列管式换热器计算表
- 格式:xls
- 大小:26.50 KB
- 文档页数:3
管程流体冷却水壳程流体进口温度t1℃28进口温度T1 ℃出口温度t2 ℃33出口温度T2 ℃定性温度℃30.5定性温度℃流量W1 kg/h13696.00479流量W2 kg/h比热CP1 KJ/(kg·K) 4.174比热CP2 KJ/(kg·K)黏度μ1 Pa·s0.00079409黏度Pa·s导热系数λ 1 W/(m·K)0.61885导热系数λ 2 W/(m·K)密度 ρ1 kg/m3995.525密度ρ2 kg/m3热负荷KW79.39878333热负荷KW按逆流计算的传热温差ΔT ℃26.39686192计算温度校正系数P0.083333333R10查图求得温度校正系数Φ (待定)0.88实际的传热温差ΔT ℃23.22923849初选总传热系数K W/(m2·℃)342换热面积 S'' m28.79499184传热面积S=1.15*S''参照换热面积选取列管换热器结构参数壳体内径D mm313.6571377取圆整壳体内径D mm列管数ns (根)43D列管外径d0 mm25假设的管内水流速u i m/s列管内径d i mm20列管长度l mm3000管心距 mm31.25进一法得到t mm折流板间距B mm100横过管束中心线的管数n c列管材质及导热系数 W/(m·K)45进一法得到nc设计的换热面积 m210.11424062切去的圆缺高度h mm结垢校正因子,对DN25管子取为1.4,对DN19管 1.4假设的壳内接管乙酸甲酯流速管程数=2壳程接管内径d1 m串联的壳程数1取标准管径d1 m管子排列方式对压降的校正因子,正三角形为0.5假设的管内接管水流速u m/s 管程流体被加热取0.4,被冷却取0.30.4管程接管内径d2壳程流体被加热取0.4,被冷却取0.30.3取标准管径d2管壁内侧表面污垢热阻(m2·℃)/K0.000344管壁外侧表面污垢热阻(m2·℃)/K0.000172换热管壁厚 mm 2.5换热管平均直径 mm22.5采用此传热面积下的总传热系数 W/(m2·℃)337.944664当量直径de m230.6998049蒸汽凝液(1)核算压力降88①管程压强降38管程流通面积 m20.00753663管程流速 m/s0.50710552 2777.8Re12714.836432.058取管壁粗糙度 mm0.10.000252相对粗糙度0.0050.138查图求得摩擦系数0.038875.8直管中压力降 Pa729.6149207回弯管压力降 Pa384.007853管程总压力降 Pa3118.14376679.39878333②壳程压强降管子正三角形排列时,横过管束中心线的管子数9折流板数NB 块29壳程流通面积 m20.007109375壳程流速 m/s0.123925908Re8613.834138 10.11424062壳程流体摩擦系数f00.633497932流体横过管束的压力降 Pa511.2409239 325流体流过折流板缺口的压强降 Pa562.5810212 318.5壳程总压力降 Pa1073.8219450.50.28303563942.94794317(2)核算总传热系数1.766561983①管程对流传热系数32计算得 Pr=Cp*μ/λ 5.355953236 7.21318237748Nu86.43928553961管程对流传热系数αi'=Nu*λi/di W/(m2·℃)2674.64759281.25h取80矫正之后对流传热系数αi=ai*f W/(m2·℃)2608.9335141②壳程对流传热系数0.033501321计算得 Pr=Cp*μ/λ 3.7580869570.03Nu81.717709821.5壳程对流传热系数 W/(m2·℃)563.8521977 0.056969073校正后α563.85219770.04③总传热系数总传热系数k W/(m2·℃)342.892515此换热器安全系数 %0.260969295(3)传热面积0.02S''=Q/(K*△tm) 平方米9.96829472Sp=π*d0*L*N实 平方米11.07792面积裕度H11.13154567进一法得到NB 块29校正系数f0.975430753若Re小于10000,需矫正校正系数f0.950478072此处Re范围2000到10万。
