桥梁的ansys有限元分析
- 格式:docx
- 大小:1.07 MB
- 文档页数:11
有限元实验报告一、实验目的本实验旨在通过有限元方法对一个复杂的工程问题进行数值模拟和分析,从而验证理论模型的正确性,优化设计方案,提高设计效率。
二、实验原理有限元方法是一种广泛应用于工程领域中的数值分析方法。
它通过将连续的求解域离散化为由有限个单元组成的集合,从而将复杂的偏微分方程转化为一系列线性方程组进行求解。
本实验将采用有限元方法对一个具体的工程问题进行数值模拟和分析。
三、实验步骤1、问题建模:首先对实际问题进行抽象和简化,建立合适的数学模型。
本实验将以一个简化的桥梁结构为例,分析其在承受载荷下的应力分布和变形情况。
2、划分网格:将连续的求解域离散化为由有限个单元组成的集合。
本实验将采用三维四面体单元对桥梁结构进行划分,以获得更精确的数值解。
3、施加载荷:根据实际工况,对模型施加相应的载荷,包括重力、风载、地震等。
本实验将模拟桥梁在车辆载荷作用下的应力分布和变形情况。
4、求解方程:利用有限元方法,将偏微分方程转化为线性方程组进行求解。
本实验将采用商业软件ANSYS进行有限元分析。
5、结果后处理:对求解结果进行可视化处理和分析。
本实验将采用ANSYS的图形界面展示应力分布和变形情况,并进行相应的数据处理和分析。
四、实验结果及分析1、应力分布:通过有限元分析,我们得到了桥梁在不同工况下的应力分布情况。
如图1所示,桥梁的最大应力出现在支撑部位,这与理论模型预测的结果相符。
同时,通过对比不同工况下的应力分布情况,我们可以发现,随着载荷的增加,最大应力值逐渐增大。
2、变形情况:有限元分析还给出了桥梁在不同工况下的变形情况。
如图2所示,桥梁的最大变形发生在桥面中央部位。
与理论模型相比,有限元分析的结果更为精确,因为在实际工程中,结构的应力分布和变形情况往往受到多种因素的影响,如材料属性、边界条件等。
通过对比不同工况下的变形情况,我们可以发现,随着载荷的增加,最大变形量逐渐增大。
3、结果分析:通过有限元分析,我们验证了理论模型的正确性,得到了更精确的应力分布和变形情况。
学会使用AnsysWorkbench进行有限元分析和结构优化Chapter 1: Introduction to Ansys WorkbenchAnsys Workbench是一款广泛应用于工程领域的有限元分析和结构优化软件。
它的功能强大,能够帮助工程师在设计过程中进行力学性能预测、应力分析以及结构优化等工作。
本章节将介绍Ansys Workbench的基本概念和工作流程。
1.1 Ansys Workbench的概述Ansys Workbench是由Ansys公司开发的一套工程分析软件,主要用于有限元分析和结构优化。
它集成了各种各样的工具和模块,使得用户可以在一个平台上进行多种分析任务,如结构分析、热分析、电磁分析等。
1.2 Ansys Workbench的工作流程Ansys Workbench的工作流程通常包括几个基本步骤:(1)几何建模:通过Ansys的几何建模功能,用户可以创建出需要分析的结构的几何模型。
(2)加载和边界条件:在这一步骤中,用户需要为结构定义外部加载和边界条件,如施加的力、约束和材料特性等。
(3)网格生成:网格生成是有限元分析的一个关键步骤。
在这一步骤中,Ansys Workbench会将几何模型离散化为有限元网格,以便进行分析计算。
(4)材料属性和模型:用户需要为分析定义合适的材料属性,如弹性模量、泊松比等。
此外,用户还可以选择适合的分析模型,如静力学、动力学等。
(5)求解器设置:在这一步骤中,用户需要选择适当的求解器和设置求解参数,以便进行分析计算。
(6)结果后处理:在完成分析计算后,用户可以对计算结果进行后处理,如产生应力、位移和变形等结果图表。
Chapter 2: Finite Element Analysis with Ansys Workbench本章将介绍如何使用Ansys Workbench进行有限元分析。
我们将通过一个简单的示例,演示有限元分析的基本步骤和方法。
- 1 -基于ansys 桥式起重机主梁的有限元分析1.引言起重运输设备主要从事搬运、转载、储存作业(TUL)的机械,桥式起重机是属起重运输机械之一,主梁是各式桥式起重机中最主要的部件之一,它承受着垂直方向的载荷(小车自重或起吊重物、主梁本身的自重和机械、电气设备的质量)和水平方向的载荷(当起重机或小车起动和制动时产生的惯性力)。
所以它应该有足够的垂直和水平方向的强度、刚度和稳定性,并有良好的抗疲劳性能和足够的疲劳强度。
主梁的高度根据起重量和跨度决定。
