实用仪器分析实验报告
- 格式:doc
- 大小:13.00 KB
- 文档页数:3
一、实验目的1. 理解光谱分析的基本原理及其在化学、材料科学等领域的应用。
2. 掌握光谱仪器的操作方法,包括紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR)和荧光光谱仪。
3. 学习分析玻璃透光率、薄膜吸收光谱、固体粉末红外光谱和固体发光材料荧光光谱的测试方法。
4. 了解影响光谱分析结果的主要因素,并尝试进行误差分析和数据处理。
二、实验原理光谱分析是利用物质对光的吸收、发射、散射等特性,对物质的组成、结构进行分析的一种方法。
主要包括紫外-可见光谱、红外光谱、荧光光谱等。
1. 紫外-可见光谱:物质对紫外-可见光的吸收与分子中的电子跃迁有关,通过测量吸收光谱,可以了解物质的组成和结构。
2. 红外光谱:物质对红外光的吸收与分子中的振动、转动有关,通过测量红外光谱,可以了解物质的官能团和化学结构。
3. 荧光光谱:物质在吸收光子后,会发射出光子,通过测量荧光光谱,可以了解物质的分子结构、聚集态等。
三、实验仪器与材料1. 紫光/可见光光度计2. 傅里叶变换红外光谱仪(FTIR)3. 荧光光谱仪4. 标准样品(玻璃、薄膜、固体粉末、发光材料)5. 仪器操作说明书四、实验步骤1. 紫光/可见光光度计操作(1)打开仪器,预热30分钟。
(2)设置波长范围、扫描速度、灵敏度等参数。
(3)将标准样品放入样品池,进行光谱扫描。
(4)记录吸收光谱,并进行数据处理。
2. 傅里叶变换红外光谱仪(FTIR)操作(1)打开仪器,预热60分钟。
(2)设置波数范围、分辨率、扫描次数等参数。
(3)将标准样品放入样品池,进行光谱扫描。
(4)记录红外光谱,并进行数据处理。
3. 荧光光谱仪操作(1)打开仪器,预热30分钟。
(2)设置激发波长、发射波长、扫描速度等参数。
(3)将标准样品放入样品池,进行光谱扫描。
(4)记录荧光光谱,并进行数据处理。
五、实验结果与分析1. 紫光/可见光光度计通过比较标准样品和待测样品的吸收光谱,可以确定待测样品的组成和结构。
仪器分析实验报告实验名称:仪器分析实验报告实验目的:通过仪器分析技术,对样品进行分析和定性定量测定,并掌握仪器的基本原理和操作方法。
实验原理:仪器分析是基于物理、化学和光电原理的一种分析方法,通过利用仪器仪表的测定功能,对样品中所含化合物的性质和含量进行定性和定量分析。
常见的仪器分析方法包括:光谱分析、色谱分析、质谱分析、电化学分析等。
实验仪器:本实验使用的仪器为紫外可见分光光度计。
实验步骤:1. 打开紫外可见分光光度计,并进行预热。
2. 调节仪器的波长和光程,根据待测样品的特性选择合适的波长和光程。
3. 准备待测样品溶液,按照规定的方法和配比将样品溶解并稀释至适当浓度。
4. 将样品溶液倒入光度计试管中,注意不要溢出。
5. 调节样品的基线,即让光度计读数稳定在零点附近。
6. 启动仪器测量功能,记录样品的吸光度读数。
7. 根据测得的吸光度数据和标准曲线,计算样品的浓度。
8. 定性判断样品中的化合物,可以根据吸光度谱和特征峰的位置进行判断。
实验注意事项:1. 操作仪器时要仔细阅读仪器操作手册,并熟悉仪器的安全操作方法。
2. 样品溶液的配制要准确,避免影响实验结果。
3. 光度计试管和仪器的光路要保持清洁,避免污染和漂白。
4. 测量数据要准确记录,避免失误或遗漏。
5. 实验后及时关闭仪器,清洁试管和仪器,保持仪器的正常使用。
实验结果与讨论:根据实验步骤和操作,得到待测样品的吸光度数据,并根据标准曲线计算出样品的浓度。
通过定性判断,可以确定样品中的化合物种类。
根据实验结果对样品进行分析和讨论,比较实验结果和预期结果之间的差异,分析可能的原因,并提出改进方案。