四、列管式换热器的工艺计算4.1、确定物性参数:定性温度:可取流体进口温度的平均值壳程油的定性温度为T=(140+40)/2=90℃管程流体的定性温度为t=(30+40)/2=35℃根据定性温度,分别查取壳程和管程流体的有关物性数据煤油在定性温度下的物性数据:ρo=825kg/m3μo=7.15×10-4Pa•Sc po=2.22KJ/(Kg•℃)λo=0.14W/(m•℃)循环冷却水在35℃下的物性数据:ρi=994kg/m3C pi=4.08KJ/(kg.℃)λi=0.626W/(m.℃)μi=0.000725Pa.s4.2、计算总传热系数:4.2.1、热流量m o=[(15.8×104)×103]/(300×24)=21944Kg/hQ o=m o c po t o=21944× 2.22×(140-40)=4.87×106KJ/h=1353KW4.2.1.2、平均传热温差4.2.1.3、冷却水用量W i=Q o/C piΔt=4.87×106/(4.08×(40-30))=119362 Kg/h 4.2.2、总传热系数K=0.023×××=4759W/(.℃﹚壳程传热系数:假设壳程的传热系数污垢热阻管壁的导热系数λ=45W/﹙m.℃﹚则总传热系数K为:4.3、计算传热面积S’=Q/(KΔt)= (1353×103)/(310×39)=111.9m2考虑15%的面积裕度,S=1.15×S’=128.7 m24.4、工艺结构尺寸4.4.1、管径和管内流速选用φ25×2.5传热管(碳钢),取管内流速μi=1m/s 4.4.2、管程数和传热管数依据传热管内径和流速确定单程传热管数=(119362/(994×3600)0.785×0.022×1=106.2≈107根按单程管计算,所需的传热管长度为=128.7/(3.14×0.025×107)=15.32m按单程管设计,传热管过长,宜采用多管程结构。
管程流体进口温度t1℃出口温度t2 ℃定性温度℃流量W1 kg/h比热CP1 KJ/(kg·K)黏度Pa·s导热系数W/(m·K)密度kg/m3热负荷KW按逆流计算的传热温差ΔT ℃计算温度校正系数PR查图求得温度校正系数Φ实际的传热温差ΔT ℃初选总传热系数K W/(m2·℃)换热面积 m2参照换热面积选取列管换热器结构参数壳体直径 mm列管数(根)列管外径 mm列管内径 mm列管长度 mm管间距 mm折流板间距 mm列管材质及导热系数 W/(m·K)设计的换热面积 m2结垢校正因子,对DN25管子取为1.4,对DN19管子取为1.5管程数串联的壳程数管子排列方式对压降的校正因子,正三角形为0.5,正方形斜转45度为0.4,正方形为0.3管程流体被加热取0.4,被冷却取0.3壳程流体被加热取0.4,被冷却取0.3管壁内侧表面污垢热阻(m2·℃)/K管壁外侧表面污垢热阻(m2·℃)/K换热管壁厚 mm换热管平均直径 mm采用此传热面积下的总传热系数 W/(m2·℃)冷却水壳程流体蒸汽凝液28进口温度T1 ℃18038出口温度T2 ℃6033定性温度℃120 244341流量W2 kg/h200004.174比热CP2 KJ/(kg·K) 4.250.0008黏度Pa·s0.000240.6176导热系数W/(m·K)0.685995.7密度kg/m3943.1 2832.99815热负荷KW2833.33333373.820987160.065789474120.966.43888844100042.6457064560024525203000321504555.81.4110.50.40.30.00020.00022.522.5764.2599722(1)核算压力降①管程压强降管程流通面积 m20.07693管程流速 m/s0.886073 Re22056.58取管壁粗糙度 mm0.1相对粗糙度0.005查图求得摩擦系数0.032直管中压力降 Pa1876.199回弯管压力降 Pa1172.625壳程总压力降 Pa4268.353②壳程压强降管子正三角形排列时,横过管束中心线的管子数17.21772折流板数19壳程流通面积 m20.025434壳程流速 m/s0.231613 Re22753.57壳程流体摩擦系数0.507648流体横过管束的压力降 Pa2211.017流体流过折流板缺口的压强降 Pa1441.878壳程总压力降 Pa3652.896(2)核算总传热系数①管程对流传热系数查表得 Pr 5.4 Nu134.746管程对流传热系数 W/(m2·℃)4160.956②壳程对流传热系数查表得 Pr 1.43 Nu78.33724壳程对流传热系数 W/(m2·℃)2146.44③总传热系数总传热系数k W/(m2·℃)782.4556此换热器安全系数 % 2.380818。
