,还有更直接的方法。将一个排列看作一个长整数,则所有排列对应着一组整数。将这组整数按从小到大的顺序排列排成一个整数,从对应最小的整数开始。按数列的递增顺序逐一列举每个排列对应的每个整数,这能更有效地完成排列的穷举。从一个排列找出对应数列的下一个排列可在当前排列的基础上作部分调整来实现。倘若当前排列

为1,2,4,6,5,3,并令其对应的长整数为124653。要寻找比长整数124653更大的排列,可从该排列的最后一个数字顺序向前逐位考察,当发现排列中的某个数字比它前一个数字大时,如本例中的6比它的前一位数字4大,这说明还有对应更大整数的排列。但为了顺序从小到大列举出所有的排列,不能立即调整得太大,如本例中将数字6与数字4交换得到的排列126453就不是排列124653的下一个排列。为了得到排列124653的下一个排列,应从已经考察过的那部分数字中选出比数字大,但又是它们中最小的那一个数字,比如数字5,与数字4交换。该数字也是从后向前考察过程中第一个比4大的数字。5与4交换后,得到排列125643。在前面数字1,2,5固定的情况下,还应选择对应最小整数的那个排列,为此还需将后面那部分数字的排列顺序颠倒,如将数字6,4,3的排列顺序颠倒,得到排列1,2,5,3,4,6,这才是排列1,2,4,6,5,3的下一个排列。按以上想法编写的程序如下。【程序2】

# include

# define SIDE_N 3

# define LENGTH 3

# define VARIABLES 6

int A,B,C,D,E,F;

int *pt[]={&A,&B,&C,&D,&E,&F};

int *side[SIDE_N][LENGTH]={&A,&B,&C,&C,&D,&E,&E,&F,&A};

int side_total[SIDE_N];

main{}

{ int i,j,t,equal;

for (j=0;j

*pt[j]=j+1;

while(1)

{ for (i=0;i

{ for (t=j=0;j

t+=*side[j];

side_total=t;

}

for (equal=1,i=0;equal&&i

if (side_total!=side_total[i+1] equal=0;

if (equal)

{ for (i=1;i

printf(“%4d”,*pt);

printf(“\n”);

scanf(“%*c”);

}

for (j=V ARIABLES-1;j>0;j--)

if (*pt[j]>*pt[j-1]) break;

if (j==0) break;

for (i=V ARIABLES-1;i>=j;i--)

if (*pt>*pt[i-1]) break;

t=*pt[j-1];* pt[j-1] =* pt; *pt=t;

for (i=V ARIABLES-1;i>j;i--,j++)

{ t=*pt[j]; *pt[j] =* pt; *pt=t; }

}

}

从上述问题解决的方法中,最重要的因素就是确定某种方法来确定所有的候选解。下面再用一个示例来加以说明。

【问题】背包问题

问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。

设n个物品的重量和价值分别存储于数组w[ ]和v[ ]中,限制重量为tw。考虑一个n元组(x0,x1,…,xn-1),其中xi=0 表示第i个物品没有选取,而xi=1则表示第i个物品被选取。显然这个n元组等价于一个选择方案。用枚举法解决背包问题,需要枚举所有的选取方案,而根据上述方法,我们只要枚举所有的n元组,就可以得到问题的解。

显然,每个分量取值为0或1的n元组的个数共为2n个。而每个n元组其实对应了一个长度为n的二进制数,且这些二进制数的取值范围为0~2n-1。因此,如果把0~2n-1分别转化为相应的二进制数,则可以得到我们所需要的2n个n元组。

【算法】

maxv=0;

for (i=0;i<2n;i++)

{ B[0..n-1]=0;

把i转化为二进制数,存储于数组B中;

temp_w=0;

temp_v=0;

for (j=0;j

{ if (B[j]==1)

{ temp_w=temp_w+w[j];

temp_v=temp_v+v[j];

}

if ((temp_w<=tw)&&(temp_v>maxv))

{ maxv=temp_v;

保存该B数组;

