浙江数学高考真题
- 格式:docx
- 大小:175.75 KB
- 文档页数:10
2020年普通高等学校招生全国统一考试数学选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1•已知集合P=€1,x ,4},Q={x|2〈x 〈3},贝y P.Q=P=€1,x ,4}A. f x1,x <2}B. {x|2,x ,3} C. {x|2,x <3} D. {x1,x ,4} 2•已知a …R ,若a -1+(a -2)i (i 为虚数单位)是实数,贝>Ja=A. 1B. -1C. 2D. -23•若实数x,y 满足约束条件F -3y +1<f ,则z=x+2y 的取值范围是[x +y -3<0A.(-8,4〕 B. 〔4,+8)C.〔5,+8)4.函数y =xcosx +sinx 在区间[-‘,+‘]的图像大致为D .(-8,+8A . 5. 某几何体的三视图(单位:cm )如图所示,贝V 该几何体的体积(单位:cm 3)是7314TC. 3D. 66. 已知空间中不过同一点的三条直线mn,l 则“m,n,l 在同一平面”是“m,n,l 两两相交”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件7•已知等差数列{a}的前n项的和S,公差d,0,<1•记nn db,S,b,S-S,n…N€,下列等式不可能成立的是12n+1n+22nA . 2a,a+a 426B . 2b,b+b 426C . a2,aa 428D . b2,bb 4288•已知点O(0,0),A(-2,0),B(2,0)•设点P满足|PA|-|PB\,2,且P为函数y,3\:'4-x2的图像上的点,则|OP|,A.空2B.坯5C.富D.9.已知a,b…R且ab丰0,若(x一a)(x-b)(x一2a一b)>0在x>0上恒成立,贝VA.a<0B.a>0C.b<0D.b>010.设集合S,T,S匸N*,T匸N*,S,T中至少有两个元素,且满足:①对于任意x,y…S,若x丰y,都有xy…T;②对于任意x,y…T,若x<y,则上…S,下列命题正确的是xA.若S有4个元素,则S<T有7个元素B.若S有4个元素,则S€T有6个元素C.若S有3个元素,则S€T有4个元素D.若S有3个元素,则S€T有5个元素非选择题部分(共110分)二、填空题:本大题共7道小题,共36分。
浙江省宁波市(新版)2024高考数学人教版真题(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题函数的部分图像如图所示,则A.B.C.D.第(2)题设集合,,若,则()A.B.C.D.第(3)题抛物线上的点到其焦点的距离是到y轴距离的2倍,过双曲线的左右顶点A、B作C的同一条渐近线的垂线,垂足分别为P、Q,,则双曲线的离心率为()A.B.C.D.第(4)题已知集合,则()A.B.C.D.第(5)题已知集合,,则()A.B.C.D.第(6)题命题“”的否定是()A.B.C.D.第(7)题已知集合,则()A.B.C.D.第(8)题已知全集,集合,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知向量,,,则下列命题正确的是()A .当且仅当时,B.在上的投影向量为C.存在θ,使得D.存在θ,使得第(2)题在直三棱柱中,,,,三棱锥的体积为,点M,N,P分别为AB,BC,的中点,则下列说法正确的是()A .B.直线与直线PN为异面直线C.平面ABP⊥平面D.三棱柱外接球的体积为第(3)题在棱长为1的正方体中,若点为四边形内(包括边界)的动点,为平面内的动点,则下列说法正确的是()A.若,则平面截正方体所得截面的面积为B .若直线与所成的角为,则点的轨迹为双曲线C.若,则点的轨迹长度为D.若正方体以直线为轴,旋转后与其自身重合,则的最小值是120三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若,且,则的最小值为______.第(2)题已知函数有两个极值点,则实数的取值范围是_________.第(3)题若,则____________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知椭圆的左右焦点分别为,焦距为4,且椭圆过点,过点且不平行于坐标轴的直线交椭圆与两点,点关于轴的对称点为,直线交轴于点.(1)求的周长;(2)求面积的最大值.第(2)题已知函数,,,是函数的导函数.(1)当时,证明:函数在区间没有零点;(2)若在上恒成立,求的取值范围.第(3)题已知有限数列共有30项,其中前20项成公差为的等差数列,后11项成公比为的等比数列,记数列的前n项和为.从条件①、条件②、条件③这三个条件中选择一个作为已知,求:条件①:;条件②:;条件③:.(1)的值;(2)数列中的最大项.第(4)题如图所示,在等腰梯形中,,,,将三角形沿折起,使点在平面上的投影落在上.(1)求证:平面平面;(2)若点为的中点,求三棱锥的体积.第(5)题已知三棱锥中,,,为的中点,四边形为平行四边形.(1)证明:平面;(2)求二面角的余弦值.。
2021年高考数学真题试卷(浙江卷)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(共10题;共40分)1.设集合A={x|x≥1},B={x|−1<x<2},则A∩B=()A. {x|x>−1}B. {x|x≥1}C. {x|−1<x<1}D. {x|1≤x<2}【答案】 D【考点】交集及其运算【解析】【解答】由交集的定义结合题意可得:A∩B={x|1≤x<2}.故答案为:D.【分析】利用数轴,求不等式表示的集合的交集。
2.已知a∈R,(1+ai)i=3+i,(i为虚数单位),则a=()A. -1B. 1C. -3D. 3【答案】C【考点】复数代数形式的乘除运算,复数代数形式的混合运算【解析】【解答】(1+ai)i=i−a=−a+i,利用复数相等的充分必要条件可得:−a=3,∴a=−3.故答案为:C.【分析】根据复数相等的条件,即可求得a的值。
3.已知非零向量a⃗,b⃗⃗,c⃗,则“ a⃗⋅c⃗=b⃗⃗⋅c⃗”是“ a⃗=b⃗⃗”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件【答案】B【考点】充分条件,必要条件,充要条件,平面向量数量积的运算【解析】【解答】若a⃗⋅c⃗=b⃗⃗⋅c⃗,则(a⃗−b⃗⃗)⋅c⃗=0,推不出a⃗=b⃗⃗;若a⃗=b⃗⃗,则a⃗⋅c⃗=b⃗⃗⋅c⃗必成立,故“ a⃗⋅c⃗=b⃗⃗⋅c⃗”是“ a⃗=b⃗⃗”的必要不充分条件故答案为:B.【分析】先将条件等式变形,可能得到条件不充分,后者显然成立。
4.某几何体的三视图如图所示,则该几何体的体积是()A. 32 B.3 C. 3√22D. 3√2 【答案】 A【考点】由三视图求面积、体积【解析】【解答】几何体为如图所示的四棱柱 ABCD −A 1B 1C 1D 1 ,其高为1,底面为等腰梯形 ABCD ,该等腰梯形的上底为 √2 ,下底为 2√2 ,腰长为1,故梯形的高为 √1−12=√22,故 V ABCD−A 1B 1C 1D 1=12×(√2+2√2)×√22×1=32,故答案为:A.【分析】先由三视图,还原立体图形,然后根据数量关系计算体积。