结论:通过仪器分析实验,有效地对样品进行了定性定量分析,获得了样品的浓度和化合物种类。
实验结果与预期结果基本吻合,证明了仪器分析方法的准确性和可靠性。
实验过程中,要注意仪器操作和数据记录的准确性,避免误差的引入。
同时,对于实验结果的分析和讨论也十分重要,可以为进一步的研究提供参考和指导。
仪器分析实验报告仪器分析实验报告引言仪器分析是现代科学研究和工程技术中不可或缺的一部分。
通过仪器分析,我们可以了解材料的组成、结构和性质,从而为科学研究和工程设计提供有力的支持。
本实验旨在通过使用仪器分析技术,探索物质的特性和变化。
实验目的本实验的目的是通过使用光谱仪器对不同样品进行分析,了解不同样品的组成和性质,以及在不同条件下的变化。
实验方法1. 准备样品:收集不同类型的样品,包括有机物、无机物和混合物。
确保样品干净、纯净,并根据需要进行预处理。
2. 使用光谱仪器:使用光谱仪器对样品进行分析。
根据需要选择适当的光谱范围和检测方法。
记录下样品的光谱图,并进行数据处理和分析。
3. 变化条件:在实验过程中,可以通过改变温度、压力、光照等条件,观察样品的变化。
记录下不同条件下的光谱图,并进行对比分析。
实验结果与讨论通过对不同样品的分析,我们得到了一系列有关样品组成和性质的数据。
以下是一些实验结果的讨论:1. 有机物分析:我们选择了一种有机染料作为样品进行分析。
通过光谱仪器,我们得到了该有机染料的吸收光谱图。
根据光谱图的峰值位置和强度,我们可以推断该有机染料的结构和化学性质。
此外,我们还观察到在不同温度下,有机染料的吸收峰位置发生了变化,这可能与分子内部的振动和转动有关。
2. 无机物分析:我们选择了一种金属合金作为样品进行分析。
通过光谱仪器,我们得到了该金属合金的X射线衍射图谱。
根据衍射峰的位置和强度,我们可以确定该金属合金的晶体结构和成分。
此外,我们还观察到在不同压力下,金属合金的衍射峰位置发生了变化,这可能与晶体结构的压力效应有关。
3. 混合物分析:我们选择了一种复杂的环境样品作为样品进行分析。
通过光谱仪器,我们得到了该环境样品的质谱图。
根据质谱图的峰值位置和强度,我们可以推断该环境样品中的化合物种类和含量。
此外,我们还观察到在不同光照条件下,环境样品的质谱图发生了变化,这可能与光照引起的化学反应有关。
仪器分析实验报告引言:仪器分析是现代科学研究中重要的一环,它通过使用精密的仪器设备,结合相应的分析技术,对物质的成分、结构和性质进行准确而全面的研究与分析。
本实验旨在通过对某种物质的全面分析,展示仪器分析的应用及其重要性。
一、实验目的本实验的主要目的是利用多种常用仪器设备进行物质分析,包括质谱仪、红外光谱仪、核磁共振仪等,以便全面了解目标物质的结构和组分。
二、实验原理1. 质谱分析质谱分析是一种利用质谱仪分析目标物质的化学成分和结构的方法。
它通过将物质分子中的粒子进行电离,并根据其质量-电荷比进行区别和测量。
通过分析质谱图,可以判断样品的分子量、它的含量等。
2. 红外光谱分析红外光谱分析基于物质吸收不同波长的红外辐射的特性。
通过红外光谱仪,可以分析物质中的化学键类型,识别功能团,从而研究物质的结构和性质。
3. 核磁共振分析核磁共振分析利用物质中原子核的共振吸收来研究物质的结构和组成。
该方法通过让样品在强磁场中受到长度和频率固定的射频脉冲照射,从而获得样品吸收的一维、二维、多维数据,用于分析分子间的连接关系、原子间的距离和角度,以及确定各原子之间的化学环境等。
三、实验过程1. 样品制备选取目标物质,并采取适当的方法进行样品制备,以保证样品的纯度和适配性。
2. 质谱分析将样品注入质谱仪进行分析,获取质谱图。
根据质谱图的峰位置和峰强度,可以初步判断样品的分子量和组成。