}

}

}

禁忌搜索算法浅析

禁忌搜索算法浅析 摘要:本文介绍了禁忌搜索算法的基本思想、算法流程及其实现的伪代码。禁忌搜索算法(Tabu Search或Taboo Search,简称TS算法)是一种全局性邻域搜索算法,可以有效地解决组合优化问题,引导算法跳出局部最优解,转向全局最优解的功能。 关键词:禁忌搜索算法;组合优化;近似算法;邻域搜索 1禁忌搜索算法概述 禁忌搜索算法(Tabu Search)是由美国科罗拉多州大学的Fred Glover教授在1986年左右提出来的,是一个用来跳出局部最优的搜寻方法。在解决最优问题上,一般区分为两种方式:一种是传统的方法,另一种方法则是一些启发式搜索算法。使用传统的方法,我们必须对每一个问题都去设计一套算法,相当不方便,缺乏广泛性,优点在于我们可以证明算法的正确性,我们可以保证找到的答案是最优的;而对于启发式算法,针对不同的问题,我们可以套用同一个架构来寻找答案,在这个过程中,我们只需要设计评价函数以及如何找到下一个可能解的函数等,所以启发式算法的广泛性比较高,但相对在准确度上就不一定能够达到最优,但是在实际问题中启发式算法那有着更广泛的应用。 禁忌搜索是一种亚启发式随机搜索算法,它从一个初始可行解出发,选择一系列的特定搜索方向(移动)作为试探,选择实现让特定的目标函数值变化最多的移动。为了避免陷入局部最优解,TS搜索中采用了一种灵活的“记忆”技术,对已经进行的优化过程进行记录和选择,指导下一步的搜索方向。 TS是人工智能的一种体现,是局部领域搜索的一种扩展。禁忌搜索是在领域搜索的基础上,通过设置禁忌表来禁忌一些已经历的操作,并利用藐视准则来奖励一些优良状态,其中涉及邻域(neighborhood)、禁忌表(tabu list)、禁忌长度(tabu 1ength)、候选解(candidate)、藐视准则(candidate)等影响禁忌搜索算法性能的关键因素。迄今为止,TS算法在组合优化、生产调度、机器学习、电路设计和神经网络等领域取得了很大的成功,近年来又在函数全局优化方面得到较多的研究,并大有发展的趋势。 2禁忌搜索算法的基本思想 禁忌搜索最重要的思想是标记对应已搜索的局部最优解的一些对象,并在进一步的迭代搜索中尽量避开这些对象(而不是绝对禁止循环),从而保证对不同的有效搜索途径的探索,TS的禁忌策略尽量避免迂回搜索,它是一种确定性的局部极小突跳策略。 禁忌搜索是对局部邻域搜索的一种扩展,是一种全局逐步寻求最优算法。局部邻域搜索是基于贪婪思想持续地在当前解的邻域中进行搜索,虽然算法通用易实现,且容易理解,但搜索性能完全依赖于邻域结构和初解,尤其会陷入局部极小而无法保证全局优化型。 禁忌搜索算法中充分体现了集中和扩散两个策略,它的集中策略体现在局部搜索,即从一点出发,在这点的邻域内寻求更好的解,以达到局部最优解而结束,为了跳出局部最优解,扩散策略通过禁忌表的功能来实现。禁忌表中记下已经到达的某些信息,算法通过对禁

随机直接搜索优化算法NLJ辨识算法

随机直接搜索优化算法NLJ 辨识算法 NLJ 优化算法是随机直接搜索优化算法的一种,它是由随机数直接搜索算法算法发展而来,可以有效地解决各种复杂的问题。因其结构简单以及收敛迅速使其在随机搜索算法中始终占有一席之地。这种算法的核心思想是利用收缩变量来缩小搜索域,找到次优解,然后再基于次优解重复上述过程直到最终获得最优解。 假设待辨识的系统模型为: 1110 1 ()(0,1,...,)n n n H s i n a s a s a s a -= =++ ++ (3.1) 其中,01,,...,n a a a 表示待辨识模型的系数值。 该算法主要有以下步骤: Step 1、初始化参数。根据辨识数据,通过手工调整模型参数大致拟合出一个初始模型,确定模型初始参数(0)k i a ,其次,确定参数搜索范围c 。()k i a j 表示参数i a 在第k 次迭代的搜索结果,0,1,...,k p =,j 表示迭代组数,0,1,...,j m =。参数的搜索范围可由设定参数初始值的倍数决定,具体规则如下: 0l i i r ca = ,当 时,1k k k i i i r ca v -=?。 (3.2) 其中,根据经验知识,c 取值为2。 Step 2、计算性能指标。选择如式(3.3)所示的输出误差指标,作为辨识性能指标式,将待辨识的参数带入系统模型,求解估计值()y t 。 0[()()]N t J y t y t ==-∑ (3.3) 其中,()y t 为t 时刻的实际数据。 Step 3、计算参数估计值。在第k 代计算参数估计参数k l a ,其中rand 是在 [0.5,0.5]-之间分布的随机数,k i a 由下式给出: 1()()k k k l i i a j a j rand r -=+? (3.4) 在第k 次迭代计算后,计算m 组性能指标,选择使得性能指标最小的参数值作为下一次迭代的初始值: 11min[(())](0)|k i k k i i J a j a a --= (3.5) Step 4、修改搜索范围。在第k 次搜索前需要根据下式(3.6)对搜索范围进行修正防止局限的搜索范围导致搜索陷入局部极值。 (3.6) 在此处引入变化率η,首先,计算判断每组参数幅值的变化率,并选择变化 3k >1k k k i i i r cr v -=

五种最优化方法

五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2原理和步骤

3.最速下降法(梯度法) 3.1最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 3.2最速下降法算法原理和步骤

4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤

5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)) s.t. g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进

禁忌搜索算法评述(一)

