风电场电气部分课程设计大纲
- 格式:doc
- 大小:43.00 KB
- 文档页数:3
风能与动力工程专业风电场电气系统课程设计报告题目名称:48MW(35/110KV升压站)风电场电气一次系统初步设计指导教师:贾振国学生:班级:设计日期:2014年07月能源动力工程学院课程设计成绩考核表摘要根据设计任务书的要求及结合工程实际,本次设计为48MW风电场升压变电站电气部分设计。
本期按发电机单台容量2000kW计算,装设风力发电机组24台。
每台风力发电机接一台2000kVA升压变压器,将机端690V电压升至35kV 并接入35kV集电线路,经3回35kV架空线路送至风电场110kV升压站。
变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。
电气主接线是由变压器、断路器、隔离开关、互感器、母线、避雷器等电气设备按一定顺序连接而成的,电气主接线的不同形式,直接影响运行的可靠性、灵活性,并对电气设备的选择、配电装置的布置、继电保护和控制方式的拟定等都有决定性的影响。
本文是小组成员的配合下和老师的指导下完成的,虽然时间很短,没有设计出特别完整的成果,可是我们学会了如何查找对自己有用的资料,如何设计一个完整的风电场电气系统。
并且我们设计出了三图,包括风机与箱式变电站接线图、35KV风电场集电线路接线图、110KV变电所电气主接线图,在这里感小组成员们的辛勤付出和贾老师的耐心指导。
关键词:主接线电气设备配电装置架空线路防雷与接地AbstractAccording to the requirements of the design task and combined with the engineering practice, the design is part of the 48MW wind power booster substation electrical design. This period in accordance with the generator unit capacity of 2000kW calculation, installation of 24 wind turbine units. Each wind generator with a 2000kV A step-up transformer, the terminal 690V voltage to 35kV and access 35kV integrated circuit, the 3 35kV overhead transmission line to the wind farm 110kV booster station.Substation is an important part of power system, which directly affects the safety and economic operation of the whole power system, is the intermediate link between power plants and users, plays a role in transformation and distribution of electricity. The main electrical wiring is composed of a transformer, circuit breaker, isolating switch, transformer, bus, surge arresters and other electrical equipment according to a certain order which is formed by the connection of different form, the main electrical wiring, directly affect the operation reliability,flexibility, and the choice of electrical equipment, power distribution equipment arrangement, relay protection and control to have a decisive impact.This paper is combined with team members and under the guidance of teachers completed, although time is very short, no design particularly integrity achievements, but we learned how to find useful on its own data, how to design a complete wind farm electrical system. And we designed the three pictures, including fans and box type substation wiring diagram, 35KV wind farm set wiring diagram of an electric circuit, 110KV substation main electrical wiring diagram.Thanks to the team members to work hard and Jia teacher's patient instructions here.Key word:The main wiring Electrical equipment Distribution device Overhead line Lightning protection and grounding目录前言 (6)1.课程设计题目 (7)1.1装机容量 (7)1.2机组概况 (7)1.3集电方式 (7)1.4风电场接入电力系统方式 (8)1.5关于短路电流计算和电气设备选择的说明与建议 (8)1.6关于防雷与接地及电气二次的说明 (9)2.课程设计任务与要求 (9)2.1设计风机与箱式变电站接线方案,选择下列设备 (9)2.2设计风电场集电线路接线方案,选择35KV架空线路 (10)2.3设计110KV变电所电气主接线(含二期工程部分) (10)3.