手把手教你红外光谱谱图解析
- 格式:docx
- 大小:758.42 KB
- 文档页数:7
红外光谱图分析步骤解析:从谱图到化合物的信息解读红外光谱图是一种常用的分析工具,可以帮助科学家们确定化合物的结构和功能。
通过分析红外光谱图,我们可以了解化合物中的官能团和化学键的存在与类型。
本文将详细介绍红外光谱图分析的步骤,帮助读者更好地理解和解读红外光谱图。
1.步骤一:获取红外光谱图在进行红外光谱图分析之前,首先需要获取待分析化合物的红外光谱图。
这可以通过红外光谱仪来实现。
红外光谱仪会向待分析样品中发射红外光,然后测量样品对不同波长光的吸收情况。
通过这个过程,我们可以得到一张红外光谱图。
2.步骤二:观察谱图的整体形态在获得红外光谱图后,我们首先要观察谱图的整体形态。
红外光谱图通常以波数为横坐标,吸收强度为纵坐标。
我们可以注意到谱图中的吸收峰和吸收带。
吸收峰通常表示特定官能团的存在,而吸收带则表示化学键的存在。
3.步骤三:确定吸收峰的位置接下来,我们需要确定红外光谱图中各个吸收峰的位置。
不同官能团和化学键在红外光谱图中有特定的吸收位置。
通过比对已知化合物的红外光谱图和待分析化合物的红外光谱图,我们可以初步确定各个吸收峰的位置。
4.步骤四:解读吸收峰的强度除了吸收峰的位置,吸收峰的强度也是红外光谱图分析的重要信息之一。
吸收峰的强度可以反映化合物中特定官能团或化学键的含量。
通过比较吸收峰的强度,我们可以推断化合物中不同官能团或化学键的相对含量。
5.步骤五:分析吸收带的形态除了吸收峰,红外光谱图中的吸收带也提供了重要的信息。
吸收带的形态可以帮助我们判断化学键的类型。
例如,C=O键通常表现为一个尖锐的吸收带,而-OH键则表现为一个宽而平坦的吸收带。
6.步骤六:结合上述信息解析化合物通过观察红外光谱图中吸收峰和吸收带的位置、强度和形态,我们可以逐步解析化合物的结构和功能。
我们可以根据已知的红外光谱图数据库,对比待分析化合物的红外光谱图,找到相似的谱图,从而确定化合物的结构和功能。
7.结论红外光谱图分析是一种重要的化学分析方法,可以帮助科学家们确定化合物的结构和功能。
手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。
辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。
3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。
图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。
N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。
为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。
U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。
泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。
特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。
(1)根据分子式计算不饱和度公式:不饱和度Ω=n4+1+(n3-n1)/2 其中:n4:化合价为4价的原子个数(主要是C原子),n3:化合价为3价的原子个数(主要是N原子),n1:化合价为1价的原子个数(主要是H,X原子)(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔2200~2100 cm-1,烯1680~1640 cm-1 芳环1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);(4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。
二、熟记健值1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。
2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H面外弯曲振动(1000~675cm-1)。
3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。
4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H面外弯曲振动880~680cm-1。
芳烃重要特征:在1600,1580,1500和1450cm-1可能出现强度不等的4个峰。
红外谱图解析分析步骤应该对各官能团的特征吸收熟记于心,因为官能团特征吸收是解析谱图的基础。
对一张已经拿到手的红外谱图:(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=1+n4+(n3-n1)/2其中:n4:化合价为4价的原子个数(主要是C原子),n3:化合价为3价的原子个数(主要是N原子),n1:化合价为1价的原子个数(主要是H原子),举个例子:比如苯:C6H6,不饱和度=1+6+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。
(2)分析3300~2800cm-1区域C-H伸缩振动吸收以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物,而低于3000cm-1一般为饱和C-H伸缩振动吸收。