2024年浙江高考数学真题及答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ()A.{1,0}- B.{2,3} C.{3,1,0}-- D.{1,0,2}-2.若1i 1zz =+-,则z =()A.1i --B.1i-+ C.1i- D.1i+3.已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A.2- B.1- C.1D.24.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m- B.3m -C.3m D.3m5.()A. B. C. D.6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A.(,0]-∞ B.[1,0]- C.[1,1]- D.[0,)+∞7.当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A.3B.4C.6D.88.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f >B.(20)1000f >C.(10)1000f < D.(20)10000f <二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >>B.(2)0.5P X ><C.(2)0.5P Y >> D.(2)0.8P Y ><10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为427,求AD .18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.参考答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ()A.{1,0}- B.{2,3} C.{3,1,0}-- D.{1,0,2}-【答案】A 【解析】【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2.若1i 1zz =+-,则z =()A.1i --B.1i-+ C.1i- D.1i+【答案】C 【解析】【分析】由复数四则运算法则直接运算即可求解.【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.3.已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A.2-B.1- C.1D.2【答案】D 【解析】【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.4.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m -B.3m -C.3m D.3m【答案】A 【解析】【分析】根据两角和的余弦可求cos cos ,sin sin αβαβ的关系,结合tan tan αβ的值可求前者,故可求()cos αβ-的值.【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.5.()A. B. C. D.【答案】B 【解析】【分析】设圆柱的底面半径为r ,根据圆锥和圆柱的侧面积相等可得半径r 的方程,求出解后可求圆锥的体积.【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r =即=,故3r =,故圆锥的体积为1π93⨯=.故选:B.6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A.(,0]-∞ B.[1,0]- C.[1,1]- D.[0,)+∞【答案】B 【解析】【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1a a -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤,即a 的范围是[1,0]-.故选:B.7.当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A.3B.4C.6D.8【答案】C 【解析】【分析】画出两函数在[]0,2π上的图象,根据图象即可求解【详解】因为函数sin y x =的的最小正周期为2πT =,函数π2sin 36y x ⎛⎫=-⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=-⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C8.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f >B.(20)1000f >C.(10)1000f <D.(20)10000f <【答案】B 【解析】【分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断.【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >>B.(2)0.5P X ><C.(2)0.5P Y >>D.(2)0.8P Y ><【答案】BC 【解析】【分析】根据正态分布的3σ原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC.10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->【答案】ACD 【解析】【分析】求出函数()f x 的导数,得到极值点,即可判断A;利用函数的单调性可判断B;根据函数()f x 在()1,3上的值域即可判断C;直接作差可判断D.【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+【答案】ABD 【解析】【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【详解】对于A:设曲线上的动点(),P x y ,则2x >-4x a -=,04a -=,解得2a =-,故A 正确.对于24x +=,而2x >-,()24x +=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C:由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D:当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.【答案】32【解析】【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25b a=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:3213.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.【答案】ln 2【解析】【分析】先求出曲线e x y x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.【答案】12##0.5【解析】【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=.故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .【答案】(1)π3B =(2)【解析】【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B=得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【小问1详解】由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得22222cos 222a b c C ab ab +-===,因为()0,πC ∈,所以sin 0C >,从而2sin 2C ==,又因为sin C B =,即1cos 2B =,注意到()0,πB ∈,所以π3B =.【小问2详解】由(1)可得π3B =,2cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ232162sin sin sin 124622224A ⎛⎫⎛⎫==+=⨯=⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而623136,4222a cbc +====,由三角形面积公式可知,ABC 的面积可表示为211316233sin 222228ABC S ab C c c c +==⋅⋅= ,由已知ABC 的面积为3+,可得23338c =,所以c =16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3260x y --=或20x y -=.