(1)算术平方根的概念,式子 a 中的双
重非负性:一是a≥0, 二是 a ≥0. 〔2〕算术平方根的性质: 一个正数的算术平方根是一个正数;
0的算术平方根是0; 负数没有算术平方根.
〔3〕求一个正数的算术平方根的运算与平 方运算是互逆的运算,利用这个互逆运算关 系求非负数的算术平方根.
大
开
1、假设x 34y 23 z0 ,
二、求以下各数的算术平方根:
36,114241 ,15,0.64, 10,4
2,25
.( 5 ) 0
6
解:(1) 因为62=36,所以36的算术平方根是6,即 36 6 ;
(2) 因为 (11)2 121 ,所以 121 的算术平方根是 11 ,
12 144
144
12
即 121 11 ; 144 12
( 12的) 2算术平方根是
1
,2
的4 2 算术平方根是
2,
重要结论: 1、正数有一个算术平方根 2、0的算术平方根是0 3、负数没有算术平方根 4、算术平方根等于它本身的数是0或1
5、
练一练:1、填空:
(1) 方根是
的平方等于 1.96,所以 1.96 的算术平 ;
(2)36 的算术平方根是 ; 9 的算术平方根是 ; 16
49 〔1〕900;〔2〕1;〔3〕64 ;〔4〕14.
解:(1) 因为302=900,所以900的算术平方根是30, 即 900 30 ;
(2)因为12=1,所以1的算术平方根是1,即 1 1
(3)因为 (7 )2 49 ,所以 49 的算术平方根
8 64
64
是
7 8,
即
49 64
7