禁忌搜索算法评述(一) 摘要:工程应用中存在大量的优化问题,对优化算法的研究是目前研究的热点之一。禁忌搜索算法作为一种新兴的智能搜索算法具有模拟人类智能的记忆机制,已被广泛应用于各类优化领域并取得了理想的效果。本文介绍了禁忌搜索算法的特点、应用领域、研究进展,概述了它的算法基本流程,评述了算法设计过程中的关键要点,最后探讨了禁忌搜索算法的研究方向和发展趋势。 关键词:禁忌搜索算法;优化;禁忌表;启发式;智能算法 1引言 工程领域内存在大量的优化问题,对于优化算法的研究一直是计算机领域内的一个热点问题。优化算法主要分为启发式算法和智能随机算法。启发式算法依赖对问题性质的认识,属于局部优化算法。智能随机算法不依赖问题的性质,按一定规则搜索解空间,直到搜索到近似优解或最优解,属于全局优化算法,其代表有遗传算法、模拟退火算法、粒子群算法、禁忌搜索算法等。禁忌搜索算法(TabuSearch,TS)最早是由Glover在1986年提出,它的实质是对局部邻域搜索的一种拓展。TS算法通过模拟人类智能的记忆机制,采用禁忌策略限制搜索过程陷入局部最优来避免迂回搜索。同时引入特赦(破禁)准则来释放一些被禁忌的优良状态,以保证搜索过程的有效性和多样性。TS算法是一种具有不同于遗传和模拟退火等算法特点的智能随机算法,可以克服搜索过程易于早熟收敛的缺陷而达到全局优化1]。 迄今为止,TS算法已经广泛应用于组合优化、机器学习、生产调度、函数优化、电路设计、路由优化、投资分析和神经网络等领域,并显示出极好的研究前景2~9,11~15]。目前关于TS 的研究主要分为对TS算法过程和关键步骤的改进,用TS改进已有优化算法和应用TS相关算法求解工程优化问题三个方面。 禁忌搜索提出了一种基于智能记忆的框架,在实际实现过程中可以根据问题的性质做有针对性的设计,本文在给出禁忌搜索基本流程的基础上,对如何设计算法中的关键步骤进行了有益的总结和分析。 2禁忌搜索算法的基本流程 TS算法一般流程描述1]: (1)设定算法参数,产生初始解x,置空禁忌表。 (2)判断是否满足终止条件?若是,则结束,并输出结果;否则,继续以下步骤。 (3)利用当前解x的邻域结构产生邻域解,并从中确定若干候选解。 (4)对候选解判断是否满足藐视准则?若成立,则用满足藐视准则的最佳状态y替代x成为新的当前解,并用y对应的禁忌对象替换最早进入禁忌表的禁忌对象,同时用y替换“bestsofar”状态,然后转步骤(6);否则,继续以下步骤。 (5)判断候选解对应的各对象的禁忌情况,选择候选解集中非禁忌对象对应的最佳状态为新的当前解,同时用与之对应的禁忌对象替换最早进入禁忌表的禁忌对象。 (6)转步骤(2)。 算法可用图1所示的流程图更为直观的描述。 3禁忌搜索算法中的关键设计 3.1编码及初始解的构造 禁忌搜索算法首先要对待求解的问题进行抽象,分析问题解的形式以形成编码。禁忌搜索的过程就是在解的编码空间里找出代表最优解或近似优解的编码串。编码串的设计方式有多种策略,主要根据待解问题的特征而定。二进制编码将问题的解用一个二进制串来表示2],十进制编码将问题的解用一个十进制串来表示3],实数编码将问题的解用一个实数来表示4],在某些组合优化问题中,还经常使用混合编码5]、0-1矩阵编码等。 禁忌搜索对初始解的依赖较大,好的初始解往往会提高最终的优化效果。初始解的构造可以

算法设计与分析复习题目及答案 (3)

分治法 1、二分搜索算法是利用(分治策略)实现的算法。 9. 实现循环赛日程表利用的算法是(分治策略) 27、Strassen矩阵乘法是利用(分治策略)实现的算法。 34.实现合并排序利用的算法是(分治策略)。 实现大整数的乘法是利用的算法(分治策略)。 17.实现棋盘覆盖算法利用的算法是(分治法)。 29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。 不可以使用分治法求解的是(0/1背包问题)。 动态规划 下列不是动态规划算法基本步骤的是(构造最优解) 下列是动态规划算法基本要素的是(子问题重叠性质)。 下列算法中通常以自底向上的方式求解最优解的是(动态规划法) 备忘录方法是那种算法的变形。(动态规划法) 最长公共子序列算法利用的算法是(动态规划法)。 矩阵连乘问题的算法可由(动态规划算法B)设计实现。 实现最大子段和利用的算法是(动态规划法)。 贪心算法 能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题, 不能解决的问题:N皇后问题,0/1背包问题 是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。 回溯法 回溯法解旅行售货员问题时的解空间树是(排列树)。 剪枝函数是回溯法中为避免无效搜索采取的策略 回溯法的效率不依赖于下列哪些因素(确定解空间的时间)

