三种基本逻辑电路运算比较
- 格式:doc
- 大小:18.00 KB
- 文档页数:4
基本的逻辑运算表示式-基本逻辑门电路符号1、与逻辑(AND Logic)与逻辑又叫做逻辑乘,通过开关的工作加以说明与逻辑的运算。
从上图看出,当开关有一个断开时,灯泡处于灭的,仅当两个开关合上时,灯泡才会亮。
于是将与逻辑的关系速记为:“有0出0,全1出1”。
图(b)列出了两个开关的组合,以及与灯泡的,用0表示开关处于断开,1表示开关处于合上的;灯泡的用0表示灭,用1表示亮。
图(c)给出了与逻辑门电路符号,该符号表示了两个输入的逻辑关系,&在英文中是AND的速写,开关有三个则符号的左边再加上一道线就行了。
逻辑与的关系还用表达式的形式表示为:F=A·B上式在不造成误解的下可简写为:F=AB。
2、或逻辑(OR Logic)上图(a)为一并联直流电路,当两只开关都处于断开时,其灯泡不会亮;当A,B两个开关中有一个或两个一起合上时,其灯泡就会亮。
如开关合上的用1表示,开关断开的用0表示;灯泡的亮时用1表示,不亮时用0表示,则可列出图(b)的真值表。
这种逻辑关系通常讲的“或逻辑”,从表中可看出,只要输入A,B两个中有一个为1,则输出为1,否则为0。
或逻辑可速记为:“有1出1,全0出0”。
上图(c)为或逻辑门电路符号,通常用该符号来表示或逻辑,其方块中的“≥1”表示输入中有一个及一个的1,输出就为1。
逻辑或的表示式为:F=A+B3、非逻辑(NOT Logic)非逻辑又常称为反相运算(Inverters)。
下图(a)的电路实现的逻辑功能非运算的功能,从图上看出当开关A 合上时,灯泡反而灭;当开关断开时,灯泡才会亮,故其输出F的与输入A的相反。
非运算的逻辑表达式为图(c)给出了非逻辑门电路符号。
复合逻辑运算在数字系统中,除了与运算、或运算、非运算之外,使用的逻辑运算还有是通过这三种运算派生出来的运算,这种运算通常称为复合运算,的复合运算有:与非、或非、与或非、同或及异或等。
4、与非逻辑(NAND Logic)与非逻辑是由与、非逻辑复合而成的。
第二章逻辑代数与逻辑门电路基本要求:理解“与”逻辑及“与”门、“或”逻辑及“或”门、“非”逻辑及“非”门;理解正、负逻辑的概念,掌握逻辑代数的基本定律、基本规则和常用公式;理解复合逻辑的概念;了解集成门电路的分类;理解TTL、MOS门电路;理解逻辑函数的表示方法;掌握逻辑函数的代数化简法和卡诺图化简法。
本章主要内容:介绍逻辑代数、集成逻辑门电路和逻辑函数化简。
逻辑代数是数字电路的理论基础,是组合逻辑和时序逻辑电路分析、设计中要用到的基本工具;集成逻辑门电路是组成数字逻辑电路的基本单元电路;逻辑函数化简是逻辑电路分析的基础。
本章重点:基本逻辑门电路和功能逻辑代数的基本定律及常用公式逻辑函数的代数化简法本章难点:基本定律、公式及化简法的正确与准确一、逻辑变量与逻辑函数:在逻辑代数中的变量称逻辑变量,用字母A、B、C……来表示。
逻辑变量只能有两种取值:真和假。
常把真记作“1”,假记作“0”。
这里的“1”和“0”并不表示数量的大小,而是表示完全对立的两种状态。
在逻辑问题的研究中,涉及到问题产生的条件和结果。
表示条件的逻辑变量称输入变量,表示结果的逻辑变量称输出变量。
将输入变量和输出变量通过逻辑运算符连接起来的式子称逻辑函数,常用F、L表示。
基本的逻辑运算有“与”运算、“或”运算、“非”运算。