(3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔2200~2100 cm-1烯1680~1640 cm-1芳环1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区 ,以确定取代基个数和位置(顺反,邻、间、对)。
(4)碳骨架类型确定后,再依据其他官能团,如 C=O, O-H, C-N 等特征吸收来判定化合物的官能团(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在。
如2820 ,2720和1750~1700cm-1的三个峰,说明醛基的存在。
解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的,这里就不详细说了。
红外谱图分析确实是一个令人头疼的问题,有事没事就记一两个吧:1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。
如何解析红外光谱图?看完你就是专家!解析区间(1)根据分子式计算不饱和度公式:不饱和度Ω=n4+1+(n3-n1)/2 其中: n4:化合价为4价的原子个数(主要是C原子), n3:化合价为3价的原子个数(主要是N原子), n1:化合价为1价的原子个数(主要是H,X原子)(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔: 2200~2100 cm-1,烯:1680~1640 cm-1 芳环:1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);(4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。
熟记健值1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1) 一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。
2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H面外弯曲振动(1000~675cm-1)。
3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。
4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H面外弯曲振动880~680cm-1。
如何解析红外光谱图一、预备知识1、不饱和度(Ω)的计算:计算公式:Ω= (2n c+2-n H-n X+n N)/2不饱和度为0,有饱和烷烃;不饱和度为1,有一个双键或一个饱和的环;苯环为4个不饱和度;环烯和叁键为2个不饱和度。
(X代表卤素,计算不饱和度是不计算氧原子等二价化合物)2、分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收;3、若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔(C≡C) 2200~2100 cm-1,烯(C=C) 1680~1640 cm-1 (1650处有弱峰),(1600、1500处有中强峰)若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);4、碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;5、解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基—CHO的存在。
二、熟记健值1.烷烃:R-H ,(C-H)伸缩振动(3000-2850cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。
1380 cm-1为甲基的d C-H对称弯曲振动,甲基特征.1460 cm-1为甲基和亚甲基重合.判断有无亚甲基特征,无峰则无亚甲基CH2一般饱和烃C-H 伸缩均在3000cm -1以下,接近3000cm -1的频率吸收。
2.烯烃:烯烃=C-H 伸缩(3100~3010cm -1),C=C 骨架伸缩振动(1675~1640 cm -1)(1650处尖而弱的峰);烯烃C-H 面外弯曲振动(1000~675cm -1)。
手把手教你红外光谱谱图解析
一、红外光谱的原理[1]
1. 原理
样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。
辐射→分子振动能级跃迁→红外光谱→官能团→分子结构
2.红外光谱特点
红外吸收只有振-转跃迁,能量低;
除单原子分子及单核分子外,几乎所有有机物均有红外吸收;
特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;
定量分析;
固、液、气态样均可,用量少,不破坏样品;
分析速度快;
与色谱联用定性功能强大。
3.分子中振动能级的基本振动形式
红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。
图一伸缩振动
图二弯曲振动
二、解析红外光谱图
1.振动自由度
振动自由度是分子独立的振动数目。
N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。
