51单片机MOVX指令详细执行过程
- 格式:doc
- 大小:106.00 KB
- 文档页数:2
51单片机指令使用方法51单片机是一种常用的嵌入式微控制器,广泛应用于各种电子设备中。
它具有强大的控制能力和灵活的指令集,为我们开发各种应用提供了便利。
在使用51单片机时,我们需要熟悉其指令的使用方法,下面我们来介绍一些常用的指令及其应用。
首先,我们来讲解一些与数据传输和处理相关的指令。
MOV指令是最常用的指令之一,用于将一个数据从一个寄存器或内存单元传输到另一个寄存器或内存单元。
通过MOV指令,我们可以在单片机中实现数据的复制、传递和处理等操作。
除了MOV指令,还有一些其他常用的数据传输和处理指令,比如ADD指令用于进行加法运算,AND指令用于进行逻辑与操作,OR指令用于进行逻辑或操作等。
这些指令可以实现各种数据处理、逻辑运算和位操作等功能,为我们的程序提供灵活性和多样性。
接下来,我们介绍一些与控制流程相关的指令。
循环结构是程序中常用的一种控制结构,而JMP指令和CJNE指令可以实现跳转和循环控制。
JMP指令用于无条件跳转到指定的地址,而CJNE指令则根据比较结果决定是否跳转到指定的地址。
通过这些指令,我们可以实现程序的分支、循环和条件控制等功能。
此外,还有一些与中断处理相关的指令需要我们熟悉。
中断是单片机中常用的一种事件触发机制,通过中断处理,我们可以实现对外部事件的及时响应。
EA指令用于使能全局中断,而EN和DIS指令用于使能和禁止外部中断。
通过这些指令,我们可以合理利用中断机制,提高程序的响应速度和实时性。
最后,我们来介绍一些与IO口操作相关的指令。
单片机的IO口是与外部设备进行通信的接口,而P1、P2等寄存器则是与IO口对应的数据寄存器。
通过MOV指令和SETB/C指令,我们可以实现对IO口数据的读写操作和控制。
通过这些指令,我们可以与外部设备进行数据交互,实现各种输入输出功能。
总结起来,51单片机的指令使用是嵌入式开发中的基础知识,熟练掌握各种指令的使用方法能够提高我们的开发效率和程序的性能。
常见51单片机指令及详解1. 简介单片机是一种集成电路,具备处理和控制功能。
51单片机是指Intel公司推出的一系列8位单片机,常用于嵌入式系统和物联网设备。
本文将介绍一些常见的51单片机指令,并对其进行详解。
2. 数据传送指令2.1 MOV指令MOV指令用于将数据从一个寄存器或内存位置传送到另一个寄存器或内存位置。
例如:MOV A, #10 ;将立即数10传送给累加器AMOV R0, R1 ;将寄存器R1的值传送给R02.2 XCH指令XCH指令用于交换两个寄存器或内存位置中的数据。
例如:XCH A, B ;交换累加器A和B的值3. 算术运算指令3.1 ADD指令ADD指令用于将两个操作数相加,并将结果保存在累加器中。
例如:ADD A, B ;将累加器A和寄存器B的值相加,结果存储在A中3.2 SUBB指令SUBB指令用于将第二个操作数的补码与累加器的值相减,并将结果存储在累加器中。
例如:SUBB A, B ;将B的补码与累加器A的值相减,结果存储在A中4. 逻辑运算指令4.1 ANL指令ANL指令用于对两个操作数进行按位与运算,并将结果存储在目的操作数中。
例如:ANL A, B ;将累加器A和寄存器B的值按位与,结果存储在A 中4.2 ORL指令ORL指令用于对两个操作数进行按位或运算,并将结果存储在目的操作数中。
例如:ORL A, B ;将累加器A和寄存器B的值按位或,结果存储在A 中5. 跳转指令5.1 JMP指令JMP指令用于无条件跳转至指定的目标地址。
例如:JMP 2000H ;跳转至内存地址2000H处执行指令5.2 JZ指令JZ指令用于在累加器为零时跳转至指定的目标地址。
例如:JZ 3000H ;当累加器为零时,跳转至内存地址3000H处执行指令6. 输入输出指令6.1 IN指令IN指令用于将外部设备的数据输入到累加器或指定的寄存器中。
例如:IN A, P1 ;将P1端口的数据输入到累加器A中6.2 OUT指令OUT指令用于将累加器或指定的寄存器中的数据输出到外部设备。