二、逻辑运算:逻辑运算的值要通过对逻辑变量进行逻辑运算来确定。
1.与运算及与门逻辑运算F与逻辑变量A、B的逻辑与运算表达式是:F=A·B, 式中“·”为与运算符。
在逻辑电路中,把能实现与运算的基本单元叫与门,它是逻辑电路中最基本的一种门电路。
二极管构成的与门电路及逻辑符号如下:2.或运算及或门逻辑函数F与逻辑变量A、B的逻辑运算表达式是:F=A+B,式中“+”为或运算符。
在逻辑电路中,把能实现或运算的基本单元叫或门。
二极管构成的或门电路及逻辑符号如下:3.非逻辑及非门对逻辑变量A进行逻辑非运算的表达式是:F=,这里的“-”是非运算符。
三种基本逻辑门电路三种基本的门:全部其它组合规律功能都可由这三种门单之产生。
规律门表示法符号希尔符号NOT (非)ā 或/A — 或/ (非、负)AND (与)A * B * 与(积)OR (或)A+B + (和)二规律门等效于AND 和NOT : NAND 与非门OR 和NT : NOR 或非任何规律功能都可以表示为“ 与非门” 或者“ 或非门” 的功能。
三种基本规律门的真值表运算符的优先级正常的运算次序是:NOT ,AND ,OR, 括号中的内容总是比表达式的其它部分先进行运算。
例:交换律、结合律和安排律AND 功能和OR 功能可以交换和结合。
操作数可以任何次序消失,而不会影响功能的运算结果:1. 交换律2. 结合律3. 安排律1. A*(B+C) = (A*B)+(A*C) :象标准的代数规章(乘对加)2. A+(B*C) = (A+B)*(A+C) :真值表或规律变换证明( 加对乘)4.对偶性对偶性原理:– 假如用*替换+,+替换*,1替换0,0替换1,则替换后的表达式与原等式等同。
– 因此只要证明第一条安排律是正确的,通过对偶性就能证明其次条安排律的正确性。
5. 规律运算的法则四条基本公理– 公理1 :a. X+0=X b. X*0=0– 公理2 :a. X+/X=1 b. X*/X=0– 公理3 :a. X+Y=Y+X b. X*Y=Y*X– 公理4 :a. X*(Y+Z)=(X*Y)+(X*Z) b. X+(Y*Z)=(X+Y) *(X+Z)九条基本交理– 定理1 :a. X+X=X b. X*X=X– 定理2 :a. X+1=1 b. X*0=0– 定理3 :/(/X)=X ( 不包括具有对偶的元素+ 、* 、1 或0) – 定理4 :a. X+(Y+Z)=(X+Y)+Z l b. X*(Y*Z)=(X*Y) *Z– 定理5 :a. /(X+Y)=/X*/Y b. /(X*Y)=/X+/Y– 定理6 :a. X+(X*Y)=X b. X*(X+Y)=X– 定理7 :a. (X+Y)+(X*/Y)=X b. (X+Y) *(X+/Y)=X– 定理8 :a. X+(/X*Y)=X+Y b. X*(/X+Y)=X*Y– 定理9 : a. (X*Y)+(/X*Z)+(Y*Z)=(X*Y)+(/X*Z) b. (X+Y) *(/X+Z)*(Y*Z)=(X+Y)*(/X+Z)除定理3 ,每个定理或公理都有二种形式,属对偶性原理的关系。
数字电路是一种用来处理数字信号的电路,它由逻辑门组成,可以实现各种逻辑运算。
在数字电路中,最基本的三种逻辑运算分别是与运算、或运算和非运算。
本文将对这三种逻辑运算进行详细介绍,以帮助读者更好地理解数字电路的基本原理和运作方式。
1. 与运算与运算是指在两个信号同时为高电平时,输出为高电平;否则输出为低电平。