【解析】【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x -=-,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【小问1详解】由题意得2239941b a b =⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ==.【小问2详解】法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,2AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d,则5352d ==,则将直线AP 沿着与AP 垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,5=,解得6C =或18C =-,当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=-⎩或332x y =-⎧⎪⎨=-⎪⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,当()0,3B -时,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当33,2B ⎛⎫--⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y -=,当18C =-时,联立2211292180x y x y ⎧+=⎪⎨⎪+-=⎩得22271170y y -+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y --=或20x y -=.法二:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,设()00,B x y,则220012551129x y =⎪+=⎪⎩,解得00332x y =-⎧⎪⎨=-⎪⎩或0003x y =⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离5d =,设(),3sin B θθ,其中[)0,2θ∈π1255=,联立22cos sin 1θθ+=,解得cos 21sin 2θθ⎧=-⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443k x k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,5=,解得32k =,此时33,2B ⎛⎫-- ⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PAB d S ==⋅ ,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD .【答案】(1)证明见解析【解析】【分析】(1)先证出AD ⊥平面PAB ,即可得AD AB ⊥,由勾股定理逆定理可得BC AB ⊥,从而//AD BC ,再根据线面平行的判定定理即可证出;(2)过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,根据三垂线法可知,DFE ∠即为二面角A CP D --的平面角,即可求得tan DFE ∠=AD的长度表示出,DE EF ,即可解方程求出AD .【小问1详解】(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥,根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .【小问2详解】如图所示,过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即42sin 7DFE ∠=,即tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,42DE =,又242xCE -==,而EFC 为等腰直角三角形,所以2EF =,故242tan 4DFE x∠==x =AD =.18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【答案】(1)2-(2)证明见解析(3)23b ≥-【解析】【分析】(1)求出()min 2f x a '=+后根据()0f x '≥可求a 的最小值;(2)设(),P m n 为()y f x =图象上任意一点,可证(),P m n 关于()1,a 的对称点为()2,2Q m a n --也在函数的图像上,从而可证对称性;(3)根据题设可判断()12f =-即2a =-,再根据()2f x >-在()1,2上恒成立可求得23b ≥-.【小问1详解】0b =时,()ln2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,【小问2详解】()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .【小问3详解】因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.【答案】(1)()()()1,2,1,6,5,6(2)证明见解析(3)证明见解析【解析】【分析】(1)直接根据(),i j -可分数列的定义即可;(2)根据(),i j -可分数列的定义即可验证结论;(3)证明使得原数列是(),i j -可分数列的(),i j 至少有()21m m +-个,再使用概率的定义.【小问1详解】首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.【小问2详解】由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.【小问3详解】定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.31/31而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>=++++++++.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.。
【高三】浙江2021年高考数学理科试卷(附答案和解释)浙江卷数学(理)试题答案与解析选择题部分(共50分)一、选择题:每小题5分,共50分.1.已知i是虚数单位,则(?1+i)(2?i)=A.?3+iB.?1+3i C.?3+3i D.?1+i【命题意图】本题考查复数的四则运算,属于容易题【答案解析】B2.设集合S={xx>?2},T={xx2+3x?4≤0},则(?RS)∪T=A.(?2,1]B.(?∞,?4]C.(?∞,1]D.[1,+∞)【命题意图】本题考查集合的运算,属于容易题【答案解析】C 因为(?RS)={xx≤?2},T={x?4≤x≤1},所以(?RS)∪T=(?∞,1]. 3.已知x,y为正实数,则A.2lgx+lgy=2lgx+2lgyB.2lg(x+y)=2lgx ? 2lgyC.2lgx ? lgy=2lgx+2lgy D.2lg(xy)=2lgx ? 2lgy【命题意图】本题考查指数和对数的运算性质,属于容易题【答案解析】D 由指数和对数的运算法则,易知选项D正确4.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ?R),则“f(x)是奇函数”是“φ=π2”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【命题意图】本题考查简易逻辑以及函数的奇偶性,属于中档题【答案解析】B 由f(x)是奇函数可知f(0)=0,即cosφ=0,解出φ=π2+kπ,k?Z,所以选项B正确5.某程序框图如图所示,若该程序运行后输出的值是95,则A.a=4B.a=5C.a=6D.a=7【命题意图】本题考查算法程序框图,属于容易题【答案解析】A6.