分支限界法 最大效益优先是(分支界限法)的一搜索方式。 分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。 分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆) 优先队列式分支限界法选取扩展结点的原则是(结点的优先级) 在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法). 从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式. (1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。 (2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。 (最优子结构性质)是贪心算法与动态规划算法的共同点。 贪心算法与动态规划算法的主要区别是(贪心选择性质)。 回溯算法和分支限界法的问题的解空间树不会是( 无序树). 14.哈弗曼编码的贪心算法所需的计算时间为( B )。 A、O(n2n) B、O(nlogn) C、O(2n) D、O(n) 21、下面关于NP问题说法正确的是(B ) A NP问题都是不可能解决的问题 B P类问题包含在NP类问题中 C NP完全问题是P类问题的子集 D NP类问题包含在P类问题中 40、背包问题的贪心算法所需的计算时间为( B )

搜索方法

1.怎样成为搜索高手——选择适当的查询词 搜索技巧,最基本同时也是最有效的,就是选择合适的查询词。选择查询词是一种经验积累,在一定程度上也有章可循: A.表述准确百度会严格按照您提交的查询词去搜索,因此,查询词表 述准确是获得良好搜索结果的必要前提。 一类常见的表述不准确情况是,脑袋里想着一回事,搜索框里输入 的是另一回事。 例如,要查找2004年国内十大新闻,查询词可以是“2004年国内十 大新闻”;但如果把查询词换成“2004年国内十大事件”,搜索结果就 没有能满足需求的了。 另一类典型的表述不准确,是查询词中包含错别字。 例如,要查找林心如的写真图片,用“林心如写真”,当然是没什么 问题;但如果写错了字,变成“林心茹写真”,搜索结果质量就差得 远了。 不过好在,百度对于用户常见的错别字输入,有纠错提示。您若输 入“林心茹写真”,在搜索结果上方,会提示“您要找的是不是: 林心 如写真”。

B.查询词的主题关联与简练目前的搜索引擎并不能很好的处理自然 语言。因此,在提交搜索请求时,您最好把自己的想法,提炼成简单的,而且与希望找到的信息内容主题关联的查询词。 还是用实际例子说明。某三年级小学生,想查一些关于时间的名人名言,他的查询词是“小学三年级关于时间的名人名言”。 这个查询词很完整的体现了搜索者的搜索意图,但效果并不好。 绝大多数名人名言,并不规定是针对几年级的,因此,“小学三年级” 事实上和主题无关,会使得搜索引擎丢掉大量不含“小学三年级”,但非常有价值的信息;“关于”也是一个与名人名言本身没有关系的词,多一个这样的词,又会减少很多有价值信息;“时间的名人名言”,其中的“的”也不是一个必要的词,会对搜索结果产生干扰;“名人名言”,名言通常就是名人留下来的,在名言前加上名人,是一种不必要的重复。 因此,最好的查询词,应该是“时间名言”。 试着找出下述查询词的问题,并想出更好的能满足搜索需求的查询词: 所得税会计处理问题探讨 周星驰个人档案和所拍的电影

百度搜索技巧的四个方法

百度搜索技巧的四个方法 大家都知道搜索方法正确后可以大大提高搜索效率,会使大家的工作既省心又省力!网上针对百度搜索技巧的方法也很多,但是我在这里做一个总结,总结出十大百度搜索技巧!这十大百度搜索技巧可以帮助大家更迅速准确的找到相应信息,详情如下: 1、十大百度搜索技巧之(一)—-“-” 百度支持减除不相关的资料的“-”功能,可以用于删除某些无关页面,注意建号前面必须要有空格 例如:“A-B”意思就是说想在搜索A的同时屏蔽关于B的信息 2、十大百度搜索技巧之(二)—-“|“ 百度支持并行搜索功能来搜索例如:“A|B”意思是想要搜索包含A的信息或者包含B的信息比方说你要查询seo和侯瑞男时,可以用”seo|侯瑞男“来搜索,无需分两次查询,百度就会提供跟“|”前后任何相关关键词相关的网站和资料 3、十大百度搜索技巧(三)—-intitle intitle的作用是把搜索范围限定在网页标题中,网页标题往往就是本篇内容的简要概括,将查询内容界定在网页标题中会起到很好的效果。 使用方法:把查询内容中,特别关键的部分用”intitle:“做前缀 例如:想要查找标题中带有Yadid’s World的如何优化长尾关键词的内容,您就可以如下: 可以用[如何优化长尾关键词intitle:Yadid's World]输入搜索框就可以查

到想要得到的结果注意:“intitle:”后面不能有空格 4、十大百度搜索技巧(四)—-site site的作用就是将搜索范围界定在指定网站中,有时我们如果知道某一个站内就有自己想要的东西,那么我们就可以把这个界定界定到这个站内,来提高查询效率 本文由销售技巧培训整理编辑https://www.doczj.com/doc/463789626.html,/

禁忌搜索和应用

目录 一、摘要 (2) 二、禁忌搜索简介 (2) 三、禁忌搜索的应用 (2) 1、现实情况 (2) 2、车辆路径问题的描述 (3) 3、算法思路 (3) 4、具体步骤 (3) 5、程序设计简介 (3) 6、算例分析 (4) 四、禁忌搜索算法的评述和展望 (4) 五、参考文献 (5)

