九章算术中的立体几何(讲座)
- 格式:ppt
- 大小:2.85 MB
- 文档页数:92
九章算术几何知识嘿,朋友!您知道《九章算术》吗?这可是咱中国古代数学的瑰宝啊!里面的几何知识,那叫一个精彩!咱先来说说这《九章算术》,它就像一座古老而神秘的知识宝库,蕴含着无数的智慧结晶。
而其中的几何知识,就像是宝库中闪闪发光的宝石。
您想想,咱们平常生活中,哪儿能离得开几何呢?比如盖房子,那房子的形状、面积、体积,不都得靠几何知识来计算嘛!要是没有这些知识,那房子能盖得稳当、好看吗?《九章算术》里的几何知识,就像是一把神奇的钥匙,能帮我们打开很多难题的大门。
比如说求三角形的面积,它告诉我们怎么去找到那个关键的数值,怎么去运用公式。
这难道不比摸着石头过河要强得多?再比如说圆的知识,圆的周长、面积,这在生活中的用处可大了去了!做个车轮,您得知道圆的直径和周长的关系吧?不然这车轮能转得顺溜吗?还有那长方体、正方体,计算它们的体积和表面积,对于做木匠活儿的师傅来说,那可是吃饭的本事。
要是算错了,做出的柜子、桌子不合尺寸,那不是闹笑话了嘛!《九章算术》中的几何知识,可不是那种死板的教条,而是充满了灵活性和实用性。
它就像一位经验丰富的老师傅,手把手地教我们怎么去解决实际问题。
您看,几何知识在农业生产中也大有用处。
要划分一块地,怎么才能分得公平合理?这就得靠几何知识来帮忙啦!而且,几何知识对于我们理解世界也很有帮助。
大自然中到处都有几何的影子,花朵的形状、树叶的脉络,不都有着几何的美吗?所以说啊,《九章算术》里的几何知识,那可真是咱们的好帮手,是咱们探索世界、解决问题的有力武器。
咱们可得好好学,好好用,让这些古老的智慧在现代社会继续发光发热!总之,《九章算术》的几何知识是咱们宝贵的财富,咱们不能让它被遗忘,得把它传承下去,您说是不是这个理儿?。
第1讲空间几何体专题强化训练1.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA1为底面矩形的一边,则这样的阳马的个数是( )A.4 B.8C.12 D.16解析:选D.如图,以AA1为底面矩形一边的四边形有AA1C1C、AA1B1B、AA1D1D、AA1E1E这4个,每一个面都有4个顶点,所以阳马的个数为16个.故选D.2.正方体ABCDA1B1C1D1中,E为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的正视图为( )解析:选C.过点A,E,C1的平面与棱DD1相交于点F,且F是棱DD1的中点,截去正方体的上半部分,剩余几何体的直观图如图所示,则其正视图应为选项C.3.某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3C .323cm 3D .403cm 3解析:选C.由三视图可知,该几何体是由一个正方体和一个正四棱锥构成的组合体.下面是棱长为2 cm 的正方体,体积V 1=2×2×2=8(cm 3);上面是底面边长为2 cm ,高为2 cm 的正四棱锥,体积V 2=13×2×2×2=83(cm 3),所以该几何体的体积V =V 1+V 2=323(cm 3).4.(2019·某某模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体最长的棱长等于( )A .34B .41C .5 2D .215解析:选C.由正视图、侧视图、俯视图的形状,可判断该几何体为三棱锥,形状如图,其中SC ⊥平面ABC ,AC ⊥AB ,所以最长的棱长为SB =5 2.5.(2019·某某十校联考)某几何体的三视图如图所示,则该几何体的体积是( )A .15π2B .8π C.17π2D .9π解析:选B.依题意,题中的几何体是由两个完全相同的圆柱各自用一个不平行于其轴的平面去截后所得的部分拼接而成的组合体(各自截后所得的部分也完全相同),其中一个截后所得的部分的底面半径为1,最短母线长为3、最长母线长为5,将这两个截后所得的部分拼接恰好形成一个底面半径为1,母线长为5+3=8的圆柱,因此题中的几何体的体积为π×12×8=8π,选B.6.如图,圆柱内有一个直三棱柱,三棱柱的底面在圆柱底面内,且底面是正三角形.如果三棱柱的体积为123,圆柱的底面直径与母线长相等,则圆柱的侧面积为( )A .12πB .14πC .16πD .18π解析:选C.设圆柱的底面半径为R ,则三棱柱的底面边长为3R ,由34(3R )2·2R =123,得R =2,S 圆柱侧=2πR ·2R =16π.故选C.7.