已知α?R,sin α+2cos α=102,则tan2α=A.43B.34C.?34D.?43【命题意图】本题考查三角公式的应用,解法多样,属于中档题【答案解析】C 由(sin α+2cos α)2=1022可得sin2α+4cos2α+4sin αcos α sin2α+cos2α=104,进一步整理可得3tan2α?8tan α?3=0,解得tan α=3或tanα=?13,于是tan2α=2tan α1?tan2α=?34.7.设△ABC,P0是边AB上一定点,满足P0B=14AB,且对于AB上任一点P,恒有→PB?→PC≥→P0B?→P0C,则A.?ABC=90?B.?BAC=90?C.AB=ACD.AC=BC【命题意图】本题考查向量数量积的几何意义,不等式恒成立的有关知识,属于中档题【答案解析】D 由题意,设→AB=4,则→P0B=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得,→PB?→PC=→PH→PB=(→PB ?(a+1))→PB,→P0B?→P0C=?→P0H→P0B=?a,于是→PB?→PC≥→P0B?→P0C恒成立,相当于(→PB?(a+1))→PB≥?a恒成立,整理得→PB2?(a+1)→PB+a≥0恒成立,只需?=(a+1)2?4a=(a?1)2≤0即可,于是a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,所以AC=BC8.已知e为自然对数的底数,设函数f(x)=(ex?1)(x?1)k(k=1,2),则A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【命题意图】本题考查极值的概念,属于中档题【答案解析】C 当k=1时,方程f(x)=0有两个解,x1=0,x2=1,由标根法可得f(x)的大致图象,于是选项A,B错误;当k=2时,方程f(x)=0有三个解,x1=0,x2=x3=1,其中1是二重根,由标根法可得f(x)的大致图象,易知选项C正确。
2022年浙江省高考数学试卷一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(4分)设集合{1,2}A =,{2,4,6}B =,则(A B = )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}2.(4分)已知a ,b R ∈,3()(a i b i i i +=+为虚数单位),则( ) A .1a =,3b =-B .1a =-,3b =C .1a =-,3b =-D .1a =,3b =3.(4分)若实数x ,y 满足约束条件20,270,20,x x y x y -⎧⎪+-⎨⎪--⎩则34z x y =+的最大值是( )A .20B .18C .13D .64.(4分)设x R ∈,则“sin 1x =”是“cos 0x =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件5.(4分)某几何体的三视图如图所示(单位:)cm ,则该几何体的体积(单位:3)cm 是( )A .22πB .8πC .223π D .163π 6.(4分)为了得到函数2sin3y x =的图象,只要把函数2sin(3)5y x π=+图象上所有的点( )A .向左平移5π个单位长度 B .向右平移5π个单位长度 C .向左平移15π个单位长度D .向右平移15π个单位长度7.(4分)已知25a =,8log 3b =,则34(a b -= ) A .25B .5C .259D .538.(4分)如图,已知正三棱柱111ABC A B C -,1AC AA =,E ,F 分别是棱BC ,11A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγB .βαγC .βγαD .αγβ9.(4分)已知a ,b R ∈,若对任意x R ∈,|||4||25|0a x b x x -+---,则( ) A .1a ,3bB .1a ,3bC .1a ,3bD .1a ,3b10.(4分)已知数列{}n a 满足11a =,2*11()3n n n a a a n N +=-∈,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 二、填空题:本大题共7小题,单空题每题4分,多空题每空3分,共36分。
2023年浙江成人高考高起点数学(文)真题及答案1. 【选择题】设集合M={x||x-2|<2},N={0,1,2,3,4},则M∩N=( )A. {2}B. {0,1,2}C. {1,2,3}D. {0,1,2,3,4}正确答案:C参考解析:【考情点拨】本题主要考查的知识点为集合的运算.【应试指导】解得M={||x-2<2}={x|-2<x-2<2}={x|0<x<4},故M∩N={1,2,3}.2. 【选择题】设函数f(x+1)=2x+2,则f(x)=( )A. 2x-1B. 2xC. 2x+1D. 2x+2正确答案:B参考解析:【考情点拨】本题主要考查的知识点为函数的定义.【应试指导】f(x+1)=2x+2=2(x+1),令t=x+1,故f(t)=2t,把t换成x,因此f(x)=2x.3. 【选择题】A. {x|-3≤x≤-1}B. {x|x≤-3或x≥-1}C. {x|1≤x≤3}D. {x|x≤1或x≥3}正确答案:D参考解析:【考情点拨】本题主要考查的知识点为函数的定义域.【应试指导】由题可知x2—4x+3≥0,解得x≥3或x≤1,故函数的定义域为{x|x≤1或x≥3}.4. 【选择题】下列函数中,为奇函数的是( )A. y=cos2xB. y=sinxC. y=2-xD. y=x+1正确答案:B参考解析:【考情点拨】本题主要考查的知识点为函数的奇偶性.【应试指导】当f(-x)=-f(x)时,函数f(x)是奇函数。
四个选项中只有选项B符合,故选B选项.5. 【选择题】下列函数中,为减函数的是( )A. y=cosxB. y=3xC.D. y=3x2—1正确答案:C参考解析:【考情点拨】本题主要考查的知识点为减函数.【应试指导】由对数函数的性质可知,当底数大于。
小于1时,在定义域内,对数函数为减函数,故选c 选项.6. 【选择题】函数y=x2+1(x>0)的图像在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限正确答案:A参考解析:【考情点拨】本题主要考查的知识点为函数的图像.【应试指导】当x>0时,函数y=x2+1>0,因此函数的图像在第一象限.7. 【选择题】设a是三角形的一个内角,若A.B.C.D.正确答案:D参考解析:【考情点拨】本题主要考查的知识点为同角三角函数的基本关系式.【应试指导】8. 【选择题】如果点(2,-4)在一个反比例函数的图像上,那么下列四个点中也在该图像上的是( )A. (-2,4)B. (-4,-2)C. (-2,-4)D. (2,4)正确答案:A参考解析:【考情点拨】本题主要考查的知识点为反比例函数.【应试指导】9. 【选择题】A.B.C.D.正确答案:D参考解析:【考情点拨】本题主要考查的知识点为倍角公式.【应试指导】10. 【选择题】A. 甲是乙的必要条件但不是充分条件B. 甲是乙的充分条件但不是必要条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件正确答案:A参考解析:【考情点拨】本题主要考查的知识点为简易逻辑.【应试指导】三角形相似不一定全等,但三角形全等一定相似,因此,甲是乙的必要条件但不是充分条件.11. 【选择题】已知向量i,j为互相垂直的单位向量,向量a=2i+mj,若|a|=2,则m=( )A. -2B. -1C. 0D. 1正确答案:C参考解析:【考情点拨】本题主要考查的知识点为向量的运算.【应试指导】12. 【选择题】用1,2,3,4组成没有重复数字的三位数,其中偶数共有( )A. 24个B. 12个C. 6个D. 3个正确答案:B参考解析:【考情点拨】本题主要考查的知识点为排列与组合.【应试指导】若三位数为偶数,个位数只能从2,4中选一个,故没有重复数字的偶数三位数为=3×2×2=12个.13. 【选择题】中心在坐标原点,对称轴为坐标轴,且一个顶点为(3,0),虚轴长为8的双曲线的方程是( )A.B.C.D.正确答案:B参考解析:【考情点拨】本题主要考查的知识点为双曲线的性质.【应试指导】双曲线有一个顶点为(3,0),因此所求双曲线的实轴在x轴上,可排除A、C选项,又由于虚轴长为8,故b=4,即b2=16,故双曲线方程为14. 【选择题】函数y=4x的图像与直线y=4的交点坐标为A. (0,4)B. (4,64)C. (1,4)D. (4,16)正确答案:C参考解析:【考情点拨】本题主要考查的知识点为指数函数.【应试指导】令y=4x=4,解得x=1,故所求交点为(1,4).15. 【选择题】已知直线l:3x-2y-5=0,圆C:(x-1)2+(y+1)2=4,则C上到ι的距离为1的点共有( )A. 1个B. 2个C. 3个D. 4个正确答案:D参考解析:【考情点拨】本题主要考查的知识点为直线与圆的位置关系.【应试指导】由题可知圆的圆心为(1,-1),半径为2,圆心到直线的距离为。