株洲天桥起重机股份有限公司首次开发和制造200t 的桥式起重机,对其主要承载结构件需进行严格的强度计算和刚度校核,下面采用先进的有限元理论计算方法和通用性大型ansys 有限软件对其主梁进行计算分析。
2.主梁的有限元模型的建立2.1 实体模型的建立考虑到此主梁结构异常复杂,零部件多,计算量很大,因此在建模过程中进行了一定的简化处理,略去和简化了一些对计算结果影响不大的零件,如:螺栓孔、倒角等。
将各零件的有限元模型建立起来,再加上边界约束条件,建立实体的有限元模型。
本文采用三维软件solidworks 建模,采用parasolid 文件实体导入ansys ,做前处理、分析计算和后处理等一系列工作,主梁的三维实体模型如图1所示,图2为主梁三维实体部分剖面图。
图1主梁三维实体模型图 图2主梁三维实体局部剖面图主梁的主要技术参数有,上下盖板为16mm ,主腹板为12mm ,副腹板为10mm ,中部梁高均为2200mm ,端部梁高1050mm ,主梁宽度为1800mm,总跨度为22m 。
2.2有限元模型的建立2.2.1 定义材料属性实体建模完成后,用ansys 有限元软件导入模型。
在计算时认为各焊接件本身无缺陷,焊接牢固,无虚焊、漏焊、松脱现象,焊接后残余应力较小,不足以影响分析结果。
静态分析的总体平衡方程[][]{}0=-P K δ定义为线性方程,因此分析类型选择线性,网格类型采用的是实体网格solid45,并采用自由网格进行离散化。
ANSYS有限元分析报告1. 简介在工程设计领域,有限元分析是一种常用的数值分析方法,通过将复杂的结构划分为有限数量的单元,然后对每个单元进行力学和物理特性的计算,最终得出整个结构的响应。
ANSYS是一款流行的有限元分析软件,提供了丰富的工具和功能,可用于解决各种工程问题。
本文将介绍ANSYS有限元分析的基本步骤和流程,并以一个实际案例为例进行说明。
2. 步骤2.1 确定分析目标首先要确定分析的目标。
这可以是结构的强度分析、振动分析、热传导分析等。
根据目标的不同,还需确定所需的加载条件和边界条件。
2.2 几何建模在进行有限元分析之前,需要进行几何建模。
在ANSYS中,可以使用几何建模工具创建和编辑结构模型。
这包括定义几何形状、尺寸和位置等。
2.3 网格划分网格划分是有限元分析的关键步骤。
通过将结构划分为多个单元,可以将结构分解为有限数量的离散部分,从而进行数值计算。
在ANSYS中,可以使用网格划分工具进行自动或手动划分。
2.4 材料属性定义在进行有限元分析之前,需要定义材料的物理和力学属性。
这包括弹性模量、泊松比、密度等。
ANSYS提供了一个材料库,可以选择常见材料的预定义属性,也可以手动定义。
2.5 加载和边界条件定义在进行有限元分析之前,需要定义加载和边界条件。
加载条件可以是力、压力、温度等。
边界条件可以是支撑、固定或自由。
2.6 求解和结果分析完成前面的步骤后,可以开始求解分析模型。
ANSYS将应用数值方法来解决有限元方程组,并计算结构的响应。
一旦求解完成,可以进行结果分析,包括位移、应力、应变等。
2.7 结果验证和后处理在对结果进行分析之前,需要对结果进行验证。
可以使用已知的理论结果或实验数据进行比较,以确保分析结果的准确性。
完成验证后,可以进行后处理,生成报告或结果图表。
3. 案例分析在本案例中,将针对一个简单的悬臂梁进行有限元分析。
3.1 确定分析目标本次分析的目标是确定悬臂梁在给定加载条件下的应力分布和变形。
钢桁架桥梁结构的ANSYS分析摘要本文中采用有限元分析法,在大型有限元分析软件ANSYS平台上分析桥梁工程结构,很好地模拟桥梁的受力、应力情况等。
在静力分析中,通过加载各种载荷,得出结构变形图,找出桥梁的危险区域。
1、问题描述下面以一个简单桁架桥梁为例,以展示有限元分析的全过程。
该桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表1-1。
桥长L=32m,桥高H=5.5m。
桥身由8段桁架组成,每段长4m。
该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1 ,P2和P3 ,其中P1= P3=5000 N, P2=10000N,见图1。
1图1桥梁的简化平面模型(取桥梁的一半)2、模型建立在桥梁结构模拟分析中,最常用的是梁单元和壳单元,鉴于桥梁的模型简化,采用普通梁单元beam3。
实体模型的建立过程为先生成关键点,再形成线,从而得到桁架桥梁的简化模型。
3、有限元模型3.1单元属性整个桥梁分成三部分,分别为顶梁及侧梁、弦杆梁、底梁,三者所使用的单元都为beam3单元,因其横截面积和惯性矩不同,所以设置3个实常数。