禁忌搜索及应用 一、摘要 工程应用中存在大量的优化问题,对优化算法的研究是目前研究的热点之一。禁忌搜索算法作为一种新兴的智能搜索算法具有模拟人类智能的记忆机制,已被广泛应用于各类优化领域并取得了理想的效果。本文介绍了禁忌搜索算法的特点、应用领域、研究进展,概述了它的算法基本流程,评述了算法设计过程中的关键要点,最后探讨了禁忌搜索算法的研究方向和发展趋势。 二、禁忌搜索简介 禁忌搜索(Tabu Search或Taboo Search,简称TS)的思想最早由Glover(1986)提出,它是对局部领域搜索的一种扩展,是一种全局逐步寻优算法,是对人类智力过程的一种模拟。TS算法通过引入一个灵活的存储结构和相应的禁忌准则来避免迂回搜索,并通过藐视准则来赦免一些被禁忌的优良状态,进而保证多样化的有效探索以最终实现全局优化。相对于模拟退火和遗传算法,TS是又一种搜索特点不同的meta-heuristic算法。 迄今为止,TS算法在组合优化、生产调度、机器学习、电路设计和神经网络等领域取得了很大的成功,近年来又在函数全局优化方面得到较多的研究,并大有发展的趋势。 禁忌搜索是人工智能的一种体现,是局部领域搜索的一种扩展。禁忌搜索最重要的思想是标记对应已搜索的局部最优解的一些对象,并在进一步的迭代搜索中尽量避开这些对象(而不是绝对禁止循环),从而保证对不同的有效搜索途径的探索。禁忌搜索涉及到邻域(neighborhood)、禁忌表(tabu list)、禁忌长度(tabu length)、候选解(candidate)、藐视准则(aspiration criterion)等概念。 三、禁忌搜索的应用 禁忌搜索应用的领域多种多样,下面我们简单的介绍下基于禁忌搜索算法的车辆路径选择。 1、现实情况 物流配送过程的成本构成中,运输成本占到52%之多,如何安排运输车辆的行驶路径,使得配送车辆依照最短行驶路径或最短时间费用,在满足服务时间限制、车辆容量限制、行驶里程限制等约束条件下,依次服务于每个客户后返回起点,实现总运输成本的最小化,车辆路径问题正是基于这一需求而产生的。求解车辆路径问题(vehicle routing problem简记vrp)的方法分为精确算法与启发式算法,精确算法随问题规模的增大,时间复杂度与空间复杂度呈指数增长,且vrp问题属于np-hard问题,求解比较困难,因此启发式算法成为求解vrp问题的主要方法。禁忌搜索算法是启发式算法的一种,为求解vrp提供了新的工具。本文通过一种客户直接排列的解的表示方法,设计了一种求解车辆路径问题的新的禁忌搜索算法。 因此研究车辆路径问题,就是要研究如何安排运输车辆的行驶路线,使运输车辆依照最

一维数组的常用算法源代码

1.数组元素逆置 #include #include int main() { int a[10],t,i,j; //随机生成数组元素,并显示 printf("逆置前:"); for(i=0;i<10;i++) { a[i]= rand()%100; printf("%4d",a[i]); } printf("\n"); //数组元素逆置,即对称位置交换for(i=0,j=9;i

2.静态查找 #include #include int main() { int a[10],t,i,j; //随机生成数组元素,并显示 printf("数组元素:"); for(i=0;i<10;i++) { a[i]= rand()%100; printf("%4d",a[i]); } printf("\n"); //输入查找的数 printf("请输入要查找的数:"); scanf("%d", &t); //静态查找:从前往后依次遍历 for(i=0;i<10;i++) if(a[i]==t) break;//找到并退出//输出查找结果 if(i<10)

printf("%d在数组a[%d]中。\n",t,i); else printf("%d不在a数组中。\n",t); } 3.二分查找:前提数组有序 #include #include void sort(int a[], int n) { int i,j, t; for(i=0;ia[j+1]) {t=a[j]; a[j]=a[j+1]; a[j+1]=t;} } int main() { int a[10],t,i,left,right,mid; //随机生成数组元素 printf("数组元素:"); for(i=0;i<10;i++)