MCS--51单片机指令一、数据传送类指令1、内部数据存储器间数据传送指令MOV A,#dataMOV A,directMOV A,RnMOV A,@RiMOV Rn,#dataMOV Rn,directMOV Rn,AMOV direct,#dataMOV direct,AMOV direct,RnMOV direct,@RiMOV direct,directMOV @Ri,#dataMOV @Ri,AMOV @Ri,direct2、以DPTR为目的的MOV DPRT,#data 163、访问片外RAMMOVX A,@DPTRMOVX A,@RiMOVX @DPTR,AMOVX @Ri,A4、访问片外ROMMOVC A,@A+DPTR ;(A) ←((A)+(DPTR))MOVC A,@A+PC ;(PC) ←(PC)+1,(A) ←((A)+(PC))5、数据交换指令XCH A,direct ;(A) ↔(direct)XCH A,@Ri ;(A) ↔((Ri))XCH A,Rn ;(A) ↔(Rn)XCHD A,@Ri ;(A3~0)↔ ((Rn)3~0)SWAP A ;(A7~4)↔ (A3~0)6、堆栈操作类指令PUSH direct ;(SP)←(SP)+1,(SP)←(direct)POP direct ;(direct)←(SP),(SP)←(SP)-1二、算术运算类指令1、加法指令ADD A,#dataADD A,directADD A,@RiADD A,Rn2、带进位加法指令ADDC A,#data ;(A)←(A)+(CY)+#dataADDC A,directADDC A,@RiADDC A,Rn3、带借位减法SUBB A,#data ;(A)←(A)-(CY)-#dataSUBB A,directSUBB A,@RiSUBB A,Rn4、加1、减1指令INC AINC directINC @RiINC RnINC DPRTDEC ADEC directDEC @RiDEC Rn5、乘、除法指令乘法指令MUL AB ;(B)←((A)×(B))15~8,(A)←((A)×(B))7~0(CY)←0除法指令DIV AB ;(A)←(A)÷(B)之商,(B)←(A)÷(B)之余数(CY)←0,(OV)←06、十进制调整指令DA A ;若(A)3~0>9或(AC)=1,则(A)3~0←(A)3~0+06H;若(A)7~4>9或(CY)=1,则(A)7~4←(A)7~4+06H三、逻辑运算及移位类指令1、逻辑“与”运算指令ANL direct,AANL direct,#dataANL A,#dataANL A,directANL A,@RiANL A,Rn2、逻辑“或”运算指令ONL direct,AONL direct,#dataONL A,#dataONL A,directONL A,@RiONL A,Rn3、逻辑“异或”运算指令XNL direct,AXNL direct,#dataXNL A,#dataXNL A,directXNL A,@RiXNL A,Rn4、累加器A清零与取反指令CLR A ;(A)←00HCPL A ;(A)←(Ᾱ)5、移位指令RL A ;(A n+1)←(A n),(A0)←(A7)RLC A ;(A n+1)←(A n),(CY)←(A7),(A0)←(CY)RR A ;(A n)←(A n+1),(A7)←(A0)RRC A ;(A n)←(A n+1),(CY)←(A0),(A7)←(CY)四、控制转移类指令1、无条件转移指令LJMP addr16AJMP addr11SJMP relJMP @A+DPTR2、条件转移指令1)累加器判零转移指令JZ rel ;若(A)=0,则跳转JNZ rel ;若(A)≠0,则跳转2)比较转移指令CJNE A,#data,relCJNE A,direct,relCJNE @Ri,#data,relCJNE Rn,#data,rel若目的操作数=源操作数,则执行下一条指令若目的操作数>源操作数,则跳转,CY=0若目的操作数<源操作数,则跳转,CY=13)减1条件转移指令DJNZ direct,rel ;(direct)←(direct)-1若(direct)=0,则执行下一条指令否则,跳转DJNZ Rn,rel ;(Rn)←(Rn)-1若(Rn)=0,则执行下一条指令否则,跳转3、子程序调用及返回指令LCALL addr16ACALL addr11RETRETI4、空操作指令NOP五、位操作类指令1、位传送指令MOV C,bitMOV bit,C2、位置位指令CLR bit ;(bit)←0CLR C ;(CY)←0SETB bit ;(bit)←1SETB C ;(CY)←13、位逻辑指令ANL C,bitANL C,/bitORL C,bitORL C,/bitCPL bitCPL C4、位条件转移指令1)、以CY内容为条件的双字节双周期转换指令JC rel;若(CY)=1,则转移否则,顺序执行JNC rel;若(CY)=0,则转移否则,顺序执行2)、以位地址内容为条件的三字节双周期转移指令JB bit,rel;若(bit)=1,则转移否则,顺序执行JNB bit,rel;若(bit)=0,则转移否则,顺序执行JBC bit,rel;若(bit)=1,则转移,(bit)←0否则,顺序执行。