此外,他们材料都为型钢,材料属性视为相同,取为弹性模量EX为2.1e11 ,泊松比prxy为0.3,材料密度dens为7800。
3.2网格划分线单元尺寸大小为2,即每条线段的1/2。
4、计算4.1约束根据问题描述的要求,该桁架桥梁在x=0处的边界条件为全约束,x=32处的边界条件为y方向位移为0(即UY=0)。
如下图所示。
4.2载荷卡车对桥梁的压力视为3个集中载荷,因为模型只取桥梁的一般,所以3个集中载荷的力之和为20000N,分别为p1=5000N,p2=10000N,p3=5000N。
并将载荷施加在底梁的关键点4,5,6上。
如下图所示。
5、静力分析的计算结果5.1查看结构变形图显示y方向位移显示x方向位移5.2结论从加载后的结构变形图中可以看出,在载荷作用下,桁架桥的中间位置向下发生弯曲变形最为明显而两侧的侧梁变形最小,载荷引起的位移最大处在桥中间位置,随跨中间向两侧递减。
ansys结构仿真案例ANSYS是一款常用的结构仿真软件,可以对各种结构进行静力学、动力学、热力学等仿真分析。
下面列举10个以ANSYS结构仿真为题的案例,以展示其在不同领域的应用。
1. 桥梁结构分析:使用ANSYS对桥梁结构进行有限元分析,评估其受力性能和安全性,为工程设计提供依据。
可以对桥梁主要构件进行应力、变形、疲劳寿命等分析。
2. 建筑结构分析:通过ANSYS对建筑结构进行静力学分析,确定结构的承载能力和稳定性。
例如,可以分析高层建筑的抗震性能,优化结构设计,提高抗震安全性。
3. 飞机机翼结构分析:使用ANSYS对飞机机翼进行有限元分析,评估其受力性能和结构强度。
可以分析机翼的振动模态、应力分布等,优化结构设计,提高飞行安全性。
4. 汽车车身结构分析:通过ANSYS对汽车车身进行有限元分析,评估其受力性能和刚度。
可以分析车身的应力分布、变形情况,优化结构设计,提高车辆性能和安全性。
5. 器械设备结构分析:使用ANSYS对器械设备进行有限元分析,评估其受力性能和可靠性。
可以分析设备的应力分布、振动模态等,优化结构设计,提高设备性能和使用寿命。
6. 钢结构建筑分析:通过ANSYS对钢结构建筑进行有限元分析,评估其受力性能和稳定性。
可以分析结构的应力、变形、破坏模式等,优化结构设计,提高建筑的安全性和经济性。
7. 水力发电机组分析:使用ANSYS对水力发电机组进行有限元分析,评估其受力性能和效率。
可以分析机组的应力、变形、振动等,优化结构设计,提高发电机组的性能和可靠性。
8. 船舶结构分析:通过ANSYS对船舶结构进行有限元分析,评估其受力性能和强度。
可以分析船体的应力分布、变形情况,优化结构设计,提高船舶的航行性能和安全性。
9. 油井套管结构分析:使用ANSYS对油井套管进行有限元分析,评估其受力性能和耐久性。
可以分析套管的应力、变形、破坏模式等,优化结构设计,提高油井的开采效率和安全性。
10. 桩基础结构分析:通过ANSYS对桩基础结构进行有限元分析,评估其受力性能和稳定性。
《有限元教程》20例ANSYS经典实例有限元方法在工程领域中有着广泛的应用,能够对各种结构进行高效精确的分析和设计。
其中,ANSYS作为一种强大的有限元分析软件,被广泛应用于各个工程领域。
下面将介绍《有限元教程》中的20个ANSYS经典实例。
1.悬臂梁的静力分析:通过加载和边界条件,研究悬臂梁的变形和应力分布。
2.弯曲梁的非线性分析:通过加载和边界条件,研究受弯曲梁的非线性变形和破坏。
3.柱体的压缩分析:研究柱体在压缩载荷作用下的变形和应力分布。
4.钢筋混凝土梁的受弯分析:通过添加混凝土和钢筋材料属性,研究梁的受弯变形和应力分布。
5.圆盘的热传导分析:根据热传导方程,研究圆盘内部的温度分布。
6.输电线杆的静力分析:研究输电线杆在风载荷和重力作用下的变形和应力分布。
7.轮胎的动力学分析:通过加载和边界条件,研究轮胎在不同路面条件下的变形和应力分布。
8.支架的模态分析:通过模态分析,研究支架的固有频率和振型。
9.汽车车身的碰撞分析:通过加载和边界条件,研究汽车车身在碰撞中的变形和应力分布。
10.飞机翼的气动分析:根据飞机翼的气动特性,研究翼面上的气压分布和升力。
11.汽车车身的优化设计:通过参数化建模和优化算法,寻找最佳的车身结构设计。
12.轮毂的疲劳分析:根据材料疲劳寿命曲线,研究轮毂在不同载荷下的寿命。
13.薄膜材料的热应力分析:根据热应力理论,研究薄膜材料在不同温度下的应变和应力。
14.壳体结构的模态分析:通过模态分析,研究壳体结构的固有频率和振型。
15.地基基础的承载力分析:通过加载和边界条件,研究地基基础的变形和应力分布。