在数字电路中,与运算通常由与门来实现。
与门有两个输入端和一个输出端,只有在两个输入端同时为高电平时,输出端才会输出高电平。
与门的逻辑符号通常表示为“∧”。
2. 或运算或运算是指在两个信号中至少有一个为高电平时,输出为高电平;只有在两个输入端同时为低电平时,输出端才会输出低电平。
在数字电路中,或运算通常由或门来实现。
或门同样有两个输入端和一个输出端,只要两个输入端中至少有一个为高电平,输出端就会输出高电平。
或门的逻辑符号通常表示为“∨”。
3. 非运算非运算是指将输入信号取反,即如果输入信号为低电平,则输出为高电平;如果输入信号为高电平,则输出为低电平。
在数字电路中,非运算通常由非门来实现。
非门只有一个输入端和一个输出端,其输出信号与输入信号相反。
非门的逻辑符号通常表示为“¬”。
通过这三种最基本的逻辑运算,数字电路可以实现各种复杂的逻辑功能。
通过组合多个与门、或门和非门,可以构建出加法器、减法器、乘法器、除法器等各种算术逻辑单元,从而实现数字信号的加减乘除运算。
这三种逻辑运算的组合还可以实现逻辑判断、比较、选择等功能,为数字系统的设计和实现提供了基础。
数字电路中的与运算、或运算和非运算是最基本的逻辑运算,它们是数字电路的基石。
通过这三种逻辑运算,我们可以实现各种复杂的数字逻辑功能,从而构建出功能强大的数字系统。
希望本文对读者理解数字电路和逻辑运算有所帮助,谢谢阅读!上文中我们已经介绍了数字电路中最基本的三种逻辑运算,接下来我们将继续探讨这些逻辑运算在数字电路中的应用以及它们的扩展。
4. 异或运算异或运算是指在两个信号不输出为高电平;两个输入端相同时输出为低电平。
基本逻辑关系通常,把反映“条件”和“结果”之间的关系称为逻辑关系.如果以电路的输入信号反映“条件”,以输出信号反映“结果",此时电路输入、输出之间也就存在确定的逻辑关系。
数字电路就是实现特定逻辑关系的电路,因此,又称为逻辑电路。
逻辑电路的基本单元是逻辑门,它们反映了基本的逻辑关系。
基本逻辑关系和逻辑门基本逻辑关系和逻辑门逻辑电路中用到的基本逻辑关系有与逻辑、或逻辑和非逻辑,相应的逻辑门为与门、或门及非门.一、与逻辑及与门与逻辑指的是:只有当决定某一事件的全部条件都具备之后,该事件才发生,否则就不发生的一种因果关系。
如图2。
1.1所示电路,只有当开关A 与B 全部闭合时,灯泡Y 才亮;若开关A 或B 其中有一个不闭合,灯泡Y就不亮。
这种因果关系就是与逻辑关系,可表示为Y =A •B ,读作“A 与B”。
在逻辑运算中,与逻辑称为逻辑乘。
与门是指能够实现与逻辑关系的门电路。
与门具有两个或多个输入端,一个输出端。
其逻辑符号如图2。
1.2所示,为简便计,输入端只用A 和B 两个变量来表示。
与门的输出和输入之间的逻辑关系用逻辑表达式表示为: Y =A •B =AB两输入端与门的真值表如表2.1.1所示.波形图如图2。
1.3所示。
A B Y0 0 0 0 1 0 1 0 0 1 11(a)常用符号表2.1.1 与门真值表 图2.1.1 与逻辑举例(b )国标符号图2.1.2 与逻辑符号由此可见,与门的逻辑功能是,输入全部为高电平时,输出才是高电平,否则为低电平。
二、或逻辑及或门或逻辑指的是:在决定某事件的诸条件中,只要有一个或一个以上的条件具备,该事件就会发生;当所有条件都不具备时,该事件才不发生的一种因果关系。
如图2.1。