风电机组与箱变接线设计及设备选择 (10)3.1电缆选择 (10)3.1.1 690V电力电缆 (10)3.1.2 35KV电力电缆 (10)3.2箱式变压器的选择 (11)3.3风电机组与箱变接线设计 (12)4.风电场集电环节设计及电缆选择 (13)4.1设计总则 (13)4.2集电线路回路数 (13)4.3集电线路电缆选择 (14)5.变电所电气主接线设计及设备选择 (15)5.1 主变压器选择 (15)5.1.1主变压器容量选择 (15)5.1.2主变压器台数的选择 (15)5.2 断路器的选择 (18)5.3隔离开关的选择 (20)5.4避雷器的选择 (21)6.课程设计总结 (22)致 (23)附录 ................................................................................................................... 错误!未定义书签。
风力发电站课程设计一、课程目标知识目标:1. 学生能理解风力发电的基本原理,掌握风力发电站的工作流程及组成结构。
2. 学生能掌握风力发电在我国能源领域的地位和作用,了解相关能源政策及发展趋势。
3. 学生能够描述不同类型的风力发电机特点,并分析其优缺点。
技能目标:1. 学生能够运用所学知识,分析风力发电站建设的地理环境和技术条件。
2. 学生能够通过实际操作,掌握风力发电机模型的制作方法,培养动手实践能力。
3. 学生能够运用科学探究方法,对风力发电站的运行效率进行评估。
情感态度价值观目标:1. 培养学生关注可再生能源利用和环境保护的意识,增强节能减排的责任感。
2. 培养学生对新能源技术的兴趣和好奇心,激发创新精神。
3. 培养学生团队协作精神,提高沟通与交流能力。
课程性质:本课程为科学探究类课程,结合学生所在年级的知识深度,注重理论与实践相结合,培养学生的动手操作能力和科学思维。
学生特点:学生具备一定的科学知识和动手能力,对新能源技术感兴趣,具有较强的探索欲望。
教学要求:教师需采用启发式教学方法,引导学生主动参与课堂,注重培养学生的实践能力和创新能力。
同时,关注学生的个体差异,因材施教,确保每位学生都能达到课程目标。
通过课后评估,检验学生的学习成果,为后续教学提供依据。
二、教学内容1. 引言:介绍风力发电的基本概念,引导学生关注新能源领域的发展。
- 章节关联:课本第三章“新能源的开发与利用”。
2. 风力发电原理:- 风能转化为电能的过程;- 风力发电机的基本结构及工作原理;- 课本第二章“电与磁”相关知识。
3. 风力发电站的构成与运行:- 风力发电机、塔架、控制器、逆变器等组成部分;- 风力发电站的运行流程及管理;- 课本第四章“电力系统及其自动化”。
4. 风力发电机类型及特点:- 水平轴风力发电机、垂直轴风力发电机;- 各类型风力发电机的优缺点对比;- 课本第三章“风力发电技术”。
5. 风力发电站建设与评估:- 风力发电站建设的地理环境和技术条件;- 风力发电站运行效率的评估方法;- 课本第五章“能源项目的环境影响评价”。
风电场电气系统课程设计1. 引言随着全球气候变化的加剧和非常规能源的需求增加,风力发电作为一种清洁、可再生、高效的能源形式受到越来越多的关注和研究。
而风电场的电气系统作为风力发电的关键部分之一,起到了转化、传输和分配发电的电能的作用,具有至关重要的意义。
因此,本课程设计主要围绕风电场电气系统设计展开。
2. 课程设计背景作为风力发电的主要形式,风力发电机通过叶片转动发电机产生交流电,而风电场的电气系统则负责将电能传输到宿主电力网中。
风电场的电气系统涉及到的内容包括:发电机、变压器、馈线、主接触开关、地网等基本电气设备和电气自动化控制系统、保护系统等现代化装置。
因此,在风力发电中,风电场的电气系统的地位不可替代。
本课程设计的目标在于将风电场电气系统的基本原理、基础知识和设计方法透彻地介绍给学生,为学生提供理论基础和实践技能,以期满足未来风电领域工作的需求。
因此,课程设计内容将围绕风电场的电气系统的设计和性能分析展开。
3. 课程设计内容3.1 风电场电气系统的基本原理•风电场电气系统的概念及其作用。
•风力发电机的工作原理及其类型和特点。
•变压器的基本原理和应用。
•馈线的特点和参数计算。
3.2 风电场电气自动化控制•风电场电气自动化控制系统的组成和作用。
•风电场电气自动化控制系统的模块化设计方法。
•风电场电气保护系统的原理和方法。
3.3 风电场电气系统的性能分析•风电场电气系统的组成和特点。
•风电场电气系统的运行和维护。
•风电场电气系统的安全问题和安全保护措施。
4. 课程设计方案4.1 课程设计准备本课程设计主要为本科生教学,因此在开设课程前应当制定详尽的教学计划,确定课程的目标、内容和教学方法。
课程设计的前期准备包括:•安排教师和助教。
•制定详尽的教学计划和教材。
•确定课程的考核方式和分值。
4.2 课程设计实施本课程设计的实施包括:•教师通过理论讲授和实验操作的方式进行课程教学。
•学生进行实验操作和模拟分析,并撰写实验报告。
《风电场规划与设计》课程设计班级:姓名:学号:成绩:2023年1月目录一、风电场资料 (1)1.地图坐标 (1)2.跨度及分辨率 (1)3.地图及风能情况 (1)二、风电场选址方案1计算报告 (2)1.参数设置 (2)2.优化曲线 (2)3 发电量统计 (3)4 相关报表 (3)5.视觉影响区域图 (5)6.噪音影响区域图 (5)7.风电场道路示意图 (6)8各台风机的年满负荷利用小时数 (7)三、风电场选址方案2计算报告 (7)1.参数设置 (7)2.优化曲线 (7)3 发电量统计 (8)4 相关报表 (9)5.视觉影响区域图 (10)6.噪音影响区域图 (10)7.风电场道路示意图 (11)8各台风机的年满负荷利用小时数 (13)四、风电场选址方案3计算报告 (13)1.参数设置 (12)2.优化曲线 (13)3 发电量统计 (14)4 相关报表 (14)5.视觉影响区域图 (16)6.噪音影响区域图 (16)7.风电场道路示意图 (17)8各台风机的年满负荷利用小时数 (18)五、风电场选址方案4计算报告 (19)1.参数设置 (18)2.优化曲线 (18)3 发电量统计 (20)4 相关报表 (20)5.视觉影响区域图 (21)6.噪音影响区域图 (22)7.风电场道路示意图 (23)8各台风机的年满负荷利用小时数......................... 错误!未定义书签。