3. 红外光谱分析将样品放入红外光谱仪,检测物质吸收红外辐射的情况。
比对样品的吸收峰位和峰形,可以初步推断物质中的化学键类型和官能团。
4. 核磁共振分析将样品放入核磁共振仪,利用核磁共振吸收信号进行分析。
通过解析核磁共振谱图,可以进一步推断样品的结构和力学性质,例如化学环境、原子位移等。
四、实验结果与分析根据实验所得的数据,我们得到了目标物质的质谱图、红外光谱图和核磁共振谱图。
通过对谱图的解析和比对,我们初步确定了样品的组分、化学键类型、官能团等重要信息。
仪器分析实验报告
实验目的:
本次实验旨在通过使用仪器分析的方法,对样品进行定性和定量分析,从而获
取样品的成分和含量信息,为进一步的研究和应用提供数据支持。
实验仪器和试剂:
本次实验所用的仪器为高效液相色谱仪(HPLC),试剂为甲醇、乙醇、水等。
实验步骤:
1. 样品制备,将样品粉碎并过筛,取适量样品称重。
2. 样品提取,采用适当的提取方法,将样品中的目标成分提取出来。
3. 色谱条件设置,根据实验要求,设置色谱柱、流动相、检测波长等参数。
4. 样品分析,将提取得到的样品溶液注入色谱仪进行分析。
5. 数据处理,根据色谱仪输出的数据,进行峰面积积分计算,得到目标成分的
含量。
实验结果:
通过HPLC分析,得到了样品中目标成分的含量信息,同时也确定了样品的成
分组成。
实验结果表明,样品中含有较高的目标成分,达到了预期的分析要求。
实验结论:
本次实验通过仪器分析的方法,成功地对样品进行了定性和定量分析,获得了
有意义的数据结果。
这为进一步的研究和应用提供了重要的参考依据。
实验心得:
通过本次实验,我对仪器分析方法有了更深入的了解,也掌握了HPLC分析的基本操作技能。
在今后的实验工作中,我将继续努力,不断提高实验操作的技术水平,为科研工作做出更大的贡献。
总结:
仪器分析在科学研究和工程技术领域具有重要的应用价值,通过本次实验,我对仪器分析的意义和方法有了更清晰的认识。
希望通过不断的学习和实践,能够更好地运用仪器分析的方法,为科学研究和工程技术的发展做出贡献。
一、实验目的1. 熟悉仪器分析的基本原理和操作方法。
2. 掌握紫外-可见分光光度法在定量分析中的应用。
3. 学习利用仪器分析对样品进行定性和定量分析。
二、实验原理紫外-可见分光光度法(UV-Vis spectrophotometry)是一种利用物质在紫外和可见光区域的吸收光谱特性进行定性和定量分析的方法。
本实验采用紫外-可见分光光度计对样品进行测定,通过测定吸光度与浓度之间的关系,实现对样品中特定成分的定量分析。
三、实验仪器与试剂1. 仪器:紫外-可见分光光度计、电子天平、移液器、容量瓶、试管、洗耳球等。
2. 试剂:待测样品溶液、标准溶液、溶剂等。
四、实验步骤1. 标准曲线的绘制:(1)取若干个100mL容量瓶,分别加入不同浓度的标准溶液,用溶剂定容至刻度线。
(2)用移液器吸取一定量的标准溶液于试管中,加入适量的显色剂,充分混匀。
(3)将试管放入紫外-可见分光光度计中,在特定波长下测定吸光度。
(4)以吸光度为纵坐标,浓度(或质量浓度)为横坐标,绘制标准曲线。
2. 样品测定:(1)取一定量的待测样品溶液,按照标准曲线绘制步骤进行显色。
(2)在相同条件下测定吸光度。
(3)根据标准曲线计算样品中待测成分的浓度。
五、实验结果与分析1. 标准曲线的绘制:(1)绘制标准曲线,得到线性方程为:A = 0.0183C + 0.0026,相关系数R² = 0.9989。
(2)根据线性方程,计算标准溶液的浓度范围在0.05~1.0mg/mL之间。
2. 样品测定:(1)根据标准曲线,计算样品中待测成分的浓度为0.8mg/mL。
(2)根据样品溶液的体积和浓度,计算样品中待测成分的质量。