2020年浙江省高考数学试卷一、选择题(本大题共10小题,共40.0分)1. 已知集合P ={x|1<x <4},Q ={x|2<x <3},则P ∩Q =( )A. {x|1<x ≤2}B. {x|2<x <3}C. {x|3≤x <4}D. {x|1<x <4}2. 已知a ∈R ,若a −1+(a −2)i(i 为虚数单位)是实数,则a =( )A. 1B. −1C. 2D. −2 3. 若实数x ,y 满足约束条件{x −3y +1≤0x +y −3≥0,则z =x +2y 的取值范围是( )A. (−∞,4]B. [4,+∞)C. [5,+∞)D. (−∞,+∞)4. 函数y =xcosx +sinx 在区间[−π,π]的图象大致为( )A.B.C.D.5. 某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm 3)是( )A. 73 B. 143 C. 3 D. 66. 已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 已知等差数列{a n }的前n 项和S n ,公差d ≠0,a1d⩽1.记b 1=S 2,b n+1=S n+2−S 2n ,n ∈N ∗,下列等式不可能成立的是( )A. 2a 4=a 2+a 6B. 2b 4=b 2+b 6C. a 42=a 2a 8D. b 42=b 2b 8 8. 已知点O(0,0),A(−2,0),B(2,0),设点P 满足|PA|−|PB|=2,且P 为函数y =3√4−x 2图象上的点,则|OP|=( )A. √222B. 4√105C. √7D. √109.已知a,b∈R且a,b≠0,若(x−a)(x−b)(x−2a−b)≥0在x≥0上恒成立,则()A. a<0B. a>0C. b<0D. b>010.设集合S,T,S⊆N∗,T⊆N∗,S,T中至少有两个元素,且S,T满足:①对于任意x,y∈S,若x≠y,都有xy∈T;②对于任意x,y∈T,若x<y,则yx∈S;下列命题正确的是()A. 若S有4个元素,则S∪T有7个元素B. 若S有4个元素,则S∪T有6个元素C. 若S有3个元素,则S∪T有5个元素D. 若S有3个元素,则S∪T有4个元素二、填空题(本大题共7小题,共36.0分)11.我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题,如数列{n(n+1)2}就是二阶等差数列,数列{n(n+1)2},(n∈N∗)的前3项和______.12.二项展开式(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=______;a1+a2+a3=______.13.已知tanθ=2,则cos2θ=______;tan(θ−π4)=______.14.已知圆锥的侧面积(单位:cm2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是______.15.已知直线y=kx+b(k>0)与圆x2+y2=1和圆(x−4)2+y2=1均相切,则k=______,b=______.16.盒中有4个球,其中1个红球,1个绿球,2个黄球,从盒中随机取球,每次取1个不放回,直到取出红球为止,设此过程中取到黄球的个数为ξ,则P(ξ=0)=______,E(ξ)=______.17.已知平面向量e1⃗⃗⃗ ,e2⃗⃗⃗ 满足|2e1⃗⃗⃗ −e2⃗⃗⃗ |≤√2,设a⃗=e1⃗⃗⃗ +e2⃗⃗⃗ ,b⃗ =3e1⃗⃗⃗ +e2⃗⃗⃗ ,向量a⃗,b⃗ 的夹角为θ,则cos2θ的最小值为______.三、解答题(本大题共5小题,共74.0分)18.在锐角△ABC中,角A,B,C的对边分别为a,b,c.已知2bsinA−√3a=0.(1)求角B;(2)求cosA+cosB+cosC的取值范围.19.如图,三棱台ABC−DEF中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,DC=2BC.(1)证明:EF⊥DB;(2)求DF与面DBC所成角的正弦值.⋅20.已知数列{a n},{b n},{c n}满足a1=b1=c1=1,c n+1=a n+1−a n,c n+1=b nb n+2c n(n∈N∗).(1)若{b n}为等比数列,公比q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(2)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+⋯+c n<1+1,n∈N∗.d21.如图,已知椭圆C1:x2+y2=1,抛物线C2:y2=2px(p>0),点A是椭圆C1与2抛物线C2的交点.过点A的直线l交椭圆C1于点B,交抛物线C2于点M(B,M不同于A).(1)若p=1,求抛物线C2的焦点坐标;16(2)若存在不过原点的直线l使M为线段AB的中点,求p的最大值.22.已知1<a≤2,函数f(x)=e x−x−a.其中e=2.718281828459…为自然对数的底数.(1)证明:函数y=f(x)在(0,+∞)上有唯一零点;(2)记x0为函数y=f(x)在(0,+∞)上的零点,证明:(ⅰ)√a−1≤x0≤√2(a−1);(ⅰ)x0f(e x0)≥(e−1)(a−1)a.答案和解析1.【答案】B【解析】解:集合P ={x|1<x <4},Q ={x|2<x <3}, 则P ∩Q ={x|2<x <3}. 故选:B .直接利用交集的运算法则求解即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. 2.【答案】C【解析】 【分析】本题考查复数的基本概念,是基础题. 利用复数的虚部为0,求解即可. 【解答】解:a ∈R ,若a −1+(a −2)i(i 为虚数单位)是实数, 可得a −2=0,解得a =2. 故选:C .3.【答案】B【解析】解:画出实数x ,y 满足约束条件{x −3y +1≤0x +y −3≥0所示的平面区域,如图: 将目标函数变形为−12x +z2=y ,则z 表示直线在y 轴上截距,截距越大,z 越大, 当目标函数过点A(2,1)时,截距最小为z =2+2=4,随着目标函数向上移动截距越来越大, 故目标函数z =2x +y 的取值范围是[4,+∞). 故选:B .作出不等式组表示的平面区域;作出目标函数对应的直线;结合图象判断目标函数z =x +2y 的取值范围.本题考查画不等式组表示的平面区域、考查数形结合求函数的最值.4.【答案】A【解析】解:y =f(x)=xcosx +sinx , 则f(−x)=−xcosx −sinx =−f(x),∴f(x)为奇函数,函数图象关于原点对称,故排除B ,D , 当x =π时,y =f(π)=πcosπ+sinπ=−π<0,故排除B , 故选:A .先判断函数的奇偶性,再判断函数值的特点.本题考查了函数图象的识别,掌握函数的奇偶性额函数值得特点是关键,属于基础题.5.【答案】A【解析】解:由题意可知几何体的直观图如图,下部是直三棱柱,底面是斜边长为2的等腰直角三角形,棱锥的高为2,上部是一个三棱锥,一个侧面与底面等腰直角三角形垂直,棱锥的高为1,所以几何体的体积为:12×2×1×2+13×12×2×1×1=73.故选:A.画出几何体的直观图,利用三视图的数据求解几何体的体积即可.本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键.6.