六、各方案对比分析 (25)1.计算风电场的年满负荷利用小时数 (24)2.风电场容量系数的计算 (24)3.各方案对比分析 25一、风电场资料1.地图坐标左下角坐标:(497526.0000,4546241.0000)右上角坐标:(503130.0000,4549813.0000)2.跨度及分辨率X方向跨度:5.6040km;Y方向跨度:3.5720km;网格分辨率:149.0m3.地图及风能情况图1 主地图图2 平均风速分布图图3 风能密度图二、风电场选址方案1计算报告工程名称: 方案1报告日期: 2023-1-51.参数设立总迭代次数: 60;无效迭代次数: 10;最小间距类型: 圆形圆半径: 4倍风轮直径;最大坡度: 50.00度2.优化曲线图4 风机优化曲线3 发电量记录表1 风电场发电量总发电量单台月平均发电量无尾流年发电量(MWh) 118367 493.2含尾流年发电量(MWh) 114845.17 478.52尾流损失[%] 2.984.相关报表表2 风机报表风机编号类型X坐标(m) Y坐标(m) 海拔(m) 是否固定平均风速(m/s)无尾流年发电量(MWh)含尾流年发电量(MWh)尾流损失(%)M1 金风77-1500kW499907 4546539 1536 否9.06 6378.96 6280.99 1.54M2 金风77-1500kW499460 4546985 1546 否8.88 6268.84 6203.16 1.05 M3 金风499163 4546985 1533.99 否8.75 6210.54 6083.99 2.04表3 视点报表表4噪音点报表表5 视点观测到的风机报表5.视觉影响区域图从每台风机中心开始计算视觉影响的最远距离: 500米地表以上高度: 2米图5 视觉影响区域图6.噪音影响区域图地表以上高度: 2米图6 噪音影响区域图7.风电场道路示意图图7 风电场道路示意图8.各台风机的年满负荷运用小时数表6各台风机的年满负荷运用小时数风机编号含尾流年发电量(MWh)年满负荷运用小时数(h)风机编号含尾流年发电量(MWh)年满负荷运用小时数(h)M1 6280.994187.327M11 5675.963783.973 M2 6203.164135.44M12 5518.913679.273 M3 6083.994055.993M13 5556.283704.187 M4 6023.264015.507M14 5308.273538.847 M5 5957.443971.627M15 5252.073501.38 M6 5828.163885.44M16 5686.013790.673 M7 6099.74066.467M17 5187.243458.16 M8 5772.443848.293M18 5583.263722.173 M9 5893.213928.807M19 5434.623623.08 M10 5824.373882.913M20 5675.813783.873三、风电场选址方案2计算报告工程名称: 方案2报告日期: 2023-1-51.参数设立总迭代次数: 50;无效迭代次数: 10;最小间距类型: 圆形圆半径: 4倍风轮直径;最大坡度: 50.00度2.优化曲线图4 风机优化曲线3 发电量记录表1 风电场发电量4 相关报表表2 风机报表表3 视点报表表4 噪音点报表3 N3 500559 4548078 1499.78 2 53.744 N4 499420 4547651 1514.87 2 58.295 N5 499124 4548380 1512.06 2 57.416 N6 499955 4548858 1510.41 2 58.57表5 视点观测到的风机报表序号视点编号风机编号风机X坐标(m) 风机Y坐标(m) 风机海拔(m)1 S2 M12 499312 4548027 1515.62 S2 M13 499312 4547730 1519.25.视觉影响区域图从每台风机中心开始计算视觉影响的最远距离: 500米地表以上高度: 2米图5 视觉影响区域图6.噪音影响区域图地表以上高度: 2米图6 噪音影响区域图7.风电场道路示意图图7 风电场道路示意图方案28.各台风机的年满负荷运用小时数表6 各台风机的年满负荷运用小时数四、风电场选址方案3计算报告工程名称: 方案3报告日期: 2023-1-51.参数设立总迭代次数: 50;无效迭代次数: 10;最小间距类型: 圆形圆半径: 4倍风轮直径;最大坡度: 50.00度2.优化曲线图4 风机优化曲线3.发电量记录表1 风电场发电量总发电量单台月平均发电量无尾流年发电量(MWh) 123039.52 512.66含尾流年发电量(MWh) 119945.48 502.31尾流损失[%] 1.924.相关报表表2 风机报表风机类型X坐标Y坐标海拔(m) 是否平均风无尾流含尾流尾流表3 视点报表表4 噪音点报表表5 视点观测到的风机报表1 S1 M7 499907 4547878 1510.432 S1 M11 499312 4547730 1519.23 S1 M17 499907 4548176 1502.84 S2 M12 498716 4546837 15365 S2 M14 499014 4546688 15466 S2 M20 498865 4546390 15405.视觉影响区域图从每台风机中心开始计算视觉影响的最远距离: 500米地表以上高度: 2米图5 视觉影响区域图6.噪音影响区域图地表以上高度: 2米图6 噪音影响区域图7.风电场道路示意图图7 风电场道路示意图8.各台风机的年满负荷运用小时数表6 各台风机的年满负荷运用小时数风机编号含尾流年发电量年满负荷运用小时风机编号含尾流年发电量年满负荷运用小时五、风电场选址方案4计算报告工程名称: 方案4报告日期: 2023-1-51.参数设立总迭代次数: 50;无效迭代次数: 10;最小间距类型: 圆形;圆半径: 4倍风轮直径;最大坡度: 50.00度2.优化曲线图4 风机优化曲线3.发电量记录表1 风电场发电量总发电量单台月平均发电量无尾流年发电量(MWh) 118433.95 493.47含尾流年发电量(MWh) 113599.33 473.33尾流损失[%] 4.084.