2.4 列管换热器设计示例某生产过程中,需将6000 kg/h的油从140℃冷却至40℃,压力为0.3MPa;冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水入口温度30℃,出口温度为40℃。
试设计一台列管式换热器,完成该生产任务。
1.确定设计方案(1)选择换热器的类型两流体温度变化情况:热流体进口温度140℃,出口温度40℃冷流体(循环水)进口温度30℃,出口温度40℃。
该换热器用循环冷却水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式式换热器。
(2)流动空间及流速的确定由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,油品走壳程。
选用ф25×2.5的碳钢管,管内流速取u i=0.5m/s。
2.确定物性数据定性温度:可取流体进口温度的平均值。
壳程油的定性温度为(℃)管程流体的定性温度为(℃)根据定性温度,分别查取壳程和管程流体的有关物性数据。
油在90℃下的有关物性数据如下:密度ρo=825 kg/m3定压比热容c po=2.22 kJ/(kg·℃)导热系数λo=0.140 W/(m·℃)粘度μo=0.000715 Pa·s循环冷却水在35℃下的物性数据:密度ρi=994 kg/m3定压比热容c pi=4.08 kJ/(kg·℃)导热系数λi=0.626 W/(m·℃)粘度μi=0.000725 Pa·s3.计算总传热系数(1)热流量Q o=W o c poΔt o=6000×2.22×(140-40)=1.32×106kJ/h=366.7(kW)(2)平均传热温差(℃)(3)冷却水用量(kg/h)(4)总传热系数K管程传热系数W/(m·℃)壳程传热系数假设壳程的传热系数αo=290 W/(m2·℃);污垢热阻R si=0.000344 m2·℃/W , R so=0.000172 m2·℃/W管壁的导热系数λ=45 W/(m·℃)=219.5 W/(m·℃)4.计算传热面积(m2)考虑15%的面积裕度,S=1.15×S′=1.15×42.8=49.2(m2)。
列管式换热器计算水蒸气温度150℃,换热器面积32m 2,重油流量3.5T/h (0.97kg/s ),重油进口温度为20℃,初选20#无缝钢管规格为15×1,2管程,每管程94根管,在垂直列上管子数平均为n =16根。
1. 蒸汽侧冷凝换热表面换热系数1h(1)定性温度21w s m t t t +=,假定壁面温度5.149=w t ℃,则21w s m t t t +==148.8℃ 由1m t 查水的物性参数,得1λ=0.685W/(m·K),=1μ 2.01×10-4N·s/m 2,1ρ=920kg/m 3,r =2113.1×103J/kg 。
(2)定型尺寸:水平管束取nd ,n = 16,d =0.017m(3)表面换热系数1h 计算式=-⨯⨯⨯⨯⨯⨯⨯⨯=-=-41433241131211])5.149150(1001.2017.016101.211381.9685.0920[725.0])([725.0w s t t μnd gr λρh 15451 W/(m 2·K) 2. 重油侧表面换热系数2h(1)由重油的定性温度查重油的物性参数,得2λ=0.175W/(m·K),=2ν 2.0×10-6m 2/s ,2ρ=900kg/m 3,2c =1.88×10-3 J/(kg·K),Pr =19.34。
(2)流速u065.094015.0414.390097.0222=⨯⨯⨯==f ρM u m/s (3)雷诺数和努谢尔特数分别为5.487100.2015.0065.0622=⨯⨯==-νud R e =-=-=--22)64.15.487ln 82.1()64.1Re ln 82.1(d f 0.01152.9)134.19()8/011.0(27.107.134.195.487)8/011.0()1(Pr )8/(27.107.1Pr Re )8/(667.05.0667.05.0=-+⨯⨯=-+=f f N d ud (4)表面换热系数2h 为1.111015.0175.052.9222=⨯==d λN h ud W/(m 2·K) 3. 传热系数K忽略管壁热阻,又因管壁很薄可按平壁计算传热系数 =+=+=1.1111154511111121h h K 109.9W/(m 2·K)4. 平均温差法(LMTD 法)计算重油出口温度预先设定''2t ,试算后再校核,现设定''2t =120℃,则=-----=-=12015020150ln )120150()20150(ΔΔln ΔΔΔ''''''tt t t t m 68.2℃ =⨯⨯==2.682.279.109Δm t KA Φ 2.04×105W =+⨯⨯⨯=+=20)1088.197.01004.2)35'222''2t c M Φt 132℃ 设定值与校核值不一致。