(2019·某某市第一次模拟)某几何体的三视图如图所示(网格线中每个小正方形的边长为1),则该几何体的表面积为( )A .48B .54C .64D .60解析:选D.根据三视图还原直观图,如图所示,则该几何体的表面积S =6×3+12×6×4+2×12×3×5+12×6×5=60,故选D.8.在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A.4πB.9π2C.6πD.32π3解析:选B.由题意可得若V 最大,则球与直三棱柱的部分面相切,若与三个侧面都相切,可求得球的半径为2,球的直径为4,超过直三棱柱的高,所以这个球放不进去,则球可与上下底面相切,此时球的半径R =32,该球的体积最大,V max =43πR 3=4π3×278=9π2.9.(2019·某某八校联考)某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为( )A.12B.24C.22 D.32解析:选C.依题意得,题中的直三棱柱的底面是等腰直角三角形,设其直角边长为a ,则斜边长为2a ,圆锥的底面半径为22a 、母线长为a ,因此其俯视图中椭圆的长轴长为2a 、短轴长为a ,其离心率e =1-(a2a)2=22,选C. 10.已知圆柱OO 1的底面半径为1,高为π,ABCD 是圆柱的一个轴截面.动点M 从点B 出发沿着圆柱的侧面到达点D ,其距离最短时在侧面留下的曲线Γ如图所示.现将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ≤π)后,边B 1C 1与曲线Γ相交于点P ,设BP 的长度为f (θ),则y =f (θ)的图象大致为( )解析:选A.将圆柱的侧面沿轴截面ABCD 展平,则曲线Γ是展开图形(即矩形)的对角线,根据题意,将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ≤π)后,边B 1C 1与曲线Γ相交于点P ,设BP 的长度为f (θ),则f (θ)应当是一次函数的一段,故选A.11.(2019·某某省重点中学高三12月期末热身联考)某空间几何体的三视图如图所示,则该几何体的体积是________;表面积是________.解析:根据三视图可得,该几何体是长方体中的四棱锥C BB 1D 1D ,由三视图可得:AB =2,BC =2,BB 1=4,VC BB 1D 1D =23×12×2×2×4=163,S C BB 1D 1D =12×2×2+22×4+12×2×4+12×2×4+12×22×18=16+8 2.答案:16316+8 212.(2019·某某市余姚中学期中检测)某几何体的三视图如图所示(单位:cm),则该几何体的体积为________ cm 3,表面积为________cm 2.解析:由三视图可知:该几何体是由一个半球去掉14后得到的几何体.所以该几何体的体积=34×12×43×π×13=π2cm 3.表面积=34×12×4π×12+12×π×12+34×π×12=11π4 cm 2.答案:π211π413.(2019·某某省“五校联盟”质量检测)已知球O 的表面积为25π,长方体的八个顶点都在球O 的球面上,则这个长方体的表面积的最大值等于________.解析:设球的半径为R ,则4πR 2=25π,所以R =52,所以球的直径为2R =5,设长方体的长、宽、高分别为a 、b 、c ,则长方体的表面积S =2ab +2ac +2bc ≤a 2+b 2+a 2+c 2+b 2+c 2=2(a 2+b 2+c 2)=50.答案:5014.(2019·某某省高三考前质量检测)某几何体的三视图如图所示,当xy 取得最大值时,该几何体的体积是____________.解析:分析题意可知,该几何体为如图所示的四棱锥P ABCD ,CD =y2,AB=y ,AC =5,CP =7,BP =x ,所以BP 2=BC 2+CP 2,即x 2=25-y 2+7,x 2+y2=32≥2xy ,则xy ≤16,当且仅当x =y =4时,等号成立.此时该几何体的体积V =13×2+42×3×7=37.答案:3715.(2019·某某市高考数学二模)在正方体ABCD A 1B 1C 1D 1中,E 是AA 1的中点,则异面直线BE 与B 1D 1所成角的余弦值等于________,若正方体棱长为1,则四面体B EB 1D 1的体积为________.解析:取CC 1中点F ,连接D 1F ,B 1F ,则BE 綊D 1F , 所以∠B 1D 1F 为异面直线BE 与B 1D 1所成的角.