(山东省专用)201x-201x学年高中物理 第十二章 机械波 第5、6节 多普勒效应 惠更斯原理
- 格式:ppt
- 大小:3.02 MB
- 文档页数:21
第5、6节多普勒效应惠更斯原理1.多普勒效应:波源与观察者互相靠近或者互相远离时,观察者接收到的波的频率都会发生变化的现象。
2.波源与观察者如果相互靠近,观察者接收到的频率增大,二者如果远离,观察者接收到的频率减小。
3.利用多普勒效应可以测车辆速度、星球速度、血流速度等。
4.惠更斯原理:介质中任一波面上的各点,都可以看做发射子波的波源,其后任意时刻,这些子波在波前进方向的包络面就是新的波面。
一、多普勒效应1.多普勒效应(1)音调:音调由频率决定,频率高则音调高,频率低则音调低。
(2)多普勒效应:波源与观察者互相靠近或者互相远离时,接收到的波的频率都会发生变化的现象。
2.多普勒效应产生的原因(1)波源与观察者相对静止时,1 s内通过观察者的波峰(或密部)的数目是一定的,观察者观测到的频率等于波源振动的频率。
(2)当波源与观察者相互靠近时,1 s内通过观察者的波峰(或密部)的数目增加,观察到的频率增加;反之,当波源与观察者互相远离时,观察到的频率变小。
二、多普勒效应的应用1.测车辆速度:交警向行进中的车辆发射频率已知的超声波,同时测量反射波的频率,根据反射波频率变化的多少就能知道车辆的速度。
2.测星球速度:测量星球上某些元素发出的光波的频率。
然后与地球上这些元素静止时发光的频率对照,可得星球的速度。
3.测血流速度:向人体内发射已知频率的超声波,超声波被血管中的血流反射后又被仪器接收,测出反射波的频率变化就可得血流速度。
三、惠更斯原理1.波面与波线(1)波面和波线的概念:①波面:波源发出的波,向四周传开,波峰组成了一个个圆,波谷也组成一个个圆,振动状态相同的点都组成了一个个圆,这些圆叫作一个个波面。
②波线:指与波面垂直的那些线,代表了波的传播方向。
如图所示。
(2)波的分类:①球面波:由空间一点发出的波,它的波面是以波源为球心的一个个球面,波线就是这些球面的半径。
②平面波:指波面是平面的波。
2.惠更斯原理(1)内容:介质中任一波面上的各点,都可以看做发射子波的波源,其后任意时刻,这些子波在波前进方向的包络面就是新的波面。
第6节惠更斯原理物理核心素养主要由“物理观念”“科学思维”“科学探究”“科学态度与责任”四个方面构成。
【学情分析】学生在初中已经学习过光的反射和折射现象以及声音的反射现象。
因此本节课的学习学生有一定基础,本节课学生的学习难点在于接受一些新概念和惠更斯原理,并利用机械波的基本知识好惠更斯原理推导波的反射定律和折射定律,激发学生学习物理的兴趣。
而最后的落脚点却在应用两个定律分析问题解决问题上。
【教学目标】(一)物理观念1、知道波传播到两种介质交界面时会发生反射和折射。
2、知道波发生反射时,反射角等于入射角,反射波的频率、波速和波长都与入射波相同。
3、知道波发生折射是由于波在不同的介质中速度不同,知道折射角与入射角的关系。
(二)科学思维、科学探究1、复习声音的反射现象、光的反射和折射现象教师:引导复习学生:思考回顾2、水波的反射和折射教师:演示实验,并指导学生观察认识(可采用发波水槽和实物投影仪,也可利用多媒体播放实验视频)学生:观察实验,认识现象二、惠更斯原理(了解惠更斯对波传播规律的研究)1.相关概念:波面和波线:教师:引导学生思考问题:如何表示波传播的方向?然后指导学生阅读教材有关内容,理解(1)什么是波面?什么是波线?(2)对于水波和空间一点发出的球面波和平面波为例,如何理解波面和波线?学生:阅读教材,思考理解:(1)向各个方向传播的波峰(或波谷)在同一时刻构成的,叫做波面。
(2)图中与各个波面垂直的线叫波线,用来表示波的传播方向。
2.相关概念:子波源和子波→ 惠更斯原理教师:引导学生阅读教材有关内容,思考理解:(1)惠更斯原理的内容是什么?(2)以球面波为例,应用惠更斯原理解释波的传播。
学生:阅读教材,思考理解:(1)理解并能叙述惠更斯原理:(1690年提出)介质中波前上的各点,都可以看做一个新的波源(子波源),能够发出子波;其后,这些子波的包络面就是新的波面,这就是惠更斯原理。