双边界直线搜索法

栅格向矢量转换中最为困难的是边界线搜索、拓扑结构生成和多余点去除。一种栅格数据库数据双边界直接搜索算法(Double Boundary Direct Finding,缩写为DBDF),较好地解决了上述问题。 双边界直接搜索算法的基本思想是通过边界提取,将左右多边形信息保存在边界点上,每条边界弧段由两个并行的边界链组成,分别记录该边界弧段的左右多边形编号。边界线搜索采用2×2栅格窗口,在每个窗口内的四个栅格数据的模式可以唯一地确定下一个窗口的搜索方向和该弧段的拓扑关系,这一方法加快了搜索速度,拓扑关系也很容易建立。具体步骤如下: (1)边界点和节点提取:采用2×2栅格阵列作为窗口顺序沿行、列方向对栅格图像全图扫描,如果窗口内四个栅格有且仅有两个不同的编号,则该四个栅格标识为边界点并保留各栅格所有多边形原编号;如果窗口内四个栅格有三个以上不同编号,则标识为节点(即不同边界弧段的交汇点),保证各栅格原多边形编号信息。对于对角线上栅格两两相同的情况,由于造成了多边形的不连通,也作为节点处理P72。 (2)边界线搜索与左右多边形信息记录:边界线搜索是逐个弧段进行的,对每个弧段从一组已标识的四个节点开始,选定与之相邻的任意一组四个边界点和节点都必定属于某一窗口的四个标识点之一。首先记录开始边界点组的两个多边形编号作为该弧段的左右多边形,下一点组的搜索方向则由前点组进入的搜索方向和该点的可能走向决定,每个边界点组只能有两个走向,一个是前点组进入的方向,另一个则可确定为将要搜索后续点组的方向。边界点组只可能有两个走向,即下方和右方,如果该边界点组由其下方的一点组被搜索到,则其后续点组一定在其右方;反之,如果该点在其右方的点组之后被搜索到(即该弧段的左右多边形编号分别为b和a),对其后续点组的搜索应确定为下方,其它情况依次类推。可见双边界结构可以唯一地确定搜索方向,从而大大地减少搜索时间,同时形成的矢量结构带有左右多边形编号信息,容易建立拓扑结构和与属性数据的联系,提高转换的效率。 (3)多余点去除:多余点的去除基于如下思想:在一个边界弧段上连续的三个点,如果在一定程度上可以认为在一条直线上(满足直线方程),则三个点中间一点可以被认为是多余的,予以去除。即满足: 由于在算法上的实现,要尽可能避免出现除零情形,可以转化为以下形式: (x1-x2)(y1-y3)=(x1-x3)(y1-y2) 或 (x1-x3)(y2-y3)=(x2-x3)(y1-y3) 其中(x1,y1),(x2,y2),(x3,y3)为某精度下边界弧段上连续三点的坐标,则(x2,y2)为多余点,可予以去除。 多余点是由于栅格向矢量转换时逐点搜索边界造成的(当边界为或近似为一直线时),这一算法可大量去除多余点,减少数据冗余。

常用一维搜索算法

无约束优化:不对定义域或值域做任何限制的情况下,求解目标函数的最小值。 这是因为实际应用中,许多情形被抽象为函数形式后均为凸函数,对于凸函数来说局部最小值点即为全局最小值点,因此只要能求得这类函数的一个最小值点,该点一定为全局最小值。 (直接法:又称数值方法,它只需计算目标函数驻点的函数数值,而不是求其倒数,如坐标轮换法,单纯型法等。 间接法:又称解析法,是应用数学极值理论的解析方法。首先计算出目标函数的一阶或一阶、二阶导数,然后根据梯度及海赛矩阵提供的信息,构造何种算法,从而间接地求出目标函数的最优解,如牛顿法、最速下降法共轭梯度法及变尺度法。) 在优化算法中保证整体收敛的重要方法就是线搜索法与信赖域法,这两种算法既相似又有所不同。根据不同的线搜索准则就延伸出不同的线搜索算法,譬如比较常见和经典的最速下降法,牛顿法,拟牛顿法以及共辄梯度法等。 一维搜索又称线性搜索(Line Search),就是指单变量函数的最优化,它是多变量函数最优化的基础,是求解无约束非线性规划问题的基本方法之一。 一维搜索技术既可独立的用于求解单变量最优化问题,同时又是求解多变量最优化问题常用的手段,虽然求解单变量最优化问题相对比较简单,但其中也贯穿了求解最优化问题的基本思想。由于一维搜索的使用频率较高,因此努力提高求解单变量问题算法的计算效率具有重要的实际意义。 在多变量函数的最优化中,迭代格式X k+1=X k+a k d k其关键就是构造搜索方向d k和步长因子a k 设Φ(a)=f(x k+ad k) 这样从凡出发,沿搜索方向d k,确定步长因子a k,使Φ(a)<Φ(0)的问题就是关于步长因子a的一维搜索问题。其主要结构可作如下概括:首先确定包含问题最优解的搜索区间,然后采用某种分割技术或插值方法缩小这个区间,进行搜索求解。 一维搜索通常分为精确的和不精确的两类。如果求得a k使目标函数沿方向d k达到 极小,即使得f (x k+a k d k)=min f (x k+ ad k) ( a>0) 则称这样的一维搜索为最优一维搜索,或精确一维搜索,a k叫最优步长因子; 如果选取a k使目标函数f得到可接受的下降量,即使得下降量f (x k)一f (x k+a k d k)>0是用 户可接受的,则称这样的一维搜索为近似一维搜索,或不精确一维搜索,或可接受一维 搜索。 由于在实际计算中,一般做不到精确的一维搜索,实际上也没有必要做到这一点,因为精确的