设正方体棱长为1,则B 1D 1=2,B 1F =D 1F =1+14=52.所以cos ∠B 1D 1F =12B 1D 1D 1F =2252=105. V B EB 1D 1=V D 1BB 1E =13S △BB 1E ·A 1D 1=13×12×1×1×1=16.答案:1051616.已知棱长均为a 的正三棱柱ABC A 1B 1C 1的六个顶点都在半径为216的球面上,则a 的值为________.解析:设O 是球心,D 是等边三角形A 1B 1C 1的中心,则OA 1=216,因为正三棱柱ABC A 1B 1C 1的所有棱长均为a ,所以A 1D =32a ×23=33a ,OD =a 2,故A 1D 2+OD 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫a 22=⎝ ⎛⎭⎪⎫2162,得712a 2=2136,即a 2=1,得a =1. 答案:117.(2019·瑞安四校联考)已知底面为正三角形的三棱柱内接于半径为1的球,则此三棱柱的体积的最大值为________.解析:如图,设球心为O ,三棱柱的上、下底面的中心分别为O 1,O 2,底面正三角形的边长为a ,则AO 1=23×32a =33a .由已知得O 1O 2⊥底面, 在Rt △OAO 1中,由勾股定理得OO 1=12-⎝ ⎛⎭⎪⎫33a 2=3·3-a 23,所以V 三棱柱=34a 2×2×3·3-a 23=3a 4-a62,令f (a )=3a 4-a 6(0<a <2), 则f ′(a )=12a 3-6a 5=-6a 3(a 2-2),令f ′(a )=0,解得a = 2.因为当a ∈(0,2)时,f ′(a )>0;当a ∈(2,2)时,f ′(a )<0,所以函数f (a )在(0,2)上单调递增,在(2,2)上单调递减. 所以f (a )在a =2处取得极大值.因为函数f (a )在区间(0,2)上有唯一的极值点,所以a =2也是最大值点.所以(V 三棱柱)max=3×4-82=1. 答案:118.如图,四棱锥P ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD , ∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ABCD 的体积.解:(1)证明:在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD .又BC ⊄平面PAD ,AD ⊂平面PAD ,故BC ∥平面PAD .(2)取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .因为CM ⊂底面ABCD ,所以PM ⊥CM .设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x . 取CD 的中点N ,连接PN , 则PN ⊥CD ,所以PN =142x . 因为△PCD 的面积为27, 所以12×2x ×142x =27,解得x =-2(舍去)或x =2.于是AB =BC =2,AD =4,PM =2 3. 所以四棱锥P ABCD 的体积V =13×2×(2+4)2×23=4 3.19.如图,在△ABC 中,∠B =π2,AB =BC =2,P 为AB 边上一动点,PD ∥BC 交AC 于点D .现将△PDA 沿PD 翻折至△PDA ′,使平面PDA ′⊥平面PBCD .(1)当棱锥A ′PBCD 的体积最大时,求PA 的长;(2)若P 为AB 的中点,E 为A ′C 的中点,求证:A ′B ⊥DE . 解:(1)设PA =x ,则PA ′=x , 所以V A ′PBCD =13PA ′·S 底面PBCD =13x ⎝ ⎛⎭⎪⎫2-x 22.令f (x )=13x ⎝ ⎛⎭⎪⎫2-x 22=2x 3-x36(0<x <2),则f ′(x )=23-x22.当x 变化时,f ′(x ),f (x )的变化情况如下表:x ⎝⎛⎭⎪⎫0,233233 ⎝ ⎛⎭⎪⎫233,2 f ′(x )0 f (x )单调递增极大值单调递减由上表易知,当PA =x =233时,V A ′PBCD 取最大值.(2)证明:取A ′B 的中点F ,连接EF ,FP . 由已知,得EF 綊12BC 綊PD .所以四边形EFPD 是平行四边形, 所以ED ∥FP .因为△A ′PB 为等腰直角三角形, 所以A ′B ⊥PF .所以A ′B ⊥DE .。