(2)理解子波源、子波这一对概念(3)如何根据某时刻的波面和波线,作出过一段时间后新的波面?阅读教材上利用惠更斯原理在球面波、平面波两种情况下确定新波面的方法。
第十二章 机械波12-1 一平面简谐纵波沿着线圈弹簧传播.设波沿着x 轴正向传播,弹簧中某圈的最大位移为3.0 cm ,振动频率为25 Hz ,弹簧中相邻两疏部中心的距离为24 cm .当t = 0时,在x = 0处质元的位移为零并向x 轴正向运动.试写出该波的表达式.(答案:]21)6/(50cos[100.32π--π⨯=-x t y (SI))12-2 一平面简谐波沿x 轴正向传播,波的振幅A = 10 cm ,波的角频率ω = 7π rad/s.当t = 1.0 s 时,x = 10 cm 处的a 质点正通过其平衡位置向y 轴负方向运动,而x = 20 cm 处的b 质点正通过y = 5.0 cm 点向y 轴正方向运动.设该波波长λ >10 cm ,求该平面波的表达式.(答案:]3112.07cos[1.0π+π-π=x t y (SI))12-3 一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示.求(1) x = 0处质点振动方程;(2) 该波的表达式.(答案:]21)(2cos[π+'-π=t t A y ν;]21)/(2cos[π+-'-π=u x t t A y ν)12-4 一列平面简谐波在媒质中以波速u = 5 m/s 沿x 轴正向传播,原点O 处质元的振动曲线如图所示.(1) 求解并画出x = 25 m 处质元的振动曲线. (2) 求解并画出t = 3 s 时的波形曲线.(答案:)321cos(1022π-π⨯=-t y ,(SI),图略;)10/cos(1022x y π-π⨯=-,(SI),图略)12-5 已知一平面简谐波的表达式为 )37.0125cos(25.0x t y -= (SI) (1) 分别求x 1 = 10 m ,x 2 = 25 m 两点处质点的振动方程; (2) 求x 1,x 2两点间的振动相位差;(3) 求x 1点在t = 4 s 时的振动位移.(答案:)7.3125cos(25.010-==t y x (SI),)25.9125cos(25.025-==t y x (SI);-5.55 rad ;0.249 m )12-6 一横波方程为 )(2cosx ut A y -π=λ, 式中A = 0.01 m ,λ = 0.2 m ,u = 25 m/s ,求t = 0.1 s 时在x = 2 m 处质点振动的位移、速度、加速度.(答案:-0.01 m ,0 m/s ,6.17×103 m/s 2)xu O t =t ′y12-7 如图,一平面波在介质中以波速u = 20 m/s 沿x 轴负方向传播,已知A 点的振动方程为 t y π4c o s1032-⨯= (SI). (1) 以A 点为坐标原点写出波的表达式;(2) 以距A 点5 m 处的B 点为坐标原点,写出波的表达式.(答案:)]20/([4cos 1032x t y +π⨯=- (SI);])20(4cos[1032π-+π⨯=-xt y (SI))12-8 一平面简谐波沿x 轴正向传播,其振幅和角频率分别为A 和ω ,波速为u ,设t = 0时的波形曲线如图所示.(1) 写出此波的表达式. (2) 求距O 点分别为λ / 8和3λ / 8 两处质点的振动方程.(3) 求距O 点分别为λ / 8和3λ / 8 两处质点在t = 0时的振动速度.(答案:]21)/(cos[π+-=u x t A y ωω;)4/cos(π+=t A y ω,)4/cos(π-=t A y ω;2/2ωA -,2/2ωA )12-9 如图,一平面简谐波沿Ox 轴传播,波动表达式为])/(2cos[φλν+-π=x t A y (SI),求 (1) P 处质点的振动方程;(2) 该质点的速度表达式与加速度表达式.