MCS-51单⽚机的指令MCS-51单⽚机的指令⼀.数据传送类指令(29条).1 通⽤传送指令(16条)格式:MOV ⽬的操作数,源操作数功能:把第⼆操作数指定的字节内容传送到第⼀操作数指定的单元中。
不影响源操作数内容,不影响别的寄存器和标志。
根据⽬的操作数的不同,通⽤传送指令⼜分为以下⼏种类型:1.1 以累加器A为⽬的操作数的传送类指令(4条)指令助记符及功能说明如下:⽬的操作数源操作数功能说明源操作数寻址⽅式MO V A, direct ;(A)←(direct)直接寻址MO V A, @Ri ;(A)←((Ri))寄存器间接寻址MO V A, Rn ;(A)←(Rn)寄存器寻址MO A, #data ;(A)←data ⽴即寻址V这类指令的功能是将源操作数送到⽬的操作数A中。
指令执⾏后的结果:除了奇偶标志P始终跟踪A中数据的奇偶性外,不影响PSW中的其他标志位。
1.2 以Rn为⽬的操作数的传送类指令(3条)指令助记符及功能说明如下:⽬的操作数源操作数功能说明源操作数寻址⽅式MOVRn, A ;(Rn)←(A) 寄存器寻址MO V Rn, direct ;(Rn)←(direct)其中,Rn是R0,…,R7中的任意⼀个。
例1 若(A)=20H,则执⾏指令MOV R3, A后,(R3)=20H。
注意:Rn寄存器之间不能直接传送数据。
如指令“MOV R1, R7”是错误的。
该类指令执⾏后,不影响PSW中的标志位。
1.3. 以直接地址directX为⽬的操作数的传送类指令(5条)指令助记符及功能说明如下:⽬的操作数源操作数功能说明源操作数寻址⽅式M OV directX, A ;(directX)←(A)寄存器寻址M directX, Rn ;(directX)←寄存器寻址OV (Rn)M OV directX, directY ;(directX)←(directY)直接寻址M OV directX, @Ri ;(directX)←((Ri))寄存器间接寻址M OV directX, #data ;(directX)←data⽴即寻址这类指令的功能是把源操作数的内容送到直接地址directX中去。
mcs51单片机位操作指令及编程举例MCS-51 单片机的硬件结构中,有一个位处理器(又称布尔处理器),它有一套位变量处理的指令集。
在进行位处理时,CY(就是我们前面讲的进位位)称位累加器。
有自已的位RAM,也就是我们刚讲的内部RAM 的20H-2FH 这16 个字节单元即128 个位单元,还有自已的位I/O 空间(即P0.0..P0.7,P1.0.P1.7,P2.0..P2.7,P3.0..P3.7)。
当然在物理实体上它们与原来的以字节寻址用的RAM,及端口是完全相同的,或者说这些RAM 及端口都能有两种使用办法。
(1)位传送指令MOV C,BITMOV BIT,C 这组指令的功能是实现位累加器(CY)和其它位地址之间的数据传递。
例:MOV P1.0,CY ;将CY中的状态送到P1.0 管脚上去(如果是做算术运算,我们就能通过观察知道现在CY 是多少啦)。
MOV P1.0,CY ;将P1.0 的状态送给CY。
(2)位修正指令位清0 指令CLR C ;使CY=0CLR bit ;使指令的位地址等于0。
例:CLR P1.0 ;即使P1.0 变为0 位置1 指令SETB C ;使CY=1SETB bit ;使指定的位地址等于1。
例:SETB P1.0 ;使P.0 变为1 位取反指令CPL C ;使CY 等于原来的相反的值,由1 变为0,由0 变为1。
CPL bit ;使指定的位的值等于原来相反的值,由0 变为1,由1 变为0。
例:CPL P1.0 以我们做过的实验为例,如果原来灯是亮的,则执行本指令后灯灭,反之原来灯是灭的,执行本指令后灯亮。
(3)位逻辑运算指令位与指令ANL C,bit ;CY 与指定的位地址的值相与,结果送回CYANL C,/bit ;先将指定的位地址中的值取出后取反,再和CY 相与,结果送回CY,但注意,指定的位地址中的值本身并不发生变化。
例:ANL C,/P1.0 设执行本指令前,CY=1,P1.0 等于1(灯灭),则执行完本指令后CY=0,而P1.0 也是等于1。
51单片机执行指令的过程单片机是一种集成度高的微控制器。
它由中央处理器单元(CPU)、存储器和外设接口电路等功能模块组成,能够实现数据的输入与输出、控制系统中各种设备的工作。
其执行指令的过程可以简单地分为指令存储、指令译码和指令执行三个阶段。