1立体几何---鳖臑广东二师附中数学科组罗剑锋2018年6月14日2015年湖北高考数学之后,广大考生感言:阳马、鳖臑,想说爱你不容易;中学教师考后反思:阳马、鳖臑,不说爱你又没道理;试题评价专家说:湖北高考数学试题注重数学本质,突出数学素养,彰显数学文化.阳马、鳖臑是什么呢?1试题再现《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图1,在阳马ABCDP中,侧棱PD底面ABCD,且PDCD,过棱PC的中点E,作EFPB交PB于点F,连接,,,.DEDFBDBE(I)证明:PB平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(II)若面DEF与面ABCD所成二面角的大小为π3,求DCBC 的值.阳马和鳖臑是我国古代对一些特殊锥体的称谓,取一长方体,按下图斜割一分为二,得两个一模一样的三棱柱,称为堑堵. 再沿堑堵的一顶点与相对的棱剖开,得四棱锥和三棱锥各一个.以矩形为底,另有一棱与底面垂直的四棱锥,称为阳马.余下的三棱锥是由四个直角三角形组成的四面体,称为鳖臑.22试题赏析《普通高中课程标准实验教科书数学必修2》的“第一章立体几何初步”的“第六节垂点P为ABC所在直关系”的例题如图4所示,在中,90B,平面外一点,PA平面ABC。
问:四面体PABC中有几个直角三角形?(哪个角是直角?)如图5,鳖臑几何体PABC中,PA平面ABC,ACCB,AMPB于M,ANPC于N.证明:PBMN.3典型例题例1、2017年广州一测(10)变式《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥PABC 为鳖臑,PA⊥平面ABC,4PAAC,2AB,三棱锥PABC的四个顶点都在球O的球面上,则球O的表面积为()(A)8(B)12(C)20(D)32PAC图4MPABC图5NRtABC3变式1、中国古代第一部数学名著《九章算术》中,将一般多面体分为阳马、鳖臑、堑堵三种基本立体图形,其中将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥Q-ABC为鳖臑,QA⊥平面ABC,AB⊥BC,QA=BC=3,AC=5,则三棱锥Q-ABC 外接球的体积为()A.32B.C.D.34变式2、《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑。
立体几何专题7:棱锥一.选择题(共12小题)1.(2011•闸北区二模)以下四个命题:①正棱锥的所有侧棱相等;②直棱柱的侧面都是全等的矩形;③圆柱的母线垂直于底面;④用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形.其中,真命题的个数为( )A .4B .3C .2D .1答案:B .2.(2004•浦东新区校级模拟)若正棱锥底面边长与侧棱长相等,则该棱锥一定不是( )A .三棱锥B .四棱锥C .五棱锥D .六棱锥 答案:D .3.给出下列命题:①有一条侧棱与底面两边垂直的棱柱是直棱柱;②底面为正多边形的棱柱为正棱柱;③顶点在底面上的射影到底面各顶点的距离相等的棱维是正棱锥;④A 、B 为球面上相异的两点,则通过A 、B 的大圆有且只有一个.其中正确命题的个数是( )A .0个B .1个C .2个D .3个 答案:A .4.(2021春•浦东新区校级月考)有一个正三棱锥和一个正四棱锥,它们的所有棱长都相等,把这个正三棱锥的一个侧面重合在正四棱锥的一个侧面上,这个组合体是( )A .平行六面体B .四棱柱C .斜三棱柱D .四棱锥 答案:C .5.(2019•浦东新区校级模拟)《九章算术》中将四个面都是直角三角形的四面体称为“鳖臑”,则以正方体1111ABCD A B C D 的顶点为顶点的“鳖臑”的个数为( )A .12B .24C .48D .58答案:B .6.(2014•浦东新区三模)下列命题中错误的是( )A .正棱锥的所有侧棱长相等B .圆柱的母线垂直于底面C .直棱柱的侧面都是全等的矩形D .用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形答案:C .7.(2013•西湖区校级模拟)对于四面体ABCD ,给出下列命题:①相对棱AB 与CD 所在的直线异面;②由顶点A 作四面体的高,其垂足是BCD ∆的三条高线的交点;③若分别作ABC ∆和ABD ∆的边AB 上的高,则这两条高所在直线异面;④分别作出三组相对棱中点的连线,所得的三条线段相交于一点;⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.