16.水坝的稳定性分析:根据水力和结构力学,研究水坝的稳定性和安全性。
17.风机叶片的动态分析:通过加载和边界条件,研究风机叶片在不同风速下的变形和应力分布。
18.圆筒容器的蠕变分析:根据蠕变理论,研究圆筒容器在持续加载下的变形和应力。
19.桥梁结构的振动分析:通过模态分析,研究桥梁结构的固有频率和振型。
《有限元基础教程》作业一:四梁平面框结构的有限元分析班级:机自101202班姓名:韩晓峰学号:2010120302101.1 进入ANSYS程序→ANSYS10.0 →Ansys→File→change directory(选择所设路径)。
File→change jobname→enter new jobname: beam3 →Run1.2 设置计算类型ANSYS Main Menu: Preferences →select Structural (结构分析)→ OK1.3 选择单元类型ANSYS Main Menu: Preprocessor →Element Type →Add/Edit/Delete…→Add…→select Beam:2D elastic 3 →OK (back to Element Types window) →Close (the Element Type window)1.4 定义材料参数ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear (线性)→Elastic(弹性)→Isotropic(各向同性)→input EX:2.1e11, PRXY:0.3 → OK1.5定义实常数以及确定平面问题的厚度ANSYS Main Menu: Preprocessor →Real Constants…→Add/Edit/Delete→Add→Type 1 beam3→OK→Real Constant Set No.1(第一号实常数),Cross-sectional area:6.8e-4(梁的横截面积)→Area moment of inertia:6.5e-7(梁的惯性矩) →OK→Close1.6 生成几何模型√生成节点ANSYS Main Menu: Preprocessor →Modeling →Create →Nodes→in Active CS→Node number 1→X:0,Y:0.96,Z:0→Apply→Node number 2→X:1.44,Y:0.96,Z:0→Apply→Node number 3→X:0,Y:0,Z:0→Apply→Node number 4→X:1.44,Y:0,Z:0→OK√生成单元ANSYS Main Menu: Preprocessor →Modeling →Create →Element →Auto Number →Thru Nodes →选择节点1,2(生成单元1)→Apply→选择节点1,3(生成单元2)→Apply→选择节点2,4(生成单元3)→选择节点3,2(生成单元4)→Apply OK1.7 模型施加约束√左边加X方向的受力ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Force/Moment→On Node →选择节点1→Apply→Direction of force:FX→VALUE:3000 → OK√上方施加Y方向的均布载荷ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Pressure →On Beams→选取单元1(节点1和节点2之间)→Apply →VALI:4167 →VALJ:4167 → OK√左、右下角节点加约束ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement → On Nodes →选取节点3和节点4→Apply →Lab:ALL DOF→ OK1.8 分析计算ANSYS Main Menu: Solution →Solve →Current LS →OK(to close the solve Current Load Step window) →OK1.9 结果显示显示变形图:ANSYS Main Menu: General Postproc →Plot Results →Deformed Shape… → select Def + Undeformed →OK (back to Plot Results window) →Contour Plot →Nodal Solu →select: DOF solution, UY, Def + Undeformed , Rotation, ROTZ ,Def + Undeformed →OK查看支座反力:ANSYS Main Menul:General Postproc>→List Results→Reaction Solu→select12 All items →OK 。