六、实验结论1. 通过本实验,掌握了紫外-可见分光光度法的基本原理和操作方法。
2. 成功绘制了标准曲线,并利用标准曲线对样品进行了定量分析。
3. 实验结果表明,本方法具有较高的准确度和精密度,适用于待测成分的定量分析。
七、注意事项1. 在实验过程中,应注意仪器的正确使用和维护,确保实验结果的准确性。
仪器分析学生设计实验报告引言仪器分析是化学分析的重要分支,它通过利用各种仪器设备,对样品中的化学成分进行定性和定量分析。
而学生设计实验则是培养学生分析和解决问题的能力的重要途径。
本实验旨在通过选取某一具体问题,设计并完成相应的仪器分析实验,提高学生的实践操作能力和仪器分析方法的应用能力。
实验设计本次实验中,选择了某食品中某特定成分的定量分析问题进行研究。
首先,我们需要明确分析目标和研究的对象。
然后,根据已有的仪器设备和分析方法,设计实验的步骤和操作流程。
最后,进行实验并对实验结果进行分析和解释。
实验目标本次实验的主要目标是通过仪器分析方法,对某食品中某特定成分进行定量分析,并确定该食品中特定成分的含量。
研究对象本次实验中,我们选取了某品牌的饼干产品作为研究对象。
我们将针对其中的某特定成分进行定量分析,并与其他品牌的饼干进行比较分析。
仪器设备和分析方法本次实验将使用以下仪器设备和分析方法来完成定量分析:1. 气相色谱仪:用于分离和定量某特定成分,具有高灵敏度和精确度。
2. 高效液相色谱仪:用于分离和定量其他成分,具有全面的分析能力。
3. 紫外可见分光光度计:用于测定某特定成分的吸收光谱,以便定量分析。
4. 标准溶液:用于构建标准曲线,确定待测样品中某特定成分的含量。
实验步骤和操作流程1. 样品的准备:选择合适的样品,并将其制备成适合分析的形式,如提取物、溶液等。
2. 标准曲线的构建:利用标准品和已知浓度的溶液,按一定比例制备不同浓度的标准溶液。
通过测定吸收光谱,制定标准曲线。
3. 仪器调试和校准:根据仪器设备的要求,对仪器进行调试和校准,以保证实验结果的准确性和可靠性。
4. 样品的分析:将样品注入气相色谱仪或高效液相色谱仪中,进行分离和定量。
5. 数据的处理和分析:根据实验结果,利用标准曲线,计算样品中特定成分的含量。
6. 结果的验证和比较:将实验结果与其他品牌的饼干进行比较,验证分析结果的准确性和可靠性。
仪器分析实验报告概述仪器分析是化学和生物技术研究的重要手段之一,通过使用各种仪器来分析和识别物质的性质、结构和组成,从而为科学研究和工业制造提供数据和信息。
本实验旨在通过对三种常用分析仪器的使用与操作,掌握仪器分析的基本方法和技能。
实验一:紫外可见分光光度计紫外可见分光光度计是一种常用的分析仪器,可以用于测定分子的吸光度,从而确定其浓度。
在实验中,我们使用紫外可见分光光度计来测定苯甲酸的吸收光谱,并根据吸收峰的强度和位置,判断苯甲酸的化学结构和活性。
实验结果表明,苯甲酸的紫外光谱主要在280nm处有一个吸收峰,证明其有芳香环结构;同时,其对紫外光谱的吸收强度与浓度之间呈线性关系,可用于定量分析。
实验二:原子吸收光谱仪原子吸收光谱仪是一种常用的分析仪器,可以用于分析痕量金属元素的含量。
在实验中,我们使用原子吸收光谱仪来测定硬度水样品中钙和镁的含量。
实验结果表明,硬度水样品中钙和镁的含量分别为0.4mg/L和0.5mg/L,与标准值相接近,说明该方法可靠。
实验三:气相色谱-质谱联用仪气相色谱-质谱联用仪是一种高分辨率、高灵敏度的分析仪器,可以用于分离和识别化合物中的各种成分。
在实验中,我们使用气相色谱-质谱联用仪来分析香料中的各种成分,并通过母离子扫描和碎片离子扫描来确定这些成分的分子结构和特征。
实验结果表明,香料中含有多种成分,其中醛类、酮类和酯类物质含量较高,可以作为该香料的主要特征。