直接搜索法历史和现状

Direct search methods:then and now 直接搜索法:历史和现状 Robert Michael Lewis1,a,Virginia Torezon2,*,,b a,Michael W. Trosset a c, a ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton,V A 23681-2199. USA b Department of Computer Science, College of William & Mary, P.O. Box 8795, Williamsburg, V A 23187-8795, USA c Department of Mathematics, College of William & Mary, P.O. Box 8795, Williamsburg, V A 23187-8795, USA Received 1 July 1999; received in revised form 23 February 2000 Abstract 摘要 我们讨论无约束优化的直接搜索法。我们从现在的观点来看这类与导数无关的算法, 主要集中在1960到1971年的直接搜索法发展的黄金时期。我们首先讨论在未构建目标模型的情况怎样使用直接搜索法。然后我们考虑一些经典直接搜索法并揭示那些年这类算法的进展。特别地,当原始直接搜索法开始直接利用启发式方法时,更多近来的分析表明,虽然不是全部但大部分启发式方法实际上已经足可以保证迭代序列中至少有一个子序列全局收敛到目标函数的一阶驻点。 关键词:求导无关优化;直接搜索法;模式搜索法 We discuss direct search methods for unconstrained optimization. We give a modern

五种最优化方法

精心整理 五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3 4 1.2 2. 2.1 1 2 3 2.2 3. 3.1 1 2 3 3.2 4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降

方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤 5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下: min(f_1(x),f_2(x),...,f_k(x)) s.t.g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。 6.1遗传算法基本概念 1.个体与种群 个体就是模拟生物个体而对问题中的对象(一般就是问题的解)的一种称呼。 种群就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。 2.适应度与适应度函数 适应度就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。 适应度函数就是问题中的全体个体与其适应度之间的一个对应关系。该函数就是遗传算法中指导搜索的评价函数。 6.2遗传算法基本流程 遗传算法的中心思想就是对一定数量个体组成的生物种群进行选择、交叉、变异等遗传操作,最终求得最优解或近似最优解。 遗传算法步骤 步1在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T;

基于matlab的一维搜索

最优化理论与算法 基于matlab 的一维搜索——0.618试探法 2 m in ()21def f x x x =-- , 初始区间11[,][1,1]a b =-,精度0.16L ≤ clc clear %设定初始值 L=0.16; k=1; b=1; a=-1; r=a+0.382*(b-a); u=a+0.618*(b-a); fr=fun(r); fu=fun(u); c=[]; while b-a>L if fr>fu a=r; b=b; r=u; u=a+0.618*(b-a); fr=fun(r); fu=fun(u); else a=a; b=u; u=r; r=a+0.382*(b-a); fr=fun(r); fu=fun(u); end k=k+1; c=[c,[a,b,r,u,fr,fu]]; end k jieguo=reshape(c,6,k)’ s=[a,b] l=b-a jieguo = -1.0000 1.0000 -0.2360 0.2360 -0.6526 -1.1246 -0.2360 1.0000 0.2360 0.5278 -1.1246 -0.9706 -0.2360 0.5278 0.0558 0.2360 -1.0496 -1.1246 0.0558 0.5278 0.2360 0.3475 -1.1246 -1.1060 0.0558 0.3475 0.1672 0.2360 -1.1113 -1.1246 0.1672 0.3475 0.2360 0.2787 -1.1246 -1.1234 0.1672 0.2787 0.2098 0.2360 -1.1218 -1.1246

五种最优化方法

五种最优化方法 1. 最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2 原理和步骤

3. 最速下降法(梯度法) 3.1最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 3.2 最速下降法算法原理和步骤

4. 模式搜索法(步长加速法) 4.1 简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤

5.评价函数法 5.1 简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)) s.t. g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有

第5章 一维搜索

第5章 一维搜索 §5.1 最优化算法的简单介绍 1.算法概念 在解非线性规划时,所用的计算方法,最常见的是迭代下降算法. 迭代:从一点) (k x 出发,按照某种规则A 求出后继点) 1(+k x .用1+k 代替k ,重复以上 过程,产生点列}{) (k x 。 规则A 是在某个空间X 中点到点的映射,即对每一个X x k ∈) (,有点 X x A x k k ∈=+)() () 1(. 更一般地,把A 定义为点到集的映射,即对每个点X x k ∈) (,经A 作用,产生一个点 集X x A k ?)() (.任意选取一个点)() () 1(k k x A x ∈+,作为) (k x 的后继点. 定义1: 算法A 是定义在空间X 上的点到集映射,即对每一个点X x ∈,给定-个子集 X x A ?)(. 例1 考虑线性规划: 1 s.t. min 2 ≥x x 最优解1=x .设计一个算法A 求出这个最优解. ???????

无约束最优化问题可以定义解集合为 }0)(|{=?=Ωx f x 约束最优化问题可以定义解集合为 }T -K 为|{点x x =Ω 2. 算法收敛问题 设Ω为解集合,X X A →:是一个算法,集合X Y ?.若以任一初点Y x ∈) 1(开始, 算法产生的序列其任一收敛子序列的极限属于Ω,则称算法映射A 在Y 上收敛. 收敛速率: 定义2: 设序列}{) (k γ 收敛于* γ,定义满足 ∞<=--≤+∞ →βγ γ γ γp k k k * ) (*) 1(lim 的非负数p 的上确界为序列}{) (k γ 的收敛级. 若序列的收敛级为p ,就称序列是p 级收敛的. 若1=p 且1<β,则称序列是以收敛比β 线性收敛的. 若1>p 或者1=p 且0=β,则称序列是超线性收敛的. 例2 序列{}10 ,<