ANSYS有限元分析实例1.悬臂梁的结构分析悬臂梁是一种常见的结构,其呈直线形式,一端固定于支撑点,另一端自由悬挂。
在这个分析中,我们将使用ANSYS来确定悬臂梁的最大弯曲应力和挠度。
首先,我们需要创建悬臂梁的几何模型,并给出其材料属性和加载条件。
然后,在ANSYS中创建有限元模型,并进行网格划分。
接下来,进行力学分析,求解材料在给定加载下的应力和位移。
最后,通过对结果的后处理,得出最大弯曲应力和挠度。
2.螺旋桨的流体力学分析螺旋桨是一种能够产生推力的旋转装置,广泛应用于船舶、飞机等交通工具中。
螺旋桨的流体力学分析可以帮助我们确定其叶片的受力情况和推力性能。
在这个分析中,我们需要建立螺旋桨的几何模型,并给出流体的流速和压力条件。
然后,我们在ANSYS中创建螺旋桨的有限元模型,并进行网格划分。
通过求解流体场方程,计算叶片上的压力分布和受力情况。
最后,通过对结果的后处理,得出叶片的受力情况和推力性能。
3.散热片的热传导分析散热片是一种用于散热的装置,广泛应用于电子设备、电脑等领域。
散热片的热传导分析可以帮助我们确定散热片在给定热源条件下的温度分布和散热性能。
在这个分析中,我们需要建立散热片的几何模型,并给出材料的热导率和热源条件。
然后,我们在ANSYS中创建散热片的有限元模型,并进行网格划分。
通过求解热传导方程,计算散热片上各点的温度分布。
最后,通过对结果的后处理,得出散热片的温度分布和散热性能。
以上是三个ANSYS有限元分析的实例,分别涉及结构分析、流体力学分析和热传导分析。
通过这些实例,我们可以充分展示ANSYS在不同领域的应用,并帮助工程师和科研人员解决工程问题,提高设计效率和产品性能。
ANSYS有限元分析报告1. 引言有限元分析(Finite Element Analysis, FEA)是一种常用的工程分析方法,可以用于预测材料和结构在各种工况下的行为和性能。
本报告旨在通过使用ANSYS软件进行有限元分析,对某一具体的工程问题进行模拟和分析,并得出相应的结论和建议。
2. 问题描述本次有限元分析的问题是研究某结构在受载情况下的应力分布和变形情况。
具体而言,我们关注的结构是一个柱形零件,其材料为XXX,尺寸为XXX。
该结构在受到垂直向下的均布载荷时,会发生弯曲变形和应力集中现象。
我们的目标是通过有限元方法对该结构进行分析,预测其应力分布情况,并评估其承载能力。
3. 模型建立我们使用ANSYS软件来建立和分析该结构的有限元模型。
首先,我们将导入该零件的几何数据,然后通过ANSYS的建模工具创建相应的有限元模型。
在建立模型的过程中,我们需要注意几何尺寸、材料特性、约束条件和加载方式等参数的设定,以确保模型的准确性和可靠性。
4. 材料属性和加载条件在进行有限元分析之前,我们需要确定材料的特性和加载条件。
根据提供的信息,我们将采用XXX材料的力学特性进行模拟。
同时,我们假设该结构受到均布载荷的作用,其大小为XXX。
这些参数将在后续的分析中使用。
5. 模型网格划分在进行有限元分析之前,我们需要对模型进行网格划分。
网格的密度和质量将直接影响分析结果的准确性和计算效率。
在本次分析中,我们将采用适当的网格划分策略,以满足准确性和计算效率的要求。
6. 模型分析和结果通过ANSYS软件进行有限元分析后,我们得到了该结构在受载情况下的应力分布和变形情况。
根据分析结果,我们可以观察到应力集中区域和变形程度,并根据材料的特性进行评估。
同时,我们可以通过对加载条件的变化进行分析,预测该结构的承载能力和安全系数。
7. 结论和建议根据有限元分析的结果,我们得出以下结论和建议:•该结构在受均布载荷作用下发生应力集中现象,需要对其进行加强和优化设计。
(一)研究背景桥梁在一个国家的交通运输和经济发展中占有十分重要的位置 ,而桥梁桁架结构是保证桥梁安全运营的重要手段。
随着技术的发展,桥梁桁架结构己经发展成为桥梁领域中必不可少的专用结构,桥梁桁架结构更是代表了桥梁的主流发展方向,具有广阔的市场前景。
木文的研究对象为桥梁桁架结构,采用有限元法对该车结构进行了有限元分析。
(二)研究目的本文认真研究了桥梁的结构组成和工作原理,对桥梁各组成部件进行了合理的模型处理和简化,利用有限元分析软件ANSYS的APDL语言,建立了各部件的有限元参数化模型。
按照真实情况采用合理的方式模拟各部件间的连接关系,将各部件组成一个整体。