4所示电路,只要开关A 或B 其中任一个闭合,灯泡Y 就亮;A 、B 都不闭合,灯泡Y 才不亮。
这种因果关系就是或逻辑关系。
可表示为:Y =A +B读作“A 或B”.在逻辑运算中或逻辑称为逻辑加。
电路中的逻辑门基本的逻辑运算与逻辑电路设计逻辑门是电子电路中的基本组成元件,负责进行逻辑运算。
通过逻辑门的组合,可以实现复杂的逻辑功能,从而实现数字电路中的各种计算和控制。
一、逻辑门的基本运算逻辑门主要有与门、或门、非门、异或门等几种基本类型。
下面分别介绍各种逻辑门的基本运算原理及其电路图。
1. 与门与门是最简单的逻辑门之一。
它的逻辑运算规则是:当所有输入端都为高电平时,输出端才会产生高电平;只要有一个输入端为低电平,输出端就为低电平。
与门的电路图如下所示:```输入A 输入B 输出─────▷││ ├────▷│─────▷│```2. 或门个输入端为高电平,输出端就为高电平;只有所有输入端都为低电平时,输出端才会为低电平。
或门的电路图如下所示:```输入A 输入B 输出─────▷│ ├────▷─────▷```3. 非门非门是逻辑运算最简单的一种。
它只有一个输入端和一个输出端,当输入端为高电平时,输出端为低电平;当输入端为低电平时,输出端为高电平。
非门的电路图如下所示:```输入输出─────▷│```4. 异或门端的电平相同时,输出端为低电平;当输入端的电平不同时,输出端为高电平。
异或门的电路图如下所示:```输入A 输入B 输出─────▷│└────│```二、逻辑电路设计通过将不同类型的逻辑门组合,可以实现复杂的逻辑运算和控制。
下面以一个简单的逻辑电路设计为例进行说明。
假设我们需要设计一个简单的两输入四输出选择器。
根据需求,只有某个特定的输入端的输出端才能为高电平,其他输出端为低电平。
我们可以通过逻辑门的组合来实现这个功能。
首先,我们可以使用或门,将输入信号与某个输出端相连,使得当输入信号为高电平时,对应的输出端为高电平;而其他输出端则需要与非门相连,当输入信号为低电平时,这些输出端才会为高电平。
具体的电路设计如下所示:```输入A 输入B 输出1 输出2 输出3 输出4─────────────│╶─▷│─────────────│ ├────▷╶─▷│ ─────►│─────────────│ ├────▷╭─────────┴──────►│─────────────│```通过以上的逻辑电路设计,我们可以实现输入信号选择某个输出端的功能。
逻辑门电路及其运算逻辑门电路是计算机和数字电路中不可或缺的基础组成部分。
它通过逻辑门的组合和运算来实现信息处理和信号传输。
本文将介绍逻辑门电路的基本概念、分类和常见的运算方式。
一、逻辑门电路的基本概念逻辑门电路是由多个逻辑门组成的电路系统,逻辑门是电子元件,能够根据输入信号的逻辑状态产生输出信号。
逻辑门电路可以用于构建各种数字逻辑电路,如加法器、多路选择器和计数器等。
逻辑门电路的最基本的逻辑门有三种:与门(AND)、或门(OR)和非门(NOT)。
与门的输出信号只有在所有输入信号都为高电平时才为高电平;或门的输出信号只要有一个输入信号为高电平就为高电平;非门的输出信号和输入信号相反。
二、逻辑门电路的分类除了基本的三种逻辑门外,还有其他的逻辑门类型,如与非门(NAND)、或非门(NOR)和异或门(XOR)等。
这些逻辑门可以通过组合和连接来构建更加复杂的逻辑电路。