四、列管式换热器得工艺计算4、1、确定物性参数:定性温度:可取流体进口温度得平均值壳程油得定性温度为T=(140+40)/2=90℃管程流体得定性温度为t=(30+40)/2=35℃根据定性温度,分别查取壳程与管程流体得有关物性数据煤油在定性温度下得物性数据:ρo=825kg/m3μo=7、15×10-4Pa•Sc po=2、22KJ/(Kg•℃)λo=0、14W/(m•℃)循环冷却水在35℃下得物性数据:ρi=994kg/m3C pi=4、08KJ/(kg、℃)λi=0、626W/(m、℃)μi=0、000725Pa、s4、2、计算总传热系数:4、2、1、热流量m o=[(15、8×104)×103]/(300×24)=21944Kg/hQ o=m o c po t o=21944×2、22×(140-40)=4、87×106KJ/h=1353KW4、2、1、2、平均传热温差4、2、1、3、冷却水用量W i=Q o/C piΔt=4、87×106/(4、08×(40-30))=119362 Kg/h 4、2、2、总传热系数K=0、023×××=4759W/(、℃﹚壳程传热系数:假设壳程得传热系数污垢热阻管壁得导热系数λ=45W/﹙m、℃﹚则总传热系数K为:4、3、计算传热面积S’=Q/(KΔt)= (1353×103)/(310×39)=111、9m2考虑15%得面积裕度,S=1、15×S’=128、7 m24、4、工艺结构尺寸4、4、1、管径与管内流速选用φ25×2、5传热管(碳钢),取管内流速μi=1m/s4、4、2、管程数与传热管数依据传热管内径与流速确定单程传热管数=(119362/(994×3600)0、785×0、022×1=106、2≈107根按单程管计算,所需得传热管长度为=128、7/(3、14×0、025×107)=15、32m按单程管设计,传热管过长,宜采用多管程结构。
管程流体进口温度t1℃出口温度t2 ℃定性温度℃流量W1 kg/h比热CP1 KJ/(kg·K)黏度Pa·s导热系数W/(m·K)密度kg/m3热负荷KW按逆流计算的传热温差ΔT ℃计算温度校正系数PR查图求得温度校正系数Φ实际的传热温差ΔT ℃初选总传热系数K W/(m2·℃)换热面积 m2参照换热面积选取列管换热器结构参数壳体直径 mm列管数(根)列管外径 mm列管内径 mm列管长度 mm管间距 mm折流板间距 mm列管材质及导热系数 W/(m·K)设计的换热面积 m2结垢校正因子,对DN25管子取为1.4,对DN19管子取为1.5管程数串联的壳程数管子排列方式对压降的校正因子,正三角形为0.5,正方形斜转45度为0.4,正方形为0.3管程流体被加热取0.4,被冷却取0.3壳程流体被加热取0.4,被冷却取0.3管壁内侧表面污垢热阻(m2·℃)/K管壁外侧表面污垢热阻(m2·℃)/K换热管壁厚 mm换热管平均直径 mm采用此传热面积下的总传热系数 W/(m2·℃)冷却水壳程流体蒸汽凝液28进口温度T1 ℃18038出口温度T2 ℃6033定性温度℃120 244341流量W2 kg/h200004.174比热CP2 KJ/(kg·K) 4.250.0008黏度Pa·s0.000240.6176导热系数W/(m·K)0.685995.7密度kg/m3943.1 2832.99815热负荷KW2833.33333373.820987160.065789474120.966.43888844100042.6457064560024525203000321504555.81.4110.50.40.30.00020.00022.522.5764.2599722(1)核算压力降①管程压强降管程流通面积 m20.07693管程流速 m/s0.886073 Re22056.58取管壁粗糙度 mm0.1相对粗糙度0.005查图求得摩擦系数0.032直管中压力降 Pa1876.199回弯管压力降 Pa1172.625壳程总压力降 Pa4268.353②壳程压强降管子正三角形排列时,横过管束中心线的管子数17.21772折流板数19壳程流通面积 m20.025434壳程流速 m/s0.231613 Re22753.57壳程流体摩擦系数0.507648流体横过管束的压力降 Pa2211.017流体流过折流板缺口的压强降 Pa1441.878壳程总压力降 Pa3652.896(2)核算总传热系数①管程对流传热系数查表得 Pr 5.4 Nu134.746管程对流传热系数 W/(m2·℃)4160.956②壳程对流传热系数查表得 Pr 1.43 Nu78.33724壳程对流传热系数 W/(m2·℃)2146.44③总传热系数总传热系数k W/(m2·℃)782.4556此换热器安全系数 % 2.380818。