其中正确命题的个数为( )A .1B .2C .3D .4 答案:C .8.(2011•上海二模)在棱长为1的正四面体1234A A A A 中,记12||(,1,2,3,4,)i j i j a A A A A i j i j =⋅=≠,则ij a 不同取值的个数为( )A .6B .5C .3D .2答案:C .9.(2010•大观区校级三模)长度分别为2、x 、x 、x 、x 、x 的六条线段能成为同一个四面体的六条棱的充要条件是( )A .233x >B .323x <<C .32333x <<D .1x >答案:A .10.(2007•丰台区二模)正三棱锥V ABC -的底面边长为2a ,E 、F 、G 、H 分别是VA 、VB 、BC 、AC 的中点,则四边形EFGH 面积的取值范围是( )A .(0,)+∞B .23(,)3a +∞C .26(,)3a +∞D .21(,)2a +∞ 答案:B .11.(2004•浦东新区校级模拟)若一个四面体的棱长为1或2,则这样的四面体的个数( )A .2B .3C .4D .5答案:D .12.(2021•宝山区校级模拟)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,且BD CD ⊥,AB BD CD ==,点P 在棱AC 上运动,设CP 的长度为x ,若PBD ∆的面积为()f x ,则()f x 的图象大致为( )A .B .C .D .答案:A.二.填空题(共22小题)13.(2019•闵行区校级模拟)如果圆锥的底面积为π,母线长为2,那么该圆锥的高为_______ 答案:3.14.(2018春•浦东新区期末)三棱锥V ABC-的底面ABC与侧面VAB都是边长为a的正三角形,则棱VC的长度的取值范围是_______答案:(0,3)a15.(2018•上海模拟)如图,正四棱锥P ABCD-中所有棱长均相等,则侧棱与底面所成角的大小为_______答案:45︒.16.(2016秋•普陀区校级期中)设E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点,则四边形EFGH的形状一定是______________答案:平行四边形17.(2008秋•浦东新区校级月考)正四棱锥的底面边长为2,侧棱与底面成45︒角,则此四棱锥的侧面积为_______答案:4318.(2004•浦东新区校级模拟)在四棱锥的四个侧面中,直角三角形最多可有_______个.答案:4.19.(2020春•浦东新区校级期中)已知一个正四面体的棱长为2,则它的高是_______答案:263.20.(2019春•嘉定区期末)棱长为2的正四面体的高为_______答案:233.21.(2019春•闵行区校级期末)侧棱长为23的正三棱锥V ABC-中,40AVB BVC CVA∠=∠=∠=︒,过点A作截面AEF,则截面AEF∆周长的最小值为_______答案6.22.(2017•徐汇区校级模拟)如果一个四面体的三个面是直角三角形,下列三角形:(1)直角三角形;(2)锐角三角形;(3)钝角三角形;(4)等腰三角形;(5)等腰直角三角形.那么可能成为这个四面体的第四个面是______________.(填上你认为正确的序号)答案:(1)(2)(4)(5).23.(2014春•金山区校级期末)边长分别为a、b的矩形,按图中所示虚线剪裁后,可将两个小矩形拼接成一个正四棱锥的底面,其余恰好拼接成该正四棱锥的4个侧面,则ba的取值范围是_______答案:1(2,).25.(2011•普陀区一模)在正方体的顶点中任意选择4个顶点,对于由这4个顶点构成的四面体的以下判断中,所有正确的结论是_______(写出所有正确结论的编号)①能构成每个面都是等边三角形的四面体;②能构成每个面都是直角三角形的四面体;③能构成三个面为全等的等腰直角三角形,一个面为等边三角形的四面体.答案:①②③.26.(2010•福建模拟)如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是_______①等腰四棱锥的腰与底面所成的角都相等;②等腰四棱锥的侧面与底面所成的二面角都相等或互补;③等腰四棱锥的底面四边形必存在外接圆;④等腰四棱锥的各顶点必在同一球面上.答案:②27.(2008秋•闵行区校级月考)给出下列命题:①底面是正多边形且侧棱和底面成等角的棱锥是正棱锥;②侧棱都相等的棱锥是正棱锥;③侧棱和底面成等角的棱锥是正棱锥;④侧面和底面所成二面角都相等的棱锥是正棱锥,其中正确命题的是_______答案:①.28.