为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。
U=0→无双键或环状结构
U=1→一个双键或一个环状结构
U=2→两个双键,两个换,双键+环,一个三键
U=4→分子中可能含有苯环
U=5→分子中可能含一个苯环+一个双键
2.红外光谱峰的类型
基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频
率,强度大,是红外的主要吸收峰。
泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。
特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。
3.影响峰位的因素
诱导效应使振动频率向高波数移动;共轭效应使振动频率向低波数移动;氢键效应使伸缩频率降低,分子内氢键对峰位影响大且不受浓度影响,分子间氢键受浓度影响较大,浓度稀释,吸收峰位置发生改变;碳原子杂化轨道中s成分增加,键能增加,伸缩振动频率增加;溶剂极性增加,则极性基团的伸缩振动频率减小。
4.谱图解析实例
红外谱图解析步骤
先特征,后指纹;先强峰,后次强峰;寻找一组相关峰→佐证
先识别特征区的第一强峰,找出其相关峰,进行归属
若饱和度>=4,优先考虑苯环结构
下图是分子式为C9H7NO的有机物的红外吸收光谱,确定其分子式。
不饱和度U=(2+2*9+1-7)/2=7→可能含苯环
三、红外光谱应用实例
1. CO2在ZnO上的活化[2]
CO2活化转变为有价值的有机化合物是催化领域的一个热点也是一个难点。
Noei等人通过超高真空傅里叶红外光谱(UHV-FTIRS)研究了在羟基化的ZnO纳米颗粒上的CO2活化。
他们将干净的ZnO粉末样品暴露于CO2中并在红外谱图中观察到了碳酸盐相关振动带的形成,并使用C18O2的同位素置换实验对此进行了验证,证明了ZnO纳米颗粒在CO2活化方面的高活性。
图一 CO2不同温度下吸附在ZnO上的UHV-FTIR光谱
2.CO吸附在锐钛矿相的TiO2上[3]
Setvin等人用红外反射吸收光谱(IRRAS)结合程序升温脱附(TPD),扫描隧道显微镜(STM)和DFT理论计算等研究了一氧化碳在锐钛矿TiO2(101)晶面的吸附。
IRRAS谱图显示在2181cm-1处仅有一个CO带,结合TPD,估计分离的分子的吸附能量为0.37±0.03eV,在较高的覆盖率下,吸收峰移动到略小的值。
又结合STM成像和样品的受控退火证实了TPD估算的吸附能和轻微的排斥分子间相互作用。
CO分子在稍高的温度下从富电子的外在供体缺陷位点解吸,与金红石TiO2(110)表面上的CO吸附的比较表明,锐钛矿型TiO2中电子定域的趋势比金红石TiO2中弱得多。
图二不同剂量CO在95K下吸附在非偏振光锐钛矿(101)晶面
的IRRAS
3.CO与ZnO上其他吸附物的相互作用[4]
实际催化过程中,往往并不是单一吸附物种在催化剂表面吸附,而是多种吸附物同时存在于催化剂表面。
Noei等人在超高真空条件下(UHV-FTIRS),通过FTIR光谱研究了CO与不同改性的多晶ZnO 的相互作用。
在110K下将干净的无吸附质的ZnO纳米颗粒暴露于CO 后,在2187cm-1处有强烈振动带,是CO与ZnO上的Zn2+位点结合所致。
在210K下将CO2预处理后的ZnO纳米颗粒暴露于CO后,在2215cm-1处观察到新的CO振动带,是吸附在三齿碳酸盐结构内的游离Zn位点上的CO所致。
不同温度下记录的UHV-FTIRS数据表明,
在预吸附的CO2时,CO在多晶ZnO上的结合能显着增加,而且在ZnO粉末颗粒上存在的羟基物质不会导致在UHV条件下CO振动带的显著变化
图三多晶ZnO上CO和CO2共吸附的超高真空红外光谱(UHV-FTIRS)
参考文献:
[1] 朱明华,胡坪, 仪器分析, 4 ed., 高等教育出版社2008.
[2] H. Noei, C. Wöll, M. Muhler, Y. Wang, Activation of carbon dioxide on zno nanoparticles studied by vibrational spectroscopy, The Journal of Physical Chemistry C, 115 (2011) 908-914.
[3] M. Setvin, M. Buchholz, W. Hou, C. Zhang, B. Stöger, J. Hulva, T. Simschitz, X. Shi, J. Pavelec, G.S. Parkinson, M. Xu, Y. Wang, M. Schmid, C. Wöll, A. Selloni, U. Diebold, A multitechnique study of co adsorption on the tio2 anatase (101) surface, The Journal of Physical Chemistry C, 119 (2015) 21044-21052.
[4] H. Noei, C. Wöll, M. Muhler, Y. Wang, The interaction of carbon monoxide with clean and surface-modified zinc oxide nanoparticles: A uhv-ftirs study, Applied Catalysis A: General, 391 (2011) 31-35.
本文由春春供稿。