(答案:])/(2cos[φλν++=L t A y P π;])/(2sin[2φλνπν++π-=L t A P v ,])/(2cos[422φλνν++ππ-=L t A a P )12-10 某质点作简谐振动,周期为2 s ,振幅为0.06 m ,t = 0 时刻,质点恰好处在负向最大位移处,求(1) 该质点的振动方程; (2) 此振动以波速u = 2 m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3) 该波的波长.(答案: )cos(06.00ππ+=t y (SI);])21(cos[06.0ππ+-=x t y (SI);4m )12-11 图示一平面简谐波在t = 0 时刻的波形图,求 (1) 该波的波动表达式; (2) P 处质点的振动方程.(答案:]2)4.05(2cos[04.0π--π=x t y (SI); )234.0cos(04.0ππ-=t y P (SI))ABxuxuOyOP(m) -12-12 图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图.已知波速为u ,求(1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式.(答案:)218/cos(0π-π=t A y (SI);]21)16016(2cos[π-+π=x t A y (SI))12-13 如图所示为一平面简谐波在t = 0 时刻的波形图,设此简谐波的频率为250 Hz ,且此时质点P 的运动方向向下,求(1) 该波的表达式; (2) 在距原点O 为100 m 处质点的振动方程与振动速度表达式. (答案:]41)200250(2cos[π++π=x t A y (SI);)45500cos(1π+π=t A y ,)45500cos(500π+ππ-=t A v (SI))12-14 如图所示,一简谐波向x 轴正向传播,波速u = 500 m/s ,x 0 = 1 m, P 点的振动方程为)21500cos(03.0π-π=t y (SI).(1) 按图所示坐标系,写出相应的波的表达式; (2) 在图上画出t = 0时刻的波形曲线.(答案:)21500cos(03.0x t y π-π+π= (SI);x x y π=sin 03.0)0,()12-15 一平面简谐波,频率为300 Hz ,波速为340 m/s ,在截面面积为3.00×10-2 m 2的管内空气中传播,若在10 s 内通过截面的能量为2.70×10-2 J ,求(1) 通过截面的平均能流; (2) 波的平均能流密度;(3) 波的平均能量密度.(答案:2.70×10-3 J/s ;9.00×10-2 J /(s ·m 2);2.65×10-4 J/m 3)12-16 已知点波源向外发射球面波,波速为v 0,波源振动的角频率为ω ,初相为零.距波源为 1 m 处质点的振幅为A 0.设介质均匀且不吸收能量,试写出球面波的波动表达式.(答案:)]}/([cos{)/(0v r t r A y -=ω (SI))12-17 如图所示,S 1,S 2为两平面简谐波相干波源.S 2的相位比S 1的相位超前π/4 ,波长λ = 8.00 m ,r 1 = 12.0 m ,r 2 = 14.0 m ,S 1在P 点引起的振动振幅为0.30 m ,S 2在P 点引起的振动振幅为0.20 m ,求P 点的合振幅.(答案:0.464m )12-18 如图所示,两相干波源在x 轴上的位置为S 1和S 2,其间距离为d = 30 m ,S 1位于坐标原点O .设波只沿x 轴正负方向传播,单独传播时强度保持不变.x 1 = 9 m 和x 2 = 12 m 处的两点是相邻的两个因干涉而静止的点.求两波的波长和两波源间最小相位差.(答案:6m ;± π )12-19 图中A 、B 是两个相干的点波源,它们的振动相位差为π(反相).A 、B 相距 30 cm ,观察点P 和B 点相距 40 cm ,且AB PB ⊥.