化工原理课程设计设计书专业年级 2011级应用化学小组成员指导教师日期 2014-5-27目录目录…………………………………………………第一章设计任务书 (1)第二章概述 (2)第三章结构设计与说明 (4)第四章换热器的设计计算 (5)第五章总结 (16)第六章参考文献 (18)第一章设计任务书一、设计名称用水冷却煤油产品的多程列管式换热器设计二、设计任务使煤油从140℃冷却到40℃,压力1bar(100kpa) ,冷却剂为水,水压力为3bar(300kpa),处理量为10t/h。
三、设计任务1 合理的参数选择和结构设计2 传热计算和压降计算:设计计算和校核计算四、设计说明书内容1 传热面积2 管程设计包括:总管数、程数、管程总体阻力校核3 壳体直径4 结构设计包括流体壁厚5 主要进出口管径的确定包括:冷热流体的进出口管五、设计进度1 设计动员,下达设计任务书 0.5天2 搜集资料,阅读教材,拟定设计进度 1.5天3 设计计算(包括电算,编写说明书草稿) 5-6天4 绘图 3-4天5 整理,抄写说明书 2天第二章概述化工生产中,无论是化学过程还是物理过程,几乎都需要热量的引入和导出.例如在绝大多数化学反应过程和物理过程都是在一定温度下进行的,为了使物系达到并保持指定的温度,就要预先对物料进行加热或冷却,并在很多过程进行时,也要及时取走过程放出的热量或补充过程吸收的热量.工业上用于传热过程的基本设备称为换热器.在化工生产中,最常见的是两流体间的热交换.而且多是间壁式换热,两流体不接触,不混合.冷热两流体在传热是被固体壁面(传热面)所隔开,两流体分别在壁画两侧流动.典型的换热器有套管式换热器和列管式换热器. 列管式换热器是目前化工及酒精生产上应用最广的一种换热器。
它主要由壳体、管板、换热管、封头、折流挡板等组成。
所需材质,可分别采用普通碳钢、紫铜、或不锈钢制作。
列管式换热器种类很多,目前广泛使用的按其温差补偿结构来分,主要有以下几种:浮头式换热器、固定式换热器、U形管换热器、填料函式换热器等1 浮头式换热器浮头式换热器两端的管板,一端不与壳体相连,该端称浮头。
列管式换热器的计算列管式换热器是一种常见的热交换设备,用于将热量从一个流体传递给另一个流体。
它由一组管子和外壳组成,热量通过管壁传递。
在设计或计算列管式换热器时,需要考虑各种参数和因素。
下面将详细介绍列管式换热器的计算方法。
首先,需要确定列管式换热器的传热面积。
传热面积影响热量传递的效率,可以通过以下公式计算:A=n×π×D×L其中:A表示传热面积(m2)n表示管子数量D表示管子外径(m)L表示管子长度(m)然后,需要计算每个管子的传热系数。
传热系数表示单位面积上的传热量,可以通过以下公式计算:U=(1/(1/h_i+δ_i/k_i+1/h_o))其中:U表示总传热系数(W/(m2·K))h_i表示内壁对流传热系数(W/(m2·K))δ_i表示管壁导热系数(W/(m·K))k_i表示管壁导热系数(W/(m·K))h_o表示外壁对流传热系数(W/(m2·K))对流传热系数可以通过经验公式、实验或计算获得。
管壁导热系数可以根据管材的材料及厚度获得。
接下来,需要计算传热器的热负荷。
热负荷表示单位时间内流体传递的热量,可以通过以下公式计算:Q=m×Cp×ΔT其中:Q表示热负荷(W)m 表示流体的质量流量(kg/s)Cp 表示流体的定压比热容(J / (kg·K))ΔT表示流体进出口温度的温差(K)最后,需要计算传热器的温度差。
温度差表示流体进出口温度之间的差距,可以通过以下公式计算:ΔT = (T_i - T_o) / ln(T_i / T_o)其中:ΔT表示温度差(K)T_i表示进口温度(K)T_o表示出口温度(K)根据以上公式,可以计算出列管式换热器的传热面积、传热系数、热负荷和温度差。
这些参数和结果对于合理设计和选择列管式换热器非常重要。
列管式换热器的设计和选用的计算步骤设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。