禁忌搜索算法摘录

禁忌(Tabu Search)算法是一种亚启发式(meta-heuristic)随机搜索算法1,它从一个初始可行解出发,选择一系列的特定搜索方向(移动)作为试探,选择实现让特定的目标函数值变化最多的移动。为了避免陷入局部最优解,TS搜索中采用了一种灵活的“记忆”技术,对已经进行的优化过程进行记录和选择,指导下一步的搜索方向,这就是Tabu表的建立。 为了找到“全局最优解”,就不应该执着于某一个特定的区域。局部搜索的缺点就是太贪婪地对某一个局部区域以及其邻域搜索,导致一叶障目,不见泰山。禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它(但不是完全隔绝),从而获得更多的搜索区间。兔子们找到了泰山,它们之中的一只就会留守在这里,其他的再去别的地方寻找。就这样,一大圈后,把找到的几个山峰一比较,珠穆朗玛峰脱颖而出。 当兔子们再寻找的时候,一般地会有意识地避开泰山,因为他们知道,这里已经找过,并且有一只兔子在那里看着了。这就是禁忌搜索 中“禁忌表(tabu list)”的含义。那只留在泰山的兔子一般不会就安家在那里了,它会在一定时间后重新回到找最高峰的大军,因为这个时候已经有了许多新的消息,泰山毕竟也有一个不错的高度,需要重新考虑,这个归队时间,在禁忌搜索里面叫做“禁忌长度(tabu length)”;如果在搜索的过程中,留守泰山的兔子还没有归队,但是找到的地方全是华北平原等比较低的地方,兔子们就不得不再次考虑选中泰山,也就是说,当一个没有兔子留守的地方优越性太突出,超过 了“best so far”的状态,就可以不顾及有没有兔子留守,都把这个地方考虑进来,这就叫“特赦准则(aspiration criterion)”。这三个概念是禁忌搜索和一般搜索准则最不同的地方,算法的优化也关键在这里。 伪码表达 procedure tabu search; begin initialize a string vc at random,clear up the tabu list; cur:=vc; repeat select a new string vn in the neighborhood of vc; if va>best_to_far then {va is a string in the tabu list} begin

技术问题答案搜索法

“技术问题答案搜索法” 在我公司作为发明专利被驳回后是否复审的判断标准,也作为判断审查意见是否正确的秘密武器,一段时间以来,一直做为公司的独门绝技密而不宣。 前不久,国家专利局某部审查部长前来深圳调研,听取我市企业对创造性评判中现有技术的结合启示的意见和建议,其中在其调查问卷中提到:“关于创造性评判中的现有技术的结合启示,现有规定存在不足和问题,尤其是多篇现有技术结合时对于“技术手段所起作用相同”的要求中,“作用”的内涵和相关的限制条件等方面均缺乏相应解释。”可见,创造性判断三步法中的第(3)步,尤其是其中的第(iii)点,即使对于官方资深人员而言,也是一个难点。 另一方面,在专利代理实践工作中,有很多专利代理人在收到审查意见通知中出现“所述区别特征为公知常识”、“所述区别特征为另一份对比文件中批露的相关技术手段,该技术手段在该对比文件中所起的作用与该区别特征在要求保护的发明中为解决该重新确定的技术问题所起的作用相同”的语句时,常常会束手无策。因此,我觉得有必要在此分享一下我们的“技术问题答案搜索法”,该方法最大限度地减少了主观性,使判断结果客观而具有说服力,无论用于判断是否复审还是用于和审查员争辩,均能产生出其不意的说服效果。 “技术问题答案搜索法”非常简单,其做法如下:在三步法中第(2)步确定了技术问题之后,在第(3)步判断是否有启示时,优先搜索在第(2)步中所确定的技术问题及其答案,而不是去搜索相应区别技术特征;如果搜索该技术问题时,得到了与本发明相同或相似的答案,则应判断有启示;否则,没有直接启示。当然,由于发明实际解决的技术问题是据该区别特征所能达到的技术效果来确定的,也可以直接搜索相关技术效果。 上述做法非常简单到令人难以置信,但用这种方法来判断创造性,其准确率之高,也同样高到令人难以置信。这是为什么呢?现试分析原因如下: 1、发明专利创造性审查中最容易遇到的错误就是“事后诸葛亮”(国外称为“后见之明”hindsight)。为此,需要把时间回调到专利申请日当天及之前。在专利申请日当天及之前,本领域的普通技术人员在遇到该技术问题后会怎么办呢?它要查找这个问题的解决方案的话,会怎么检索呢?他检索的关键词会是什么呢?答案当然是:他检索的关键词一定只与这个技术问题有关,而不是与该区别技术特征有关,因为在当时这个区别技术特征还没有提出来!作为一个没有创造能力的普通技术人员,他不可能想到这个区别技术特征本身,更不会用这个区别技术特征当关键词来进行检索。而审查员呢?他又什么会用这个区别技术特征当关键词来进行检索?很明显,他是看了这个专利申请文件之后受到启发才知道这个关键词的。

相关主题
文本预览
相关文档 最新文档