(2021春•奉贤区期中)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为_______答案:514+. 29.(2021春•浦东新区校级期中)有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是_______ 答案:(0,62)+.30.(2020•新课标Ⅰ)如图,在三棱锥P ABC -的平面展开图中,1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ∠=︒,则cos FCB ∠=_______答案:14-. 31.(2017秋•汕头期末)在《九章算术》中,将四个面都是直角三角形的四面体称之为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,且有BD CD ⊥,2AB BD ==,1CD =,点P 是AC 上的一个动点,则三角形PBD 的面积的最小值为_______答案:255.33.(2015春•上海校级期中)已知三棱锥底面是正三角形,给出下列条件:①三条侧棱长相等;②三个侧面都是等腰三角形;③三条侧棱两两垂直;④三个侧面与底面所成角相等;⑤三个侧面都是等边三角形.其中使三棱锥成为正三棱锥的充要条件的有_______答案:①④.34.(2006•黄浦区二模)已知四面体ABCD,沿棱AB、AC、AD剪开,铺成平面图形,得到△123A A A(如图),试写出四面体ABCD应满足的一个性质:_______答案:四面体是正四面体;或者四面体的三个角B,C,D处的三个角的和都是180 .。
第九讲《九章算术》简介
《九章算术》是中国传统数学流传至今最早、最重要的一部经典著作之一,它是从春秋末期以来由许多人充实、整理逐渐形成的。
它的最后成书年代约在公元5(Moo年。
《九章算术》采用问题集的形式,书中每道题有问、有答、有术(解法),有的是一题一术,有的是多题一术或一题多术,全书都是与生产实践有联系的实际应用问题,共246问202术,分九章(见表1.1)。
《九章算术》的主要成就有:
①基本上形成了实数系统的雏形;
②系统地阐述了分数四则运算法则与正数的开方法则;
③系统地阐明并广泛、巧妙地应用了比例算法;
④提出了解决一般应用问题的双假设法一一盈不足术;
⑤解决了各种平面图形与立体图形的面积与体积的计算问题;
⑥给出了勾股数的正确公式;
⑦用类似今天的矩阵变换求解线性方程组;
⑧用开方术求二次、三次方程数值解。
刘徽对《九章算术》中立体的辨名示例文章篇一:《刘徽对〈九章算术〉中立体的辨名》嗨,大家好!今天我想和大家聊聊一个特别有趣的事儿,那就是刘徽对《九章算术》中立体的辨名。
你们可能会想,这听起来好深奥啊,其实呀,只要我一讲,你们就会觉得可有意思啦。
《九章算术》可是咱中国古代特别厉害的一本数学书呢。
里面讲了好多好多关于数学的知识,就像一个巨大的数学宝藏。
那刘徽呢,他就像是一个超级聪明的探险家,在这个宝藏里发现了好多关于立体的秘密。
我先给你们举个例子吧。
在《九章算术》里有提到像长方体这样的立体。
长方体呀,咱们在生活里可常见啦,像咱们的书本,有的就很接近长方体。
刘徽对长方体的辨名就特别细致。
他不是只简单地说这是个长方体就完事儿了。
他会去研究长方体的各个面、各个棱的关系。
他就像是一个特别细心的工匠,在打量自己手里精美的作品一样。
我就想啊,他当时肯定是拿着个小本子,一边看着长方体的东西,一边写写画画的。
“这个长方体啊,它的长、宽、高可都有着特殊的关系呢。
”他可能会这么自言自语。
还有那个圆柱体。
咱们想想,像咱们家里的柱子,有的就像圆柱体。
刘徽看到圆柱体的时候,他眼睛肯定都亮了。
他想啊,这个东西可不像长方体那么规规矩矩的边边角角。
他要怎么去准确地给它辨名呢?他就得去想圆柱体的底面是个圆,那这个圆和圆柱体的高又有啥联系呢?他肯定会找来好多不同大小的圆柱体来研究。
他也许会拉着身边的小伙伴说:“你看这个圆柱体,它的圆底面就像是一个盘子,这个盘子沿着一条直线往上堆起来,就成了这个圆柱体啦,这其中的道理可不简单呢。
”他的小伙伴可能会挠挠头说:“啊,我怎么就没想到呢?”这就说明刘徽的想法多独特呀。
再说说圆锥体。
圆锥体就像咱们吃的冰淇淋的蛋筒部分。
刘徽对圆锥体的辨名也很有一套。
他看着圆锥体,心里就琢磨着,这个尖尖的东西,它的底面也是个圆,可是它和圆柱体又不一样。
他会想,要是把圆锥体展开会是什么样子呢?他可能会在地上画来画去,尝试着把圆锥体的形状通过各种线条表示出来。