由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力。
根据传热速率基本方程:当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器结构决定的。
可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。
◎初选换热器的规格尺寸◆ 初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式,重新计算。
◆ 计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A估。
◆ 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排列。
◎计算管、壳程阻力在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。
或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。
这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计算,直到合理为止。
◎核算总传热系数分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。
如果相差较多,应重新估算。
◎计算传热面积并求裕度根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。
即裕度为20%左右,裕度的计算式为:某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下:表4-18 设计条件数据试设计选择适宜的列管换热器。
解:(1) 传热量Q 及釜液出口温度a. 传热量Q以原料液为基准亦计入5%的热损失,按以下步骤求得传热量Q 。
列管式换热器的计算四、列管式换热器得⼯艺计算4、1、确定物性参数:定性温度:可取流体进⼝温度得平均值壳程油得定性温度为T=(140+40)/2=90℃管程流体得定性温度为t=(30+40)/2=35℃根据定性温度,分别查取壳程与管程流体得有关物性数据煤油在定性温度下得物性数据:ρo=825kg/m3µo=7、15×10-4Pa?Sc po=2、22KJ/(Kg?℃)λo=0、14W/(m?℃)循环冷却⽔在35℃下得物性数据:ρi=994kg/m3C pi=4、08KJ/(kg、℃)λi=0、626W/(m、℃)µi=0、000725Pa、s4、2、计算总传热系数:4、2、1、热流量m o=[(15、8×104)×103]/(300×24)=21944Kg/hQ o=m o c po t o=21944×2、22×(140-40)=4、87×106KJ/h=1353KW4、2、1、2、平均传热温差4、2、1、3、冷却⽔⽤量W i=Q o/C piΔt=4、87×106/(4、08×(40-30))=119362 Kg/h 4、2、2、总传热系数K =0、023×××=4759W/(、℃﹚壳程传热系数:假设壳程得传热系数污垢热阻管壁得导热系数λ=45W/﹙m、℃﹚则总传热系数K为:4、3、计算传热⾯积S’=Q/(KΔt)= (1353×103)/(310×39)=111、9m2考虑15%得⾯积裕度,S=1、15×S’=128、7 m24、4、⼯艺结构尺⼨4、4、1、管径与管内流速选⽤φ25×2、5传热管(碳钢),取管内流速µi=1m/s4、4、2、管程数与传热管数依据传热管内径与流速确定单程传热管数=(119362/(994×3600)0、785×0、022×1=106、2≈107根按单程管计算,所需得传热管长度为=128、7/(3、14×0、025×107)=15、32m按单程管设计,传热管过长,宜采⽤多管程结构。
第一部分列管式换热器选型设计计算一.列管式换热器设计过程中的常见问题换热器设计的优劣最终要以是否适用、经济、安全、负荷弹性大、操作可靠、检修清洗方便等为考察原则。
当这些原则相互矛盾时,应在首先满足基本要求的情况下再考虑一般原则。
1.流体流动空间的选择原则(1)不洁净和易结垢的流体宜走管内,因为管内清洗比较方便。
(2)腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。
(3)压强高的流体宜走管内,以免壳体受压,可节省壳体金属消耗量。
(4)饱和蒸气宜走管间,以便于及时排出冷凝液,且蒸气较洁净,它对清洗无要求。