相关报表表2 风机报表风机编号类型X坐标(m)Y坐标(m)海拔(m) 是否固定平均风速(m/s)无尾流年发电量(MWh)含尾流年发电量(MWh)尾流损失(%)M1 金风77-1500kW501693 4547134 1536.8 否8.64 6021.99 5633.6 6.45M2 金风77-1500kW501395 4547283 1525.2 否8.73 6064.95 5660.1 6.68 M3 金风501246 4546837 1512 否8.49 5906.13 5599.97 5.18表3 视点报表表4 噪音点报表表5 视点观测到的风机报表6 S2 M1 501693 4547134 1536.87 S2 M5 501991 4547581 1525.28 S2 M8 501842 4546837 15349 S2 M14 501991 4547283 1529.210 S2 M15 501544 4546837 15325.视觉影响区域图从每台风机中心开始计算视觉影响的最远距离: 500米地表以上高度: 2米图5 视觉影响区域图6.噪音影响区域图地表以上高度: 2米图6 噪音影响区域图7.风电场道路示意图图7 风电场道路示意图8. 各台风机的年满负荷运用小时数表6 各台风机的年满负荷运用小时数风机编号含尾流年发电量年满负荷运用小时风机编号含尾流年发电量年满负荷运用小时(MWh)数(h ) (MWh)数(h ) M1 5633.6 3755.733 M11 5680.69 3787.127 M2 5660.1 3773.4 M12 5738.08 3825.387 M3 5599.97 3733.313 M13 5818.89 3879.26 M4 5733.63 3822.42 M14 5839.37 3892.913 M5 5654.02 3769.347 M15 5667.88 3778.587 M6 5716.75 3811.167 M16 5405.84 3603.893 M7 5473.03 3648.687 M17 5768.43 3845.62 M8 5722.3 3814.867 M18 5781.22 3854.147 M9 5362.07 3574.713 M19 6098.01 4065.34 M105545.263696.84M205700.193800.127六、各方案对比分析1.计算风电场的年满负荷运用小时数方案1h 17.3828205.117.114845=⨯==风电场装机容量年实际发电量时数风电场年满负荷利用小方案2h 16.3967205.1119014.36=⨯==风电场装机容量年实际发电量时数风电场年满负荷利用小方案3h 52.4018205.1120555.48=⨯==风电场装机容量年实际发电量时数风电场年满负荷利用小方案4h 64.3786205.1113599.33=⨯==风电场装机容量年实际发电量时数风电场年满负荷利用小2.风电场容量系数的计算方案1437.0876017.38288760C f ===)全年小时数(时数风电场年满负荷利用小风电场容量系数方案2453.0876016.39678760C f ===)全年小时数(时数风电场年满负荷利用小风电场容量系数方案3459.0876052.40188760C f ===)全年小时数(时数风电场年满负荷利用小风电场容量系数方案4432.0876064.37868760C f ===)全年小时数(时数风电场年满负荷利用小风电场容量系数3.各方案对比分析方案编号1 2 3 4年发电量[Mwh] 114845.17 119014.36 119945.48 113599.33 年满负荷运用小时数[小时] 3828.39 3967.13 3988.18 3786.64 容量系数 0.437 0.453 0.456 0.432 尾流损失[%] 2.98 3.81 1.92 4.08 风电场实际占地面积[Km 2]3.7523.663.903.441通过对上述表格的分析, 其中方案3为最优方案。
风电场电气系统教学设计背景自然资源的枯竭以及环境污染问题成为人类面临的严峻挑战。
随着全球经济的快速增长,新型清洁能源的开发和利用逐渐成为重要的议题。
风力发电作为新兴的清洁能源,具有可再生、无污染、节能等优点,因此备受关注。
随着全球风电行业的迅速发展,对风电场电气系统的需求也越来越大,因此,培养和提高风电场电气工程师的能力变得非常重要。
目标本教学设计旨在帮助学生掌握风电场电气系统方面的基础知识,培养学生的实际操作能力,并增强其合作意识和创新能力。
通过本教学设计,学生应达到以下学习目标:1.掌握风电场电气系统的基本原理和设计方法。
2.熟悉风电场电气系统的组成部分和功能。
3.能够独立进行风电场电气系统的设计和优化。
4.具备一定的团队合作能力和创新能力。
教学内容1.风电场电气系统的概述–风电场电气系统的基本原理和发展现状–风电场电气系统的组成部分和功能2.风电场电气系统的设计和优化–风电场电气系统的设计流程和方法–风电场电气系统的优化方法和技术3.风电场电气系统的运维–风电场电气系统的运行与维护–风电场电气系统的故障分析和解决方法4.实践操作–实验室中模拟风电场电气系统的实现–进行电气系统的设计和优化–分组讨论并撰写实验报告教学方法本教学设计采用授课与实践相结合的方式实现教学目标。
通过理论授课及实验操作,学生可以掌握风电场电气系统的基本原理,熟悉风电场电气系统的组成部分和功能,并能够独立进行风电场电气系统的设计和优化。
具体授课方法包括:1.理论授课–讲解风电场电气系统的基本原理和设计方法,引导学生建立起系统的认识。
–组织分组讨论,通过案例研究和实例分析来深入理解风电场电气系统设计和优化方法。
2.实验操作–模拟实验室环境,进行风电场电气系统设计和优化–引导学生进行实验数据分析,并撰写实验报告评估方法评估学生的教学效果,主要采用以下方法:1.课堂表现–学生参与讨论的积极性–学生对于风电场电气系统的理解和认识程度2.实验报告–学生的实验报告质量和是否能够合理分析实验数据3.课后作业–学生的课后作业的准确度和完整度结论本教学设计通过理论授课及实验操作的方式,旨在帮助学生掌握风电场电气系统方面的基础知识,培养学生的实际操作能力,并增强其合作意识和创新能力。