【答案】B【解析】【分析】本题借助空间的位置关系,考查了充分条件和必要条件,属于基础题.由m,n,l在同一平面,则m,n,l相交或m,n,l有两个平行,另一直线与之相交,或三条直线两两平行,根据充分条件,必要条件的定义即可判断.【解答】解:空间中不过同一点的三条直线m,n,l,若m,n,l在同一平面,则m,n,l相交或m,n,l有两个平行,另一直线与之相交,或三条直线两两平行.故m,n,l在同一平面”是“m,n,l两两相交”的必要不充分条件,故选:B.7.【答案】B【解析】解:在等差数列{a n}中,a n=a1+(n−1)d,S n+2=(n+2)a1+(n+2)(n+1)2d,S2n=2na1+2n(2n−1)2d,b1=S2=2a1+d,b n+1=S n+2−S2n=(2−n)a1−3n2−5n−22d.∴b2=a1+2d,b4=−a1−5d,b6=−3a1−24d,b8=−5a1−55d.A.2a4=2(a1+3d)=2a1+6d,a2+a6=a1+d+a1+5d=2a1+6d,故A正确;B.2b4=−2a1−10d,b2+b6=a1+2d−3a1−24d=−2a1−22d,若2b4=b2+b6,则−2a1−10d=−2a1−22d,即d=0不合题意,故B错误;C.若a42=a2a8,则(a1+3d)2=(a1+d)(a1+7d),即a12+6a1d+9d2=a12+8a1d+7d2,得a1d=d2,∵d≠0,∴a1=d,符合a1d⩽1,故C正确;D.若b42=b2b8,则(−a1−5d)2=(a1+2d)(−5a1−55d),即2(a1d )2+25a1d+45=0,则a1d有两不等负根,满足a1d⩽1,故D正确.∴等式不可能成立的是B.故选:B.由已知利用等差数列的通项公式判断A与C;由数列递推式分别求得b2,b4,b6,b8,分析B,D成立时是否满足公差d≠0,a1d⩽1判断B与D.本题考查数列递推式,等差数列的通项公式与前n项和,考查转化思想和计算能力,是中档题.8.【答案】D【解析】解:点O(0,0),A(−2,0),B(2,0).设点P满足|PA|−|PB|=2,可知P的轨迹是双曲线x21−y23=1的右支上的点,P为函数y=3√4−x2图象上的点,即y236+x24=1在第一象限的点,联立两个方程,解得P(√132,3√32),所以|OP|=√134+274=√10.故选:D.求出P满足的轨迹方程,求出P的坐标,即可求解|OP|.本题考查圆锥曲线的综合应用,曲线的交点坐标以及距离公式的应用,是中档题.9.【答案】C【解析】【分析】本题考查不等式恒成立问题,注意三次函数的图象,考查分类讨论思想和转化思想,属于中档题.先由x=0时,不等式ab(−2a−b)⩾0恒成立,可得1a +2b⩽0,则a,b至少有一个是小于0的,再按a<0,b<0,a<0,b>0,a>0,b<0,讨论可得结论.【解答】解:由题意知,x=0时,不等式ab(−2a−b)⩾0恒成立,即ab(2a+b)⩽0,∵ab≠0,∴可得1a +2b⩽0,则a,b至少有一个是小于0的,(1)若a<0,b<0,由图象知,(x−a)(x−b)(x−2a−b)⩾0在x⩾0时恒成立,符合题意;(2)若a<0,b>0,2a+b>0,(x−a)(x−b)(x−2a−b)⩽0在x≥0上恒成立,则b=2a+b,得a=0,矛盾,不符合题意.(3)若a>0,b<0,(x−a)(x−b)(x−2a−b)⩾0在x⩾0时恒成立,则a=2a+b,则a+b=0,符合题意.综合,b<0成立.故选:C.10.【答案】A【解析】【分析】本题考查命题的真假的判断与应用,集合的基本运算,利用特殊集合排除选项是选择题常用方法,属于较难题.利用特殊集合排除选项,推出结果即可. 【解答】解:取:S ={1,2,4},则T ={2,4,8},S ∪T ={1,2,4,8},4个元素,排除C . S ={2,4,8},则T ={8,16,32},S ∪T ={2,4,8,16,32},5个元素,排除D ; S ={2,4,8,16}则T ={8,16,32,64,128},S ∪T ={2,4,8,16,32,64,128},7个元素,排除B ; 故选:A .11.【答案】10【解析】 【分析】本题考查数列求和,数列通项公式的应用,是基本知识的考查. 求出数列的前3项,然后求解即可. 【解答】解:数列{a n }满足a n =n(n+1)2,可得a 1=1,a 2=3,a 3=6, 所以S 3=1+3+6=10. 故答案为:10.12.【答案】80;130【解析】 【分析】本题考查二项式定理的应用,只有二项式定理系数以及项的系数的区别,属于基础题. 直接利用二项式定理的通项公式,求解即可. 【解答】解:∵(1+2x)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 4=C 54⋅24=80.a 1+a 2+a 3=C 51⋅2+C 52⋅4+C 53⋅8=130. 故答案为:80;130.13.【答案】−35, 13【解析】解:tanθ=2,则cos2θ=cos 2θ−sin 2θcos 2θ+sin 2θ=1−tan 2θ1+tan 2θ=1−41+4=−35. tan(θ−π4)=tanθ−tanπ41+tanθtanπ4=2−11+2×1=13.故答案为:−35;13.利用二倍角公式以及同角三角函数基本关系式求解第一问,利用两角和与差的三角函数转化求解第二问.本题考查二倍角公式的应用,两角和与差的三角函数以及同角三角函数基本关系式的应用,是基本知识的考查.14.【答案】1【解析】解:∵圆锥侧面展开图是半圆,面积为2π,设圆锥的母线长为a ,则12×a 2π=2π,∴a =2,∴侧面展开扇形的弧长为2π,设圆锥的底面半径OC =r ,则2πr =2π,解得r =1. 故答案为:1.利用圆锥的侧面积,求出母线长,求解底面圆的周长,然后求解底面半径. 本题考查圆锥的母线长的求法,注意利用圆锥的弧长等于底面周长这个知识点.15.【答案】√33 ;−2√33【解析】解:由条件得C 1(0,0),r 1=1,C 2(4,0),r 2=1, 因为直线l 与C 1,C 2都相切, 故有d 1=√1+k 2=1,d 2=√1+k 2=1,则有√1+k 2=√1+k 2,故可得b 2=(4k +b)2,整理得k(2k +b)=0, 因为k >0,所以2k +b =0,即b =−2k , 代入d 1=√1+k 2=1,解得k =√33,则b =−2√33, 故答案为:√33;−2√33. 根据直线l 与两圆都相切,分别列出方程d 1=√1+k2=1,d 2=√1+k 2=1,解得即可.本题考查直线与圆相切的性质,考查方程思想,属于中档题.16.【答案】13 ;1【解析】解:由题意知,随机变量ξ的可能取值为0,1,2;计算P(ξ=0)=14+14×13=13;P(ξ=1)=1 2×13 +14×23×12+24×13×12=13;P(ξ=2)=1−13−13=13;所以E(ξ)=0×13+1×13+2×13=1.故答案为:13,1.由题意知随机变量ξ的可能取值为0,1,2;分别计算P(ξ=0)、P(ξ=1)和P(ξ=2),再求E(ξ)的值.本题考查了离散型随机变量的分布列与数学期望的计算问题,是中档题.17.【答案】2829【解析】【分析】本题考查了平面向量的数量积与夹角的运算问题,是中档题.设e1⃗⃗⃗ 、e2⃗⃗⃗ 的夹角为α,由题意求出cosα≥34;再求a⃗,b⃗ 的夹角θ的余弦值cos2θ的最小值即可.【解答】解:设e1⃗⃗⃗ 、e2⃗⃗⃗ 的夹角为α,由e1⃗⃗⃗ ,e2⃗⃗⃗ 为单位向量,满足|2e1⃗⃗⃗ −e2⃗⃗⃗ |≤√2,所以4e1⃗⃗⃗ 2−4e1⃗⃗⃗ ⋅e2⃗⃗⃗ +e2⃗⃗⃗ 2=4−4cosα+1≤2,解得cosα≥34;又a⃗=e1⃗⃗⃗ +e2⃗⃗⃗ ,b⃗ =3e1⃗⃗⃗ +e2⃗⃗⃗ ,且a⃗,b⃗ 的夹角为θ,所以a⃗⋅b⃗ =3e1⃗⃗⃗ 2+4e1⃗⃗⃗ ⋅e2⃗⃗⃗ +e2⃗⃗⃗ 2=4+4cosα,a⃗2=e1⃗⃗⃗ 2+2e1⃗⃗⃗ ⋅e2⃗⃗⃗ +e2⃗⃗⃗ 2=2+2cosα,b⃗ 2=9e1⃗⃗⃗ 2+6e1⃗⃗⃗ ⋅e2⃗⃗⃗ +e2⃗⃗⃗ 2=10+6cosα;则cos2θ=(a⃗ ⋅b⃗)2a⃗2×b⃗2=(4+4cosα)2(2+2cosα)(10+6cosα)=4+4cosα5+3cosα=43−835+3cosα,所以cosα=34时,cos2θ取得最小值为43−835+3×34=2829.