(5)有毒流体宜走管内,使泄漏机会较少。
(6)被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。
(7)粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,可以提高对流传热系数。
(8)对于刚性结构的换热器,若两流体的温度差较大,对流传热系数较大者宜走管间,因壁面温度与α大的流体温度相近,可以减少热应力。
在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾。
2.流体流速的选择根据管内湍流时对流传热系数αi∝u0.8,流速增大,则αi增大,同时污垢热阻R si 减小,利于传热,从而可减少传热面积,节约设备费用;但同时又使压降增大,加大了动力消耗,提高了操作费用。
可见应全面分析权衡比较适宜的流速。
(1)所选流速要尽量使流体湍流,有利传热。
(2)所选流速应使管长或程数恰当。
管子过长,不便于清洗管内污垢;而管子过短,管程数增加,使结构复杂化,传热温差减少,均会降低传热效果。
(3)粘度大的流体,流速应小些,可按滞流处理。
(4)高密度流体(液体),阻力消耗与传热速率相比一般较小,可适当提高流速。
在我们教材及换热器设计手册中均给了出一些经验数据,以供参考。
3.管子规格及排列情况(1)管径选择:国内换热器系列标准件中管子规格为Φ25×2.5mm、Φ19×2mm,在再沸器中可采用Φ38×3mm。
管程流体
进口温度t1℃
出口温度t2 ℃
定性温度℃
流量W1 kg/h
比热CP1 KJ/(kg·K)
黏度Pa·s
导热系数W/(m·K)
密度kg/m3
热负荷KW
按逆流计算的传热温差ΔT ℃
计算温度校正系数
P
R
查图求得温度校正系数Φ
实际的传热温差ΔT ℃
初选总传热系数K W/(m2·℃)
换热面积 m2
参照换热面积选取列管换热器结构参数
壳体直径 mm
列管数(根)
列管外径 mm
列管内径 mm
列管长度 mm
管间距 mm
折流板间距 mm
列管材质及导热系数 W/(m·K)
设计的换热面积 m2
结垢校正因子,对DN25管子取为1.4,对DN19管子取为1.5
管程数
串联的壳程数
管子排列方式对压降的校正因子,正三角形为0.5,正方形斜转45度为0.4,正方形为0.3管程流体被加热取0.4,被冷却取0.3
壳程流体被加热取0.4,被冷却取0.3
管壁内侧表面污垢热阻(m2·℃)/K
管壁外侧表面污垢热阻(m2·℃)/K
换热管壁厚 mm
换热管平均直径 mm
采用此传热面积下的总传热系数 W/(m2·℃)
冷却水壳程流体蒸汽凝液
28进口温度T1 ℃180
38出口温度T2 ℃60
33定性温度℃120 244341流量W2 kg/h20000
4.174比热CP2 KJ/(kg·K) 4.25
0.0008黏度Pa·s0.00024
0.6176导热系数W/(m·K)0.685
995.7密度kg/m3943.1 2832.99815热负荷KW2833.333333
73.82098716
0.065789474
12
0.9
66.43888844
1000
42.64570645
600
245
25
20
3000
32
150
45
55.8
1.4
1
1
0.5
0.4
0.3
0.0002
0.0002
2.5
22.5
764.2599722
(1)核算压力降
①管程压强降
管程流通面积 m20.07693管程流速 m/s0.886073 Re22056.58取管壁粗糙度 mm0.1相对粗糙度0.005查图求得摩擦系数0.032直管中压力降 Pa1876.199回弯管压力降 Pa1172.625壳程总压力降 Pa4268.353
②壳程压强降
管子正三角形排列时,横过管束中心线的管子数17.21772折流板数19壳程流通面积 m20.025434壳程流速 m/s0.231613 Re22753.57壳程流体摩擦系数0.507648流体横过管束的压力降 Pa2211.017流体流过折流板缺口的压强降 Pa1441.878壳程总压力降 Pa3652.896
(2)核算总传热系数
①管程对流传热系数
查表得 Pr 5.4 Nu134.746管程对流传热系数 W/(m2·℃)4160.956
②壳程对流传热系数
查表得 Pr 1.43 Nu78.33724壳程对流传热系数 W/(m2·℃)2146.44
③总传热系数
总传热系数k W/(m2·℃)782.4556此换热器安全系数 % 2.380818。