1. 与非门(NAND)与非门是一种组合逻辑门,它是与门和非门的结合。
与非门在所有输入信号都为高电平时输出低电平,其余情况下输出高电平。
与非门可用于构建其他类型的逻辑电路。
2. 或非门(NOR)或非门也是一种组合逻辑门,它是或门和非门的结合。
或非门在所有输入信号都为低电平时输出高电平,其余情况下输出低电平。
或非门同样可以用来构建其他类型的逻辑电路。
3. 异或门(XOR)异或门是一种常用的逻辑门,它的输出信号只有在输入信号中的奇数个为高电平时才为高电平,偶数个为高电平时输出低电平。
异或门在数字电路和通信系统中有广泛应用。
三、逻辑门电路的运算逻辑门电路可以进行多种运算,如逻辑与、逻辑或、逻辑非、逻辑异或等。
这些运算通过逻辑门的组合和连接来实现。
1. 逻辑与运算逻辑与运算是指对两个或多个输入信号进行与运算,输出信号只有在所有输入信号都为高电平时才为高电平,否则为低电平。
逻辑与运算可以用与门实现。
2. 逻辑或运算逻辑或运算是指对两个或多个输入信号进行或运算,输出信号只要有一个输入信号为高电平就为高电平,否则为低电平。
逻辑运算逻辑代数的基本运算比较简单,只有三种:“与”运算、“或”运算和“非”运算。
任何复杂的逻辑运算都可由这三种基本逻辑运算构成。
如,广泛采用的“与非”、“或非”、“与或非”、“异或” 。
、“同或”等逻辑运算,它们的逻辑关系可以由以上三种基本运算导出。
1.“与”运算当决定一事件的所有条件都具备之后,这事件才会发生,称这种因果关系为“与”逻辑关系,或称为“与”逻辑运算或逻辑乘。
条件用逻辑变量“A,B…..”表示,变量取值为1,表示条件具备;取值为0,表示条件不具备。
事件用F表示,只有发生(用1表示)和不发生(用0表示)两种取值。
“与”逻辑运算用表达式表示为:F=A·B 或者F=A ∧B一般简写为:F=AB,把此式称为变量A、B相“与”的逻辑表达式。
用两个串联的开关A、B控制一盏灯,如图1(a)所示。
灯亮的条件是开关A“与”开关B同时处在合上位置。
假定灯亮为“1”,不亮为“0”,开关在合上位置为“1”,在断开位置为“0”,那么,把灯的状态和两个开关所处位置之间的关系列表,如图1(b)所示。
把这种表称为真值表(或称为功能表)。
常用真值表来表示逻辑命题的真假关系。
把所有的条件(输入变量)的全部组合以表格形式列出来,这里为A、B,再把在每一种组合下对应的事件(函数)的值F求出,这张表格就是真值表。
因为每个条件有两种状态“0”、“1”,因此,n个条件就有2n个组合。
图1(b)为A“与”B 的真值表。
同一逻辑函数只可能有唯一的真值表!2.“或”运算当决定事件发生的各种条件中,只要有一个或一个以上条件具备时,这事件就会发生,这样的因果关系称为“或”逻辑关系,或称逻辑加。
“或”运算的逻辑表达式为:F=A+B 或者F=A∨B 。
用并联的两个开关A、B控制一盏灯,如图2(a)所示,只要开关A“或”开关B在合上位置,灯就亮。
按照前面假定来赋值“0”、“1”,列出真值表,如图2(b)所示。
3.“非”运算“非”运算,就是否定,或者称为求反。
第6次课三种基本逻辑关系、分立元件门电路、复合逻辑门电路●本次重点内容:1、与、或、非三种基本逻辑关系及真值表、逻辑表达式、门电路逻辑符号。
2、分立元件门电路的工作原理。
3、复合逻辑关系:与非、或非、与或非、异或、同或的真值表、逻辑表达式、门电路逻辑符号。