故答案为2829.18.【答案】解:(1)∵2bsinA=√3a,∴2sinBsinA=√3sinA,∵sinA≠0,∴sinB=√32,,∴B=π3,(2)∵△ABC为锐角三角形,B=π3,∴C=2π3−A,,△ABC为锐角三角形,,,解得,,,,∴cosA+cosB+cosC的取值范围为(√3+12,32 ].【解析】本题考查了正弦定理,三角函数的化简,三角函数的性质,考查了运算求解能力和转化与化归能力,属于中档题.(1)根据正弦定理可得sinB=√32,结合角的范围,即可求出,(2)根据两角和差的余弦公式,以及利用正弦函数的性质即可求出.19.【答案】解:(1)证明:作DH⊥AC,且交AC于点H,∵面ADFC⊥面ABC,面ADFC∩面ABC=AC,DH⊂面ADFC,∴DH⊥面ABC,BC⊂面ABC,∴DH⊥BC,∴在Rt△DHC中,CH=CD⋅cos45°=√22CD,∵DC=2BC,∴CH=√22CD=√22⋅2BC=√2⋅BC,∴BCCH =√22,又∠ACB=45°,∴△BHC是直角三角形,且∠HBC=90°,∴HB⊥BC,又∵DH⊂面DHB,HB⊂面DHB,DH∩HB=H,∴BC⊥面DHB,∵DB⊂面DHB,∴BC⊥DB,∵在三棱台DEF−ABC中,EF//BC,∴EF⊥DB.(2)设BC=1,则BH=1,HC=√2,在Rt△DHC中,DH=√2,DC=2,在Rt△DHB中,DB=√DH2+HB2=√2+1=√3,作HG⊥BD于G,∵BC⊥面DHB,HG⊂面DHB,∴BC⊥HG,而BC⊂面BCD,BD⊂面BCD,BC∩BD=B,∴HG⊥面BCD,∵GC⊂面BCD,∴HG⊥GC,∴△HGC是直角三角形,且∠HGC=90°,设DF与面DBC所成角为θ,则θ即为CH与面DBC的夹角,且sinθ=sin∠HCG=HGHC =√2,∵在Rt△DHB中,DH⋅HB=BD⋅HG,∴HG=DH⋅HBBD =√2⋅13=√63,∴sinθ=√2=√63√2=√33.【解析】本题主要考查空间直线互相垂直的判定和性质,以及直线与平面所成角的几何计算问题,考查了空间想象能力和思维能力,平面与空间互相转化是能力,几何计算能力,以及逻辑推理能力,本题属综合性较强的中档题.(1)题根据已知条件,作DH⊥AC,根据面面垂直,可得DH⊥BC,进一步根据直角三角形的知识可判断出△BHC是直角三角形,且∠HBC=90°,则HB⊥BC,从而可证出BC⊥面DHB,最后根据棱台的定义有EF//BC,根据平行线的性质可得EF⊥DB;(2)题先可设BC=1,根据解直角三角形可得BH=1,HC=√2,DH=√2,DC=2,DB=√3,然后找到CH与面DBC的夹角即为∠HCG,根据棱台的特点可知DF与面DBC 所成角与CH与面DBC的夹角相等,通过计算∠HCG的正弦值,即可得到DF与面DBC 所成角的正弦值.20.【答案】(1)解:由题意,b2=q,b3=q2,∵b1+b2=6b3,∴1+q=6q2,整理,得6q2−q−1=0,解得q=−13(舍去),或q=12,∴c n+1=b nb n+2⋅c n=1b n+2b n⋅c n=1q2⋅c n=1(12)2⋅c n=4⋅c n,∴数列{c n}是以1为首项,4为公比的等比数列,∴c n=1⋅4n−1=4n−1,n∈N∗.∴a n+1−a n=c n+1=4n,则a1=1,a2−a1=41,a3−a2=42,……a n−a n−1=4n−1,各项相加,可得a n=1+41+42+⋯+4n−1=1−4n1−4=4n−13.(2)证明:依题意,由c n+1=b nb n+2⋅c n(n∈N∗),可得b n+2⋅c n+1=b n⋅c n,两边同时乘以b n+1,可得b n+1b n+2c n+1=b n b n+1c n,∵b1b2c1=b2=1+d,∴数列{b n b n+1c n}是一个常数列,且此常数为1+d,b n b n+1c n=1+d,∴c n=1+db n b n+1=1+dd⋅db n b n+1=(1+1d)⋅b n+1−b nb n b n+1=(1+1d)(1b n−1b n+1),∴c1+c2+⋯+c n=(1+1d)(1b1−1b2)+(1+1d)(1b2−1b3)+⋯+(1+1d)(1b n−1b n+1)=(1+1d)(1b1−1b2+1b2−1b3+⋯+1b n−1b n+1)=(1+1d)(1b1−1b n+1)=(1+1d)(1−1b n+1)<1+1d,∴c1+c2+⋯+c n<1+1d,故得证.【解析】本题主要考查数列求通项公式,等差数列和等比数列的基本量的运算,以及和式不等式的证明问题.考查了转化与化归思想,整体思想,方程思想,累加法求通项公式,裂项相消法求和,放缩法证明不等式,以及逻辑推理能力和数学运算能力,属于综合题.(1)先根据等比数列的通项公式将b2=q,b3=q2代入b1+b2=6b3,计算出公比q的值,然后根据等比数列的定义化简c n+1=b nb n+2⋅c n可得c n+1=4c n,则可发现数列{c n}是以1为首项,4为公比的等比数列,从而可得数列{c n}的通项公式,然后将通项公式代入c n+1=a n+1−a n,可得a n+1−a n=c n+1=4n,再根据此递推公式的特点运用累加法可计算出数列{a n}的通项公式;(2)通过将已知关系式c n+1=b nb n+2⋅c n不断进行转化可构造出数列{b n b n+1c n},且可得到数列{b n b n+1c n}是一个常数列,且此常数为1+d,从而可得b n b n+1c n=1+d,再计算得到c n=1+db n b n+1,根据等差数列的特点进行转化进行裂项,在求和时相消,最后运用放缩法即可证明不等式成立.21.【答案】解:(1)p =116,则 p 2=132,则抛物线C 2的焦点坐标(132,0),(2)由题意可设直线l :x =my +t (m ≠0,t ≠0),点A (x 0,y 0), 将直线l 的方程代入椭圆C 1:x 22+y 2=1得(m 2+2)y 2+2mty +t 2−2=0∴点M 的纵坐标y M =−mtm 2+2。
2017年浙江高考数学真题万朋教育提醒您,本篇文档是WORD 版,全文免费下载。
一、 选择题:本大题共10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}{}x -1<x Q x =<<<1,=0x 2P ,那么PQ =A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)2.椭圆x y +=22194的离心率是A.3B. C. 23 D. 593.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是A.π+12 B. π+32 C. π3+12 D. π3+324.若x,y 满足约束条件x 0x y 30x 2y 0⎧≥⎪≥=+⎨⎪≤⎩+-,则z 2-x y 的取值范围是A.[0,6]B. [0,4]C.[6, +∞)D.[4, +∞)5.若函数()2f x =++x ax b在区间[0,1]上的最大值是M,最小值是m,则M-mA. 与a 有关,且与b 有关B. 与a 有关,但与b 无关C. 与a 无关,且与b 无关D. 与a 无关,但与b 有关6.已知等差数列{}n a 的公差为d,前n 项和为n S ,则“d>0”是465"+2"S S S >的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件7.函数y (x)y (x)f f ==,的导函数的图像如图所示,则函数y (x)f =的图像可能是8.已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1—p i ,i =1,2.若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξB .1E()ξ<2E()ξ,1D()ξ>2D()ξC .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记1·I OA OB = ,2·I OB OC =,3·I OC OD =,则 A .I 1<I 2<I 3 B .I 1<I 3<I 2C . I 3< I 1<I 2D . I 2<I 1<I 3非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