1、并网型风力发电系统主要由风力发电机组和升压变电站组成2、考虑管理、运行、维护以及投资、产权等综合成本因素,在我国风力发电一般采用集中并网远距离传输运行;3、风电场的电气与控制系统主要包括升压站含入网送出线路、场内输变电系统含箱变、风电机组电气系统三部分;4、根据风电场的规模、电力输送距离、接入变电站的系统电压等级等多种因素,风电场升压站一般有330kV升压站、220kV升压站、110kV升压站、66kV升压站4种电压等级;5、根据风电场规模及电网公司的要求,送出线路的杆塔可以是单塔单回、单塔双回;LGJ导线可以是单根或多分裂;送出线路还应包括通讯用的光缆或微波通讯装置等;6、根据风电场设计规范,风电场升压站按用户站设计,其主接线结构简单,一般为线路-变压器组或单母线接线形式,一般为中型布置,而配电装置有开放式和成套组合式电器两种形式;7、配电装置开放式布置的优点是投资省,缺点是占地较大;成套组合电器的有点是占地少,可靠性高,缺点是价格贵;8、线路-变压器组接线的优点是:接线简单清晰,高压侧不设母线,电气设备少,投资少,操作简便,继电保护简化;缺点是:当一组单元中的某个元件故障或检修时,整个单元将停止运行;适用于设置1台主变压器的风电场;9、单母线接线的优点是:接线简单明显,设备少、经济性好,运行时操作方便,便于扩建;缺点是:当母线或者母线侧刀闸发生故障或者进行检修时,各支路都必须停止工作;引出线的开关检修时,该支路要停止供电;10、单母线接线适用范围为多期开发,设置2~4台主变压器、只有1回送出线路的风电场;如取消线路上的断路器,就成为扩大线路-变压器组接线方式;11、风电场升压站低压侧10Kv或35kV电气主接线一般采用单母线或单母分段接线方式;但考虑到调度管理以及减小投资的关系,建议风电场升压站低压侧10Kv或35kV电气主接线采用单母线方式,而不分段,不设计母线联络开关;12、风电场电气主接线35Kv中性点,根据风电场容性电流的大小,一般采用不接地或消弧线圈、小电阻、以及消弧消谐装置接地方式;13、根据实际运行经验,对于风电场的集电线路为全电缆形式,且其容性充电电流大于30A,一般采用小电阻接地方式;而对风电场集电线路为架空线路和电缆组合方式,如电缆容性充电电流小于10A一般采用不接地方式;如容性电流大于10A且小于30A或最大为35A一般采用消弧消谐接地装置接地方式;14、由于风电场升压站按用户站设计,且为保证故障尽快切除,不建议选用消弧线圈接地方式,如带病电网系统运行较长的时间,可能出现两相短路或三相短路故障,可能出现保护越级;15、由于风的随机性和不稳定性,风电场需要无功补偿,并且一般选择为动态无功补偿装置,根据实际风电场运行经验,风电场所需要的总的无功容量在12%~16%之间;16、对于直接接入公共电网的风电场,其配置的容性无功容量能够补偿风电场满发时汇流线路、主变压器的感性无功以及风电场送出线路的一半感性无功之和,其配置的感性无功容量能够补偿风电场送出线路的一半的充电无功功率;17、对于通过220kV风电汇集系统升压到500kV或750kV电压等级接入公共电网的风电场群中的风电场,其配置的容性无功容量能够补偿风电场满发时汇集线路、主变压器的感性无功及风电场送出线路的全部感性无功之和,其配置的感性无功容量能够补偿风电场送出线路的全部充电无功功率;18、无功补偿装置形式为选用静止型动态无功补偿装置SVG或SVC和固定电容滤波支路组成;19、35kV接地形式与中性点设备,现在一般为小电阻接地或消弧消谐装置加精确选线装置接地;20、220kV母线采用LGJ架空导线,35kV采用TMY母线铜排21、风电场升压站内所有电气设备、构架等均采用2根接地引下线与主接地网可靠连接;构架避雷针、氧化锌避雷器等与主接地网连接处设集中接地装置;22、风电场输变电系统包括箱式变压器、场内输电线路、升压站低压侧等部分;23、一般50MW、35kV电压等级的风电场输电线路为2~4回,100MW、35kV电压等级的风电场输电线路为4~8回;24、风电场内输电线路有架空线路和高压电缆两种方式;出于环境保护、森林防火等的需要,应当采用高压电缆的方式;25、35kV架空线路的经济输送距离为10km以内,极限输送距离20km左右;26、风电场35kV电压等级线路进站前1~2km称为进站保护段,需装设避雷线;27、箱式变电站是由高压开关设备、电力变压器、低压开关设备等部分组合在一起,构成的户外变配电成套设备;具有成套性强、占地面积小、投资小、安装维护方便、外形美观、耐候性强特点;28、箱式变电站有欧式变和美式变两种类型,一般风电场常使用美式变;欧式变有一层外壳,有操作空间,便于现场维护;美式变的高压负荷开关和熔断器直接在油箱里,利用油绝缘,有体积小、结构紧凑、价格便宜等优点;29、箱式变电站设置2个直径不小于12mm的铜质螺栓的接地体,接地电阻应满足R≤4Ω,并在定期检查时查验;30、雷电流引起的过电压,取决于引下系统和接地网的电阻和面积;引下系统和接地网的电阻越小,面积越大,雷电流引起电压越小,反之亦然;31、风电场共采用三套计算机监控系统:一套随风力发电机组配套的计算机风电机群SCADA监控系统、一套升压站用的计算机监控系统、一套用于远方监视终端服务器系统;32、风电场升压站的计算机监控系统采用分层、分布、开放式的网络结构,由主控层和现地层组成,分别使用100M和10M以太网;主控层包括监控主站、远动站、打印机和GPS时钟系统等设备;现地层可在现地单机控制、保护、测量和采集信号;33、升压站信号分为电气设备运行状态信号、电气设备和线路事故和故障信号;34、升压站的主要电气设备可现地控制也可在中控室进行集中监控;中控室及现地均可操作断路器、隔离开关等;隔离开关与相应的断路器和接地刀闸之间装设闭锁装置; 35、根据风电场接入系统设计要求,风电场上网电量计量点设在出线处,计量点安装2套电能表和电能量远方终端1套,电能表采用智能式多功能电能表,精度为级;36、220kV主变压器配置2套冗余的差动、后备及非电量保护,保护动作于断开主变压器的各侧断路器;37、35kV无功自动补偿装置的断路器配置电流速断保护和过电压保护;电流速断保护动作于断开断路器;过电压保护带时限动作于断开断路器;38、35kV进线保护配置限时电流速断和过电流保护,以及零序过流保护、过负荷保护及小电流接地选线保护,保护动作于信号或跳闸;39、升压站根据规模配置1套或2套220V直流电源系统;直流电源系统配1组或2组容量为200Ah蓄电池组,采用高频开关电源装置对蓄电池组进行充电和浮充电;40、需要交流电源供电的计算机监控设备由UPS电源供电,一般选用1套或2套5Kva的UPS电源,UPS电源由直流系统的蓄电池供电;41、风电场的通信系统主要包括系统通信、场内通信以及对外通信;42、风力发电机组的现地监控系统主要包括两部分:第一部分为计算机控制单元,控制模块由plc或微计算机构成;第二部分为同步并网及功率控制单元,由变频器组成;43、风力发电机组的机械保护包括:风力发电机组配置的温度升高保护、振动超