同时,根据高准确度的质谱数据,我们还可以对这些成分的分子结构和碎片离子进行进一步分析,为该香料化学成分的研究提供了有力的支持。
结论通过对三种常用的仪器分析方法的使用与操作,我们深入了解了仪器分析的原理和技能,掌握了多种化学和生物信息分析的方法和技术。
同时,我们还进一步加深了对化学和生物学的认知和理解,为今后的科学研究和实践奠定了坚实的基础。
仪器分析实验报告(完整版)实验目的本实验旨在掌握分光光度法、电位滴定法以及气相色谱法的原理、方法及操作技能,以及利用这些分析方法对某种化合物进行定量分析。
实验原理1. 分光光度法:利用物质吸收光的特性,通过测量溶液中所吸收的光的强度来确定物质的浓度。
该方法可根据比尔-朗伯定律,即吸收光强与物质浓度成正比的关系进行浓度测定。
2. 电位滴定法:利用滴定过程中所发生的电位变化来确定滴定终点,从而计算出待分析物的浓度。
滴定过程中,滴定剂与待测溶液发生反应,产生的氧化还原反应引起电位的变化。
3. 气相色谱法:借助气相色谱仪对待测物质进行分离和定量分析。
样品被气相载气带到色谱柱中,不同组分在色谱柱内会根据其亲和性以不同速度迁移,从而实现分离。
实验仪器与试剂1. 分光光度计2. 电位滴定仪3. 气相色谱仪4. 待测溶液:某种含有未知物质的溶液5. 标准溶液:含有已知浓度物质的溶液实验步骤及结果1. 分光光度法a. 准备一系列标准溶液,测量其吸光度,建立吸光度与浓度之间的标准曲线。
b. 用分光光度计测量待测溶液的吸光度,根据标准曲线确定其浓度。
2. 电位滴定法a. 准备滴定溶液和待滴定溶液。
b. 用电位滴定仪滴定待测溶液,记录滴定过程中的电位变化,以此判断滴定终点。
c. 根据滴定所需的滴定液体积和滴定终点电位变化量,计算出待测溶液中物质的浓度。
3. 气相色谱法a. 准备样品和标准溶液。
b. 将样品和标准溶液分别注入气相色谱仪,设置合适的操作参数。
c. 通过检测样品中某种组分在色谱柱中的保留时间,并参照标准样品的保留时间,确定待测样品中该组分的含量。
实验数据处理根据实验结果,利用对应的计算公式和标准曲线,计算出待测溶液中未知物质的浓度或含量。
同时,对数据进行统计分析,包括均值、标准偏差、相关系数等,以确定实验结果的可靠性。
根据实验过程中的观察结果,可对实验方法的优缺点进行讨论,并对实验中可能出现的误差进行分析与改进。
实验名称:气相色谱-质谱联用仪(GC-MS)基础操作及样品分析实验日期:2023年11月15日一、实验目的1. 了解气相色谱-质谱联用仪(GC-MS)的基本原理和操作方法。
2. 掌握GC-MS仪器的开机、关机流程及注意事项。
3. 学习使用GC-MS对未知样品进行定性、定量分析。
4. 培养实验操作技能和数据处理能力。
二、实验原理气相色谱-质谱联用仪(GC-MS)是一种高效、灵敏的分析仪器,它结合了气相色谱(GC)和质谱(MS)两种分析技术的优点。
GC利用色谱柱将样品分离成各个组分,MS则通过检测各组分的质荷比(m/z)进行定性、定量分析。
1. 气相色谱(GC):利用不同组分在色谱柱中的分配系数差异,将混合物分离成各个组分。
2. 质谱(MS):通过电离和检测离子,根据离子的质荷比(m/z)进行定性、定量分析。
三、实验仪器与试剂1. 仪器:气相色谱-质谱联用仪(美国安捷伦,型号7890A-5975C)2. 试剂:正己烷、正庚烷、正辛烷、正壬烷等有机溶剂四、实验步骤1. 开机:打开UPS电源,启动联机电脑,打开气相色谱仪电源开关,待气相色谱仪自检完成后,打开质谱仪电源开关。
2. 调谐:待仪器稳定运行1小时后,进行GC-MS调谐。
使用全氟三丁胺(FC-43)作为调谐标准物质,优化质谱仪的质量指示和参数。
3. 样品前处理:取一定量的未知样品,加入适量正己烷,充分溶解后,过0.45μm滤膜。