11.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度。
祖冲之继承并发展了“割圆术”,将π的学科.网值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,S 6= 。
12.已知a ,b ∈R ,2i 34i a b +=+()(i 是虚数单位)则22a b += ,ab = 。
13.已知多项式()31x +()2x +2=5432112345x a x a x a x a x a +++++,则4a =________________,5a =________.14.已知△ABC ,AB =AC =4,BC =2.?点D 为AB 延长线上一点,BD=2,连结CD ,则△BDC 的面积是___________,cos ∠BDC =__________.15.已知向量a,b 满足1,2==a b ,则+-a +b a b 的最小值是 ,最大值是 。
16.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答)17.已知∈a R ,函数()4=+-+f x x a a x在区间[1,4]上的最大值是5,则a 的取值范围是三、解答题:本大题共5小题,共74分。
解答应写出文字说明、证明过程或演算步骤。
18.(本题满分14分)已知函数()()22sin cos cos =--∈f x x x x x x R(I )求23π⎛⎫⎪⎝⎭f 的值 (II )求()f x 的最小正周期及单调递增区间.19. (本题满分15分)如图,已知四棱锥P-ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,PC=AD=2DC=2CB,E 为PD 的中点.(I )证明:CE ∥平面PAB ;(II )求直线CE 与平面PBC 所成角的正弦值20. (本题满分15分)已知函数()(1e 2-⎛⎫=≥ ⎪⎝⎭x f x x x(I )求()f x 的导函数(II )求()f x 在区间1,+2⎡⎫∞⎪⎢⎣⎭上的取值范围 21. (本题满分15分)如图,已知抛物线2=x y .点A 1139-,,,2424B⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,抛物线上的点P (x,y )13-<<22⎛⎫⎪⎝⎭x ,过点B 作直线AP 的垂线,垂足为Q(I )求直线AP 斜率的取值范围;(II )求PA PQ 的最大值22. (本题满分15分)已知数列{}n x 满足:()()*111=1,ln 1++=++∈n n n x x x x n N证明:当*∈n N 时(I )10<<+n n x x ;(II )112-2++≤n n n n x x x x ;(III)1-21122-≤≤n n n x2017年浙江数学高考真题参考答案一、选择题:本题考查基本知识和基本运算。
每小题4分,满分40分。
1.A2.B3.A4.D5.B6.C7.D8.A9.B 10.C二、填空题:本题考查基本知识和基本运算。
多空题每题6分,单空题每题4分,满分36分。
11. 212.5,2 13.16.4 14.,2415. 4,16.660 17. 9-,2⎛⎤∞ ⎥⎝⎦三、解答题:本大题共5小题,共74分。
18.本题主要考查三角函数的性质及其变换等基础知识,同时考查运算求解能力。
满分14分。
(I )由221sin,cos 332ππ==-, 22211322f π⎛⎫⎛⎫⎛⎫=---⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭得223f π⎛⎫= ⎪⎝⎭(II )由22cos 2cos sin =-x x x 与sin 22sin cos =x x x 得()2cos 22sin 26f π⎛⎫=--+⎪⎝⎭x x x =-x所以()f x 的最小正周期是π由正弦函数的性质得解得2++,63ππππ≤≤∈k x k k Z所以()f x的单调递增区间是2+,+63ππππ⎡⎤∈⎢⎥⎣⎦k k k Z19.本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力。
满分15分。
(Ⅰ)如图,设P A中点为F,连结EF,FB.因为E,F分别为PD,P A中点,所以EF∥AD且EF=12AD,又因为BC∥AD,BC=12AD,所以EF∥BC且EF=BC,即四边形BCEF为平行四边形,所以CE∥BF,因此CE∥平面P AB.(Ⅱ)分别取BC,AD的中点为M,N.连结PN交EF于点Q,连结MQ.因为E,F,N分别是PD,P A,AD的中点,所以Q为EF中点,在平行四边形BCEF中,MQ∥CE.由△P AD为等腰学科&网直角三角形得PN⊥AD.由DC⊥AD,N是AD的中点得BN⊥AD.所以AD⊥平面PBN,由BC∥AD得BC⊥平面PBN,那么,平面PBC ⊥平面PBN .过点Q 作PB 的垂线,垂足为H ,连结MH .MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角. 设CD =1.在△PCD 中,由PC =2,CD =1,PD =√2得CE =√2,在△PBN 中,由PN =BN =1,PB =√3得QH =14,在Rt △MQH 中,QH =14,MQ =√2,所以 sin ∠QMH =√28,所以,直线CE 与平面PBC 所成角的正弦值是√28.20.本题主要考查函数的最大(小)值,导数的运算及其应用,同时考查分析问题和解决问题的能力。
满分15分。
(Ⅰ)因为 (x −√2x −1)′=1−√2x−1(e −x )′=−e −x所以f ′(x )=(1−√2x−1e −x −(x −√2x −1)e −x=√2x−1−2)e −x√2x−1>12).(Ⅱ)由f ′(x )=√2x−1−2)e −x√2x−1=0解得x =1或x =52.又f (x )=12(√2x −1−1)2e −x ≥0,所以f(x )在区间[12,+∞)上的取值范围是[0,12e −12].21. 本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力。
满分15分。
(Ⅰ)设直线AP 的斜率为k ,k =21-14122x x x =-+,因为1322x -<<,所以直线AP 斜率的取值范围是(-1,1)。
(Ⅱ)联立直线AP 与BQ 的方程解得点Q 的横坐标是因为|P A 1)2x +1)kx +|PQ |= )Q x x -=2(1)k -,|P A ||PQ |= -(k -1)(k +1)3 令f (k )= -(k -1)(k +1)3,因为f ’(k )=2(42)(1)k k --+,所以 f (k )在区间(-1,12)上单调递增,(12,1)上单调递减, 因此当k =12时,|P A ||PQ | 取得最大值271622. 本题主要考查数列的概念、递推关系与单调性等基础知识,不等式及其应用,同时考查推理论证能力、分析问题和解决问题的能力。
满分15分。
(Ⅰ)用数学归纳法证明:nx>0当n =1时,x 1=1>0 假设n =k 时,x k >0,那么n =k +1时,若xk +1≤0,则110In(1)0kk k x xx ++<=++≤,矛盾,故1k x +>0。
因此0()n x n N *〉∈所以111ln(1)n n n n x x x x +++=++〉因此10()n n x x n N *+〈〈∈(Ⅱ)由111ln(1)n n n n x x x x +++=++〉得记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥函数f (x )在[0,+∞)上单调递增,所以()(0)f x f ≥=0,因此 2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥112(N )2n n n n x x x x n *++-≤∈ (Ⅲ)因为所以112n n x -≥得 故212n n x -≤万朋教育建议,还在高一、高二的同学们,如果想以比较好的成绩完成高考,就要利用好现在的暑期时间,建议关注一些名师课程。