限保护、转速升高保护、电缆纽绞保护等;44、风电场能量管理平台在对风电机组进行功率调节时,两次限功率指令之间的最小时间间隔为50s;45、电能管理平台在当风速达到功率要求时,可实现单机有功功率在10%~100%额定功率之间调节;46、风电场应配置风电功率预测系统,系统具有0~48h短期风电功率预测以及15min~4h超短期风电功率预测功能;47、风电场每15min自动向电力系统调度部门滚动上报未来15min~4h的风电场发电功率预测曲线,预测值的时间分辨率为15min;48、风电场每天按照电力系统调度部门规定的时间上报次日0~24时风电场发电功率预测曲线,预测值的时间分辨率为15min49、风电场功率预测系统的组成;一般分为4个模块,即中尺度数值模拟系统、微尺度气象模型、发电量计算物理模型和误差统计校正模型;50、风功率预测系统能进行短期预测,提供72h风电功率预测,时间分辨率为15min;也能进行超短期预测,提供未来5h风电功率预测,时间分辨率为15min;51、SCADA系统可以对风电场的运行设备进行监视和控制,以实现数据采集、参数调节、各类信号报警,以及产生统计报表等各项功能;52、风电场中央监控系统通过电缆、光缆等介质将风力发电机组进行物理连接,对于介质的选择依据风电场的地理环境、风力发电机组的数量、风力发电机组之间的距离、风力发电机组与中央监控室的距离、项目的投资以及对通讯速率的要求制定;53、大规模存储电能的作用是:可以解决电力生产中的峰谷差难题;提高电力系统供电的可靠性,避免突然停电带来的麻烦和损失;储能可以提高系统的稳定性,在电力系统遇到大的扰动时,避免系统失稳;储能装置是风力发电、太阳能发电等可再生不稳定能源发电设备中不可缺少的装备;54、风电场电池储能是风电机组发出的电经过双向逆变的整流回路成直流存入电池,以后在需要用电时,电池里的电经过逆变器成交流输出;55、海上风电机组的冷却方式均采用油冷或者水冷,通过热交换器与外界进行热交换来达到散热的目的;56、海上风电机组的结构是密封性结构,设计的空气过滤器可以把水汽、盐分隔绝在外面,减少了这些不利因素对塔筒内部不见的腐蚀和污染,通过水冷系统对塔筒内的变频器、变压器、控制柜进行冷却;57、海上风电有它的特殊性,其场内输变电系统都是海缆,箱变一般在塔筒内;海缆长度比较长,充电电容比较大,风电场场内无功呈现容性,这与陆上风电有突出差别,所以对风电场升压站配置无功补偿有独特要求;58、风电场电能传输一般都经过二次升压,即风力发电机组千伏经机旁安装的箱变升至10千伏或35千伏为一次升压,二次升压为汇集后的10千伏或35千伏经安装在升压站的主变升至66/110/220/330千伏接入公共电网;59、风电场规模在100MW以内,输送距离在30km以内,考虑经济性,在系统接入变电站有110千伏等级的情况下,可建1个110千伏升压站,在系统接入变电站有220千伏等级的情况下,可建1个220千伏升压站;风电场规模较大、输送距离较长的情况下,拟建220千伏升压站为宜;60、风电场升压站低压侧电气主接线之所以采用单母线分段接线方式,其目的是考虑主变检修时,便于其母线段风机发出的电能能送出或在小风月便于某台主变退出运行,以节约一台主变的空载损耗;61、风电场主变压器一般采用三相双绕组油浸风冷有载调压电力变压器,而在风电场场内集电线路为电缆时,部分风电场采用了三相双绕组带平衡绕组的有载调压变压器;62、35千伏开关柜采用手车式或固定式金属铠装开关柜;63、无功补偿系统含电力电容器滤波支路的开关柜,由于容性电流较大,一般选用经老化试验的真空断路器或SF6断路器;断路器的额定电流根据容量选择,而热稳定电流一般取kA;64、220千伏、35千伏母线、220千伏、35千伏进线线路侧、主变压器两侧及主变压器中性点均装设复合外套金属氧化锌避雷器,此外主变压器中性点还装设放电间隙,35千伏并联电容器装设避雷器保护;65、开关柜需要有完善系统的过电压解决方案,35千伏开关柜一般在PT柜装设避雷器,或在每个开关柜安装过电压保护性能更好的过电压保护器,采用大能容和自脱离防爆型两项过电压技术,能有效抑制系统过电压对设备损坏;66、升压站采用复合式接地网;水平接地体采用606热镀锌扁钢;垂直接地极采用长的热镀锌角钢;变压器四周与人行道相邻处,设置与主接地网相连接的均压带67、风电场的控制系统应由两部分组成:一部分为就地计算机控制系统;另一部分为主控室计算机控制系统;主控制室计算机应备有不间断电源68、控制系统采用计算机控制技术实现对风力发电机组的运行参数、状态监控显示及故障处理,完成机组的最佳运行状态管理和控制;69、SCADA中文名称数据采集与监视控制系统;70、风电机控制系统参数及远程监控系统实行分级管理,未经授权不准越级操作;71、为了提高风电场的整体管理水平和自动化水平,保证风电场的安全、可靠运行,升压站应设置计算机监控系统、微机继电保护系统、防误操作闭锁系统、光纤和通信系统;72、蓄电池是一种储能设备,它能把电能转变为化学能储存起来;使用时,又把化学能转变为电能,通过外电路释放出来;73、海上风电的适应性要求包括防盐雾腐蚀措施、防雷措施、防雷接地系统;74、中央监控系统的网络结构支持链形、星形、树形结构;具体的连接方式需要根据风电机组的排布位置,结合现场施工的便捷性确定;75、单母线接线高压只有一组母线,每个出线和变压器都通过断路器和隔离开关接到母线上;76、母线起着汇集和分配电能的作用;扩大线路-变压器组仅仅比单母线少一个出口断路器等相应开关设备;77、为解决220千伏线路长效应现象,就要求在风电场升压站220千伏线路出口处安装能补偿220千伏线路充电功率一半的线路电抗器;78、线路隔离开关采用水平双断口式隔离开关,额定电流根据容量选择,热稳定电流为40kA;79、主变压器、出线回路电流互感器配置6个次级线圈;80、26/35千伏电压等级的电力电缆用于35千伏输电线路;15千伏电缆用于10千伏输电线路;1千伏用于机组至箱变之间的连接电缆;81、在同样的截面下,铝芯电缆载流量比铜芯的小,在选用时,在同样容量下,往往比铜芯大一个截面;82、箱式变压器应具有完整的保护、测量、控制、信号回路;83、应每年对机组的接地电阻进行测试一次,电阻值不宜高于4Ω;每年对轮毂至塔架底部的引雷通道进行检查和测试一次,电阻值不应高于Ω;84、220kV升压站主接地网实测接地电阻应满足R≤Ω,110kV及以下升压站主接地网实测接地电阻应满足R≤4Ω;85、风电场场内输变电系统:包括箱式变压器、场内集电线路两部分;集电线路有架空线路、高压电缆两种方