●教学过程6.1三种基本逻辑关系一、与逻辑关系所谓与逻辑关系:就是指决定某事件结果的所有条件全部具备,结果才能发生,而只要其中一个条件不具备,结果就不能发生,这种逻辑关系称为与逻辑关系。
与逻辑示意如图6-1所示:用A,B表示条件,即开关的状态;用Y表示结果,即表示灯的亮、灭状态。
图6-1 与逻辑示意图开关:“1”表示开关闭合,“0”表示开关断开。
灯:“1”表示灯亮,“0”表示灯灭。
根据所有可能的开关组合状态与灯亮、灭的对应关系,可以列出真值表。
如表6-1所示。
表6-1 与逻辑真值表由表6-1可以得出“与”逻辑关系为“有0出0,全1出1”。
与门是实现与逻辑关系的电路,其逻辑符号如图6-2所示:图6-2 与逻辑符号二、或逻辑—在A,B等多个条件中,只要具备其中一个条件,事件就会发生;只有所有条件均不具备时,事件才不会发生,这种因果关系称为或逻辑关系。
或逻辑示意如图6-3所示:图6-3 或逻辑示意图经分析开关A,B的闭合情况,可以列出或逻辑真值表如表6-2所示:表6-2 或逻辑真值表由上表6-2可以得知或逻辑功能为“有1出1,全0出0”。
或门是实现或逻辑关系的电路,其逻辑符号如图6-4所示。
图6-4或逻辑符号三、非逻辑:决定事件结果只有一个条件,当条件具备时,结果就不发生;当条件不具备时,结果就发生。
这种因果关系称为非逻辑关系。
非逻辑示意如图6-5所示。
当开关A闭合时,灯Y灭;当开关A断开时,灯Y亮。
可见,对灯亮来说,开关A闭合是非逻辑关系。
图6-5非逻辑示意如图经分析可以列出或逻辑真值表6-3。
表6-3 非逻辑真值表由上表可以得知非逻辑功能为“是0出1,是1出0”。
三种基本逻辑电路运算比较
01基本概念
1.逻辑常量与变量:逻辑常量只有两个,即0和1,用来表示两个对立的逻辑状态。
逻辑变量与普通代数一样,也可以用字母、符号、数字及其组合来表示,但它们之间有着本质区别,因为逻辑变量的取值只有两个,即0和1,而没有中间值。
2.逻辑运算:在逻辑代数中,有与、或、非三种基本逻辑运算。
表示逻辑运算的方法有多种,如语句描述、逻辑代数式、真值表、卡诺图等。
3.逻辑函数:逻辑函数是由逻辑变量、常量通过运算符连接起来的代数式。
同样,逻辑函数也可以用表格和图形的形式表示。
4.逻辑代数:逻辑代数是研究逻辑函数运算和化简的一种数学系统。
逻辑函数的运算和化简是数字电路课程的基础,也是数字电路分析和设计的关键。
02三种基本逻辑运算与运算1
图1(a)表示一个简单与逻辑的电路,电压V通过开关A和B向灯泡L供电,只有A和B同时接通时,灯泡L才亮。
A和B中只要有一个不接通或二者均不接通时,则灯泡L 不亮,其真值表如图1(b)。
因此,从这个电路可总结与运算逻辑关系。
语句描述:只有当一件事情(灯L亮)的几个条件(开关A与B都接通)全部具备之后,这件事情才会发生。
这种关系称与运算。
逻辑表达式:L=A·B
式中小圆点“·”表示A、B 的与运算,又称逻辑乘。
在不致引起混淆的前提下,乘号“·”被省略。
某些文献中,也有用符号∧、∩表示与运算的。
真值表:如果开关不通和灯不亮均用0表示,而开关接通和灯亮均用1表示,得到如图1(c)所示的真值表描述。
真值表的左边列出为所有变量的全部取值组合,右边列出的是对应于A,B变量的每种取值组合的输出。
因为输入变量有两个,所以取值组合有22=4种,对于n个变量,应该有2n种取值组合。
逻辑符号:与运算的逻辑符号如图1(d)所示,其中A,B为输入,L为输出。