通过以上工作建立了桥梁的有限元分析模型,对桥梁桁架结构进行静力学分析,分析桥梁桁架结构在静态情况下的位移变形,应力应变分布,为桥梁桁架结构的设计与制造提供理论依据。
(三)有限元分析过程1.定义材料属性,包括密度、弹性模量、泊松比。
点击主菜单中的"Preprocessor'Material Props >Mat erialModels” ,弹出窗口,逐级双击右框中“Structural、Linear\ Elastic\ Isotropic n前图标,弹出下一级对话框,在"弹性模量” (EX)文本框中输入:2. Oell ,在“泊松比” (PRXY)文本框中输入:0. 3,如图所示,点击“0K”按钮,同理点击Density输入7850即为密度。
A define Material Model BehaviorMaterial Edit Favorite HelpA Linear I&otropic Properties for P/aterhl Number 1Linear Isotropic Ifaterial Propertiesfor Kat erial NuiTber 1T1Terrperatures |0 EX PRX7|o.3Add Temper attire | Delete TeiuperatureGraphOKdree] |HebA Define Material Model Behavior Matenal Edit Favorite Help2. 定义单元属性,包括单元类型、单元编号、实常数。
点击主菜单中的"Preprocessor>ElenientType >Add/Edit/Delete n,弹出对话框点击“0K” ,关闭对话flntHial XodeLs Defined ◎ Linear Isotropicateri al Kodcl Number 1JjJlatcrial Hodcls Ax r ailablc& Favorites卷 Structural 画 Linciir 血 Slastic◎inc◎ Orthotropi c◎Arusotropic 血 Monlineai*Q DensityMaterial Models DefinedHaterial Models Availablc矗疏翌皿1脸遐ElI@ Linear Ortho-tropic⑥ Favccrites渗 Structural 卤Linear g Elastic© Isotropic ◎ Orthotropic $ Anisotropic 血Nonlinear⑥ Thermal Expansion框,返回至上一级对话框此时,对话框中岀现刚才选中的单元类 型:Linko3. 定义梁截面,包括梁截面各部分尺寸。
点击主菜单中的 “Preprocessor 〉Sections>Link>Add"、弹出对 话框输入ID 为1梁截而为100点击“0K” ,关闭对话框,H Preferences 3 Preprocessor @ Element Type ® Real Constants (D Baterial Props Q SectionsEJ Section Library 0 B (?a» □ Shell 0 Pretension 0 Joints0 Reinforcing 0 Pipe □ Link□ SEESEdit B Axis O Contact E List Sections E Delete Section E Ifodel in^ ® HcshinE□3 Check ing Ctrls © NumbeririR Ctrls CD Archive ludel@ Coupling / Ceqn mHulti-ficld Set Up © LoadsCD Physics□3 Path Operations S SolutionEJ General Postproc 9 TineHist Postpro □ ROM Tool 9 Kadiat ion Opt S Session Editor4. 使用keypoint 命令建立关键点,使用line 命令建立线。
VOLUMES TYPE NUM・・ pt ions ・ JDulutu |5.定义梁单元大小进行网格划分。
点击主菜单中的“Preprocessor>Meshing>MeshTool ” ,弹出划分网格对话框在“Size Control ”标签中的Global 一栏点击Set 按钮,弹出“网格尺寸设置”对话框,在SIZE 一栏中输入:2,其他保留缺省设置,点击0K按钮关闭对话框。