式;86、变频器按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;87、防止直击雷的保护装置有避雷针和避雷线;88、风电机组沿避雷带沿风机基础四周敷设,一般应用50mm×5mm热镀锌扁钢,距离基础约为1m,避雷带将基础周围的接地极相连接,形成完整的接地装置;89、升压站内微机防误闭锁装置对站内全部断路器、隔离开关和接地开关等进行防误闭锁,实现“五防”操作;90、风电场远程监控终端服务器系统通过OPC协议与风电机组SCADA监控系统和升压站监控系统通讯;91、风电场升压变电站通常配置两套监控系统,一套是风电机组SCADA监控系统,另一套是升压变电站设备的监控系统;92、控制系统采用计算机控制技术实现对风力发电机组的运行参数、状态监控显示及故障处理,完成机组的最佳运行状态管理和控制;93、日常监视时,重点关注风电机组状态有故障告警信号、各部件的温度、桨距角、风速和功率的对应等监控数据;94、UPS由电池、整流器和逆变器三部分组成,共有三种工作模式;95、低温、高温、高湿、盐雾腐蚀、高海拔等运行环境以及风沙、雷电、冰雪、台风等灾害性气候会对设备的安全稳定运行带来较大影响;因此,在实际的运行中,风电场应根据不同的气候特点,针对性地加强防尘、防雷、防台、防污闪、防腐蚀等工作,保证风电场的安全稳定运行;96、风电场与电网调度之间应保证有可靠的通信联系;97、风电机组电控系统包含保证机组安全可靠运行、从自然风中获取最大能量、向电网提供质量良好的电力三个方面的职能;98、变频器是双馈式风电机组中非常关键的部件,它将发电机转子侧的电能通过整流、逆变接入电网;99、静止无功发生器和静止无功补偿相比具有更快的响应速度,更宽的运行范围,尤其重要的是,电压较低时仍可以向电网注入较大的无功电流;100、在风力发电中,异步发电机的就地无功补偿可采取以下几种方法:电力电容器等容分组自动补偿、固定补偿与分组自动补偿相结合、SVC静态无功补偿;101、风力发电场将多台大型并网型的风力发电机组安装在风资源好的场地,按照地形和主风向排列,组成机群向电网供电;102、由于风的随机性和不稳定性,风电场需要无功补偿,并且一般选择为动态无功补偿装置,根据实际风电场运行经验,风电场所需要的无功容量在12%-16%之间;103、送出线路较长时特别是对220KV线路,会出现低负载电压翘尾效应; 104、主建筑、继电保护室、各屋内配电室灯采用荧光灯和白炽灯照明; 105、风电场的无功容量应按照分电压层和分电区基本平衡的原则进行配置; 106、风电场总无功消耗为电缆、箱变、主变、线路的综合无功和;107、根据计算得到总无功,参照结合已经投运风电场情况,一般基于欠补偿的原则选择补偿装置容量,而感性无功按其1/3容量或送出线路一半容性无功配置;108、箱式变电站的高压室由高压负荷开关、高压熔断器避雷器等组成,可以进行停送电操作并且设有过负荷和短路保护;109、风电专用浪涌保护器特点如下:可靠的热脱扣保护装置、通流容量大,残压低、可靠的老化告警方式、模块化设计,安装维护方便;110、主变压器装设过负荷保护,带时限动作于信号;111、场用变压器采用熔断器保护,设置用电计量装置1套;112、风电场升压站装设故障滤波装置,对相应的各种模拟量及开关量进行录波,用于系统各种事故情况的记录分析;113、操作电源系统包括直流和交流系统两部分;114、风电场升压站设置火灾自动报警系统1套,区域火灾自动报警器设在中控楼、中控室、35KV配电室、通信室、直流室及中控楼走廊设置火灾报警探头及按钮;115、风电场风电机组中央监控系统可以对风电场的运行设备风力风电机组、测风塔、箱式变电站、升压变压器等进行监视和控制,以实现数据采集、参数调节、各类信号报警以及产生统计报表等各项功能;116、风机监控系统也可以监控变流器、变距系统、齿箱系统、液压系统、偏航系统、发电机、安全链、电网状况等各个数字量,模拟量的输入、输出情况; 117、机组出现故障都会进行记录,内容包括:故障发生时间、事件代号、事件名,存储方式以数据库文件进行储存;。
风电场规划课程设计一、课程目标知识目标:1. 理解风电场的基本概念、组成及工作原理;2. 掌握风电场的规划流程、方法和评价指标;3. 了解我国风电产业的发展现状及政策。
技能目标:1. 能够运用所学知识,分析并评估风电场的建设条件;2. 能够设计简单的风电场规划方案,并进行优化;3. 能够运用相关软件或工具,进行风电场的数据处理和分析。
情感态度价值观目标:1. 培养学生对新能源及其应用的兴趣,提高环保意识;2. 增强学生的团队合作意识和解决问题的能力;3. 培养学生关注国家能源战略,树立社会责任感。
分析课程性质、学生特点和教学要求:本课程为高中年级新能源技术及应用课程的一部分,旨在帮助学生了解风电场规划的实际应用。
课程性质为理论与实践相结合,注重培养学生的动手操作能力和实际问题解决能力。
学生特点为具备一定的物理基础和数学基础,对新能源技术感兴趣,但可能缺乏实际操作经验。
教学要求注重启发式教学,引导学生主动探究,提高学生的实践能力。
二、教学内容1. 风电场基本概念与原理- 风电场的定义、组成及分类- 风能资源的评估与利用- 风力发电机的工作原理及性能参数2. 风电场规划流程与方法- 风电场选址与建设条件分析- 风电场布局设计及优化- 风电场经济效益及环境影响评价3. 风电场规划案例分析- 国内外典型风电场项目介绍- 案例分析与讨论- 学生小组讨论,设计风电场规划方案4. 我国风电产业政策与发展现状- 新能源政策及风电产业发展规划- 我国风电场建设现状与挑战- 学生探讨风电产业发展前景及个人职业规划5. 教学大纲与进度安排- 第1周:风电场基本概念与原理- 第2周:风电场规划流程与方法- 第3周:风电场规划案例分析- 第4周:我国风电产业政策与发展现状教学内容依据课程目标和教材章节进行编排,注重科学性和系统性。
教学过程中,教师需引导学生主动参与,鼓励学生提出问题、分析问题,并通过案例教学和实践操作,提高学生的实际操作能力。
国华巴盟乌拉特中旗(川井)风电场电气部分初步设计1. 风电场风机型号现选择由中国南车集团出产的YFF06型1.5MW风冷双馈风力发电机,第一期装设风力发电机33台,第二期装设风力发电机33,具体数据如下:2. 各台接线形式风电场的风机排列各异,有阵列布置,也有线性布置,合理选择风机分组和风机连接型式,可以使风电场电缆或架空线等导体投资尽量节省,是主接线方案优化。
风电场的风机分组及连接方式影视情况而定。