4. 上机分析:将处理好的样品注入GC-MS仪器,进行定性、定量分析。
5. 关机:分析完成后,关闭质谱仪电源,关闭气相色谱仪电源,关闭UPS电源。
五、实验数据及处理1. 定性分析:根据标准物质的保留时间和质谱图,对未知样品进行定性分析。
2. 定量分析:根据标准曲线,计算未知样品中各组分的含量。
六、实验结果1. 定性分析结果:未知样品中含有正己烷、正庚烷、正辛烷、正壬烷等有机溶剂。
2. 定量分析结果:正己烷含量为 1.5%,正庚烷含量为 2.0%,正辛烷含量为 1.8%,正壬烷含量为2.2%。
实用仪器分析^p 实验报告
_ 射线荧光光谱分析^p 实验
实验名称
_射线荧光光谱分析^p 实验
一、实验目的(1)通过本实验,了解 _ 射线荧光分析^p 仪的原理和实验技术;
(2)掌握 _ 射线荧光分析^p 样品的制备;
(3)掌握粉末样品、薄膜样品中的元素检测方法;
(4)通过实验掌握设备的开关机;
(5)培养和提高学生的动手能力和创新能力。
二、实验原理简述该仪器的工作原理是元素的原子受到高能辐射_ 射线激发而引起内层电子的跃迁,同时发射出具有一定特殊性波长的 _ 射线,根据莫斯莱定律,荧光 _ 射线的波长λ 与元素的原子序数 Z 有关,其数学关系如下:
λ=K(Z− s) −2,式中 K 和 S 是常数。
图 1 _ 射线荧光光谱仪(岛津 _RF-1800)
四、实验步骤
(1)仪器准备使用仪器前务必检查外部冷却水系统水压是否在 0.2-
0.4Mpa,_-射线荧光光谱仪主机板面是否有 error 灯亮或电脑界面是否显示报错。
(2)样品准备使用压样机压制样品,样品要求:
a 不受理有可能污染仪器的样品(有机样品,高挥发性物质、低熔点材料和有掉落的粉末等)和磁性样品。
b 仪器元素检测范围 O~U,若样品含 O 之前
五、实验数据及其处理分析^p
六、思考题
比其他作品都要好。
《仪器分析^p 实验》复习题
1、单光束和双光束紫外吸收光谱仪的结构有什么特点?
2、红外光谱法中,对试样有哪些要求?
3、pH玻璃电极的原理,如何测定pH值
答:玻璃电极法测定水样的PH值是以饱和甘汞电极为参比电极,以玻璃电极为指示电极,与被测水样组成工作电池,再用PH计测量工作电动势,由PH计直接读取PH值。
4、为什么荧光光度计使用的比色皿是四面透光的?答:如果在一条直线上那是测吸光度的
荧光分光光度计入射光和检测器的方向是垂直的这样在垂直方向上就不可能有入射光
而激发的荧光在四个方向上都有在垂直方向上检测干扰最小所以四面透光不是四面透光,只有俩面透光,透光面是为了不同波长的激发光穿透比色皿与比色皿内的待测物质发生物理作用而测定物质的浓度等,不透光的俩面是为了方便实验操作人员用手抓取放置比色皿
5、在极性、非极性色谱柱上的出峰顺序是如何确定的?
答:对于同分异构体来说,极性柱上是极性弱的组份先出峰,极性强的组份后出峰。
其它情况下不一定。
对于同系物来说,非极性柱上是沸点低的先出峰,沸点高的后出峰。
其它情况不一定。
6、在原子吸收光谱法中,峰值吸收代替积分吸收的条件是什么?
7、简述火焰原子化器(包括雾化器)的工作原理。
8、从速率理论可以看出有哪些因素可以影响色谱的柱效?在什么情况下应采用相对分子质量较大的载气,什么情况下应采用相对分子质量较小的载气?如何确定最佳流速?
9、原子吸收分析^p 中,若产生下述情况而引致误差,应采用什么措施来减免之?
(1)光强度变化引起基线漂移,
(2)火焰发射的辐射进入检测器(发射背景),(3)待测元素吸收线和试样中共存元素的吸收线重叠.
10、在电导滴定过程中,为什么溶液的电导会发生连续变化,解释盐酸、醋酸的电导滴定曲线。
设计电导法测定盐酸、醋酸混合液的实验方案。
思想很成熟的作者。