1ELEMENTSJAN 9 202120:56:52unsaved_project—Static structural (AS}6 •在梁两端添加刚臂和施加约束。
点击主菜单中的zz Preprecessor>Loads>DefineLoads>Apply>Structuaral>Displacemengt>On Areas ",弹出而选择对话框,点击该模型的左端而,点击“OK"按钮,弹岀对话框如图示,选择右上列表框中的“AIIDOF”,并点击"OK"按钮,即可完成对左端而的位移约朿,相当于梁的固左端。
同理,对梁的右端而进行固左端约束匚Ills Select List Elot PiotGtrls NoikPlane Paraieiers lacro lewXtrls Hel>D剑旦创鱼]鱼]勺]飞| 3 ToolbarOrfiro no I Dccirw T.P I ^awr 1 r.-«rc,-'nr<rlI CTXJ®rcnces 二ocessorIon lysis Type inc Loads nt Ings •ply StrixturalQ Displnceakcnt 尸On Lines □ On Areftfl 尸On Keypoints 戸KT■诫妁刀On Ho4cCaoponcnt s EJ Sywnr try B. C.3 Ant i wysd B. C.0 Force/lo®rnt s Pressure Q Teaocrftture 13 Inertia BPrctnsn Scctn 13Gm Plane Strain 田Other Field Surf ACC Tntr Field V Q I UXH: Intx Initial CondiVn Load Vector Functions rlete•crate1 Step Opts lanngenent (CIS)ilte$ Tracking/c ml Rexoninc l卜field S?t UpIS Confection snotstics Hedged lODU al Pnstproc 1st Postpro oolELEMENTSunsaved^project--Static Structural (A5)7 •施加点荷载和施加均布荷载。
点击主菜单中的/z Preprocessor>Loads>DefineLoads>Apply>Structural>Force/Moment> On Nodes",弹岀"盯点选择"对话框,点击"PickAll"按钮,即可。
在Force/momentvalue"—项中输A: -100N然后点击"OK 〃按钮关闭对话框。
同理在pressure施加均布荷载°Kain lend;ferencm rproccssor ution nalycis Type «finc J Settints 3ApplyE) Structural 田Displucencnt D Forcc/looent T^On Keypoints-^0n Nixir Covpoa^nts B Fro・ Reactioa? S Fro* lot Analy 0Presflurc 田Tewcraturc 田Inertia S Prctnsn Sectn S CenPlane Strain 0 OtherB Field Surface Intr B Field Volune Intr 田Initial 0 Load Veo E) Function 3Qelete iOperate oad Step Oc X Ijmacenc: tfl Tr^4 <»lve anMal Rcxoc nit i-field DAIS Coonci habr idged I wral Pg": wHist Po5t| I Tool ELEMENTSANSYSR17.CJAX 9 202121:09:21A *PP*X f/W on Neds)[H Appfy ForcPt>Mcm«nt cn NodaaLab Dir«cf»on c4 (orc^/mom K)啊■・|Ccnatar« v«kj»_*]IIi if S如n 如<•.VALUE Forc<|Vwc»n»rTt «*・♦1*」My CmcU | Hdp |L:「〔(四)分析结果及意义1•导出位移计算结果。
点击主菜单中的“ General Postproc>PlotResults>ContourPlot>NodalSolu M , 弹岀对话框,选中"Nodal Solution>DOF Solution>X-compoment of displacement v栏中的“UX”选项,点击“OK”按钮,即可显示位移云图,如图。