从陆上风电场和海上风电场的设计经验来看,连接方式基本上有链形(放射形)、星形和环形三种.又因星形的造价过高,故此处不予考虑。
(1)放射形布局如图 (a)所示,将若干风力发电机连接在同一条输电线路上,整个风电场的电能通过若条输电线路输送到汇流母线上, 输电线路的额定功率须大于所连接风机的最大功率。
该布局的优点是操作简单、投资成本较低;缺点是可靠性不高,如果输电线路的某处发生故障,那么整条输电线路都将被迫切除,与其相连的所有风机都将停运。
图3-1(a)放射形布局(2)单边环形布局如图 (b)所示,在放射形布局的基础上,通过一条冗余的输电线路将线路末端的风机连回到汇流母线上。
如果输电线路某处发生故障,可以通过加装在其上的开关设备切除,保证风机正常运行。
该布局的优点是可提高内部电气系统的可靠性;缺点是操作比较复杂,投资成本较高。
图3-1(b)单边环形布局(3)双边环形布局如图 (c)所示,在放射形布局的基础上经一条冗余的输电线路将两条相邻线路末端的风机相连。
因输电线路连接的风机数量加倍,故其额定功率也需要加倍。
该布局的优缺点与单边环形布局基本相同。
图3-1(c)双边环形布局(4)复合环形布局如图 (d)所示,将单边环形与双边环形进行结合,将相邻几条输电线路末端的风机互连,然后经一条冗余的线路将末端的风机连回到汇流母线上。
该布局相比单边环形可以减少冗余线路的数量,相比双边环形可以降低其额定容量。
图3-1(d)复合环形布局(5)多边环形布局由以上几种布局可以看到,环形布局提高可靠性的途径有提供冗余和增加互连2个。
风电场规划课程设计一、课程目标知识目标:1. 学生能够理解风电场的基本概念、组成及工作原理;2. 学生能够掌握风电场规划的基本流程和关键步骤;3. 学生能够了解我国风电场规划的相关政策和技术规范;4. 学生能够掌握风力发电的基本计算方法。
技能目标:1. 学生能够运用所学知识进行风电场选址、设备选型及容量配置;2. 学生能够运用风力发电计算方法,进行风电场发电量的预测;3. 学生能够利用相关软件对风电场规划进行模拟和分析;4. 学生能够撰写风电场规划报告,具备一定的项目策划能力。
情感态度价值观目标:1. 培养学生对新能源事业的热爱和责任感,增强环保意识;2. 培养学生团队协作精神,提高沟通与组织协调能力;3. 培养学生严谨、务实的学习态度,提高分析和解决问题的能力;4. 培养学生关注国家能源政策,具备一定的政策敏锐度。
课程性质:本课程为应用性、实践性较强的课程,结合理论教学与实际案例,培养学生的实际操作能力。
学生特点:学生具备一定的物理、数学基础,具有较强的学习兴趣和动手能力,对新能源领域有较高的关注度。
教学要求:结合课本知识,注重理论与实践相结合,提高学生的实际操作能力和创新意识。
通过课程学习,使学生具备风电场规划的基本技能,为未来从事相关工作打下坚实基础。
二、教学内容1. 风电场基础知识:风电场的定义、组成、分类及发展历程;风力发电原理及风力发电机组结构。
相关教材章节:第一章 风电场概述,第二章 风力发电技术。
2. 风电场规划流程:风电场选址、风力资源评估、设备选型与容量配置、风电场布局设计、经济效益分析等。
相关教材章节:第三章 风电场规划与设计,第四章 风力资源评估。
3. 风电场规划关键技术与计算方法:风力发电机组选型、发电量预测、等效利用小时数计算等。
相关教材章节:第五章 风电机组选型与发电量计算,第六章 等效利用小时数计算。
4. 风电场规划软件应用:介绍风电场规划相关软件,如WindPRO、WAsP 等,并进行实际操作演示。
《风电场电气部分课程设计》教学大纲
适用专业: 风能与动力工程专业
先修课程:电工电子技术、电机学、风电场电气工程
一、目的
在《风电场电气工程》理论知识基础上,通过本课程设计让学生将所学理论知识应用于风电场电气工程实践,使学生在风电场电力系统方面的工程计算能力及分析和解决实际问题的能力能够得到训练和培养,为将来从事风电厂相关工作奠定良好的基础。
二、基本要求
1.根据给定的风电场资料,全面地运用所学的电气工程知识,掌握风电场电气主接线、短路电流、主要一次设备的选型计算以及配电装置规划与设计等方面的方法。
2.绘制主要部件的结构图。
图面符合制图标准,尺寸标注正确。
3.编写设计说明书,应说明设计的指导思想,方案比较和确定的原则,最后选定方案的参数,包括设计所依据的资料和数据,主要的计算结果,所选定设备的型号和对设备布置的说明。
要求条理清晰,并附有必要的图表和曲线。
根据内容分章节叙述、标明题目、列出目录,完整无遗漏。
字体端正,版面整洁,语言精炼。
4.编写设计计算书,应写明各主要参数的计算过程,包括列出设备的工作条件,给定的参数、理论公式及详细的计算步骤与计算结果。
要求计算结果准确可靠。
三、实践内容与时间分配
见表1。
四、实践条件与地点建议
1. 实践基本条件要求
(1)应有满足学生课程设计计算机绘图的计算机房;
(2)应有CAD制图软件,版本不低于2004;
(3)应有课程设计的专用教室,提供学生使用计算机的电源。
2. 实践地点建议
建议安排专用设计教室,便于学生集中做课程设计,并有利于指导教师集中指导。
五、能力培养与素质提升
1. 能力培养
(1)使学生受到综合运用所学“风电场电气工程”知识解决实际问题的训练,进一步培养学生的独立工作能力,使学生开始从理论学习逐步过渡到实际工作中。
(2)培养学生将过去熟悉的定性分析、定量计算方法与工程估算、设计绘图等手段相结合,通过课程设计,培养学生理论联系实际的正确设计思想,训练学生比较系统地运用所学的理论和生产实践知识去分析、解决问题的能力,为将来从事水电厂运行、管理、试验、调整、改造和科研打好基础。
(3)综合培养学生的计算、绘图、查阅手册和资料、熟悉标准和规范的基本能力,进行工程设计综合训练。
(4)培养学生综合应用书本知识、自主学习、独立工作的能力,培养与其他人团结协作的工作作风。
2. 素质提升
(1)通过课程设计环节的训练,使学生掌握水轮机工作的基本原理与设计方法,提升学生综合应用基础理论分析及解决工程问题的水平;
(2)提升学生查阅技术手册、资料和熟悉相关标准、规范的基本能力;
(3)提升学生运用所学知识和相关工具,进行工程计算以及计算机绘图能力;
(4)提升学生自主学习、独立工作的能力以及与他人团结合作的能力。
六、考核方式与评分标准
1.考核方式:考查。
2.成绩评定:采用答辩方式并结合课程设计说明书和绘图的质量,并结合平时考勤进行考核。
实习成绩采用百分制,其中平时考勤占30%、设计成果占40%、答辩成绩占30%。