首先,在指令存储阶段,将程序存储到单片机的存储器中。
单片机通过地址线从存储器中读取指令,并通过数据线将指令传送到指令译码器中。
存储器中的指令由二进制代码表示,每条指令的位数和格式由单片机的体系结构决定。
接下来,在指令译码阶段,译码器根据指令的操作码(OpCode)来判断指令的类型,并将指令传送给相应的功能块进行执行。
根据不同的指令类型,所需的操作包括运算、逻辑判断、数值传输等等。
译码器还负责解析指令的操作数及寻址方式。
最后,在指令执行阶段,指令被单片机的CPU执行。
根据译码器解析出来的指令类型和操作数,CPU通过执行相应的操作完成指令的功能。
执行过程中,各个功能模块之间的数据传递通过数据总线进行。
CPU还会根据指令的结果和条件码更新标志寄存器,以便用于后续指令的判断和跳转。
在指令的执行过程中,单片机的工作频率决定了指令的执行速度。
频率越高,单片机能够处理的指令越多,执行的速度越快。
同时,单片机还可以根据需要选择不同的时钟选项,以满足不同应用场景对执行速度和功耗的要求。
除了基本的指令执行过程,单片机还提供了各种中断机制,用于及时响应外部事件。
当发生中断事件时,CPU会根据优先级去中断向量表中查找相应的中断服务程序,并执行相关操作,以处理中断请求。
中断机制的存在大大提高了单片机的实时性和可用性。
总结起来,单片机执行指令的过程包括指令存储、指令译码和指令执行三个阶段。
指令存储阶段将程序存储到存储器中,指令译码阶段根据指令的操作码进行译码,指令执行阶段根据译码结果执行相应的操作。
通过这一过程,单片机能够实现各种应用场景下的控制和数据处理。
单片机时序图MCS51单片机的指令时序接下来我们分别对几个典型的指令时序加以说明。
·单字节单周期指令:单字节单周期指令只进行一次读指令操作,当第二个ALE信号有效时,PC并不加1,那么读出的还是原指令,属于一次无效的读操作。
·双字节单周期指令:这类指令两次的ALE信号都是有效的,只是第一个ALE信号有效时读的是操作码,第二个ALE信号有效时读的是操作数。
·单字节双周期指令:两个机器周期需进行四读指令操作,但只有一次读操作是有效的,后三次的读操作均为无效操作。
单字节双周期指令有一种特殊的情况,象MOVX这类指令,执行这类指令时,先在ROM 中读取指令,然后对外部数据存储器进行读或写操作,头一个机器周期的第一次读指令的操作码为有效,而第二次读指令操作则为无效的。
在第二个指令周期时,则访问外部数据存储器,这时,ALE信号对其操作无影响,即不会再有读指令操作动作。
上页的时序图中,我们只描述了指令的读取状态,而没有画出指令执行时序,因为每条指令都包含了具体的操作数,而操作数类型种类繁多,这里不便列出,有兴趣的读者可参阅有关书籍时序是用定时单位来描述的,MCS-51的时序单位有四个,它们分别是节拍、状态、机器周期和指令周期,接下来我们分别加以说明。
·节拍与状态:我们把振荡脉冲的周期定义为节拍(为方便描述,用P表示),振荡脉冲经过二分频后即得到整个单片机工作系统的时钟信号,把时钟信号的周期定义为状态(用S表示),这样一个状态就有两个节拍,前半周期相应的节拍我们定义为1(P1),后半周期对应的节拍定义为2(P2)。
·机器周期:MCS-51有固定的机器周期,规定一个机器周期有6个状态,分别表示为S1-S6,而一个状态包含两个节拍,那么一个机器周期就有12个节拍,我们可以记着S1P1、S1P2……S6P1、S6P2,一个机器周期共包含12个振荡脉冲,即机器周期就是振荡脉冲的12分频,显然,如果使用6MHz的时钟频率,一个机器周期就是2us,而如使用12MHz的时钟频率,一个机器周期就是1us。
外部数据存储器读周期
访问外部存储器指令MOVX
执行访问外部存储器指令MOVX时,首先从程序存储器中取出指令,然后从外部数据存储器中取出数据,因此该指令执行时序图与前三类指令不同。
由于MOVX是单字节双周期指令,所以在取指令阶段(即第一个机器周期的S1P1到S4P2)是读1丢1,而在执行指令读数据阶段(即第一个机器周期的S5到第二个机器周期的S3)所完成的操作如下:
(1)先将外部数据存储单元的地址ADDR由DPTR从P0与P2口输出,即时序图中的S5P1到S6P2阶段。
并在S4P2到S5P2阶段,发ALE信号将地址锁存。
(2)在第二个机器周期S1P2到S2P2内取消ALE与程序选通信号PSEN (即取消取指操作),使P0口专门用于传送数据。
同时发读信号,通过P0口将外部数据存储单元中的数据传送到累加器A中。
即:时序图的S6P2到S4P1阶段。
(3)由于锁存的地址为外部数据存储单元的地址,所以在第二个机器周期S4取消取指令的操作,即:不再发程序选通信号PSEN 。