若发自A 、B 的两波在P 点处最大限度地互相削弱,求波长最长能是多少.(答案:10 cm )12-20 如图所示,两列相干波在P 点相遇.一列波在B 点引起的振动是 t y π⨯=-2cos 103310 (SI);另一列波在C 点引起的振动是)212cos(103320π+π⨯=-t y (SI); 令=BP 0.45 m ,=CP 0.30 m ,两波的传播速度u = 0.20 m/s ,不考虑传播途中振幅的减小,求P 点的合振动的振动方程.(答案:)212cos(1063ππ-⨯=-t y )12-21 一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=, 而另一平面简谐波沿Ox 轴负方向传播,波的表达式为 )/(2cos 2λνx t A y +π= 求:(1) x = λ /4 处介质质点的合振动方程;(2) x = λ /4 处介质质点的速度表达式.(答案:)212cos(π+π=t A y ν;)2cos(2πππ+=t A v νν)12-22 一驻波中相邻两波节的距离为d = 5.00 cm ,质元的振动频率为ν =1.00×103 Hz ,求形成该驻波的两个相干行波的传播速度u 和波长λ .(答案:u = 100 m/s ,λ = 0.10 m )12-23 两波在一很长的弦线上传播,其表达式分别为:)244(31cos 1000.421t x y -π⨯=- (SI))244(31cos 1000.422t x y +π⨯=- (SI)PSS求: (1) 两波的频率、波长、波速; (2) 两波叠加后的节点位置; (3) 叠加后振幅最大的那些点的位置.(答案:ν = 4 Hz ,λ = 1.50 m ,u = λν = 6.00 m/s ;)21(3+±=n x m , n = 0,1,2,3, …;4/3n x ±= m , n = 0,1,2,3, …)12-24 设入射波的表达式为 )(2cos 1TtxA y +π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1) 反射波的表达式; (2) 合成的驻波的表达式;(3) 波腹和波节的位置. (答案:])//(2cos[2π+-π=T t x A y λ;)21/2cos()21/2cos(2ππππ-+=T t x A y λ;波腹位置:λ)21(21-=n x , n = 1, 2, 3, 4,…;波节位置:λn x 21=, n = 1, 2, 3, 4,…)12-25 一弦上的驻波表达式为 t x y ππ⨯=-550c o s )6.1(c o s 1000.32(SI). (1) 若将此驻波看作传播方向相反的两列波叠加而成,求两波的振幅及波速; (2) 求相邻波节之间的距离;(3) 求t = t 0 = 3.00×10-3 s 时,位于x = x 0 = 0.625 m 处质点的振动速度.(答案:A = 1.50×10-2 m ,u = 343.8 m/s ;0.625 m ;-46.2m/s )12-26 在弹性媒质中有一沿x 轴正向传播的平面波,其表达式为)214cos(01.0π-π-=x t y (SI).若在x = 5.00 m 处有一媒质分界面,且在分界面处反射波相位突变π,设反射波的强度不变,试写出反射波的表达式.(答案:)214cos(01.0π+π+=x t y (SI))12-27 火车以u = 30 m/s 的速度行驶,汽笛的频率为ν0 = 650 Hz .在铁路近旁的公路上坐在汽车里的人在下列情况听到火车鸣笛的声音频率分别是多少? (1) 汽车静止; (2) 汽车以v = 45 km/h 的速度与火车同向行驶.(设空气中声速为V = 340 m/s ) (答案:火车迎面而来713Hz ,火车背离而去597Hz ;汽车在前687Hz ;火车在前619Hz )12-28 甲火车以43.2 km/h 速度行驶,其上一乘客听到对面驶来的乙火车鸣笛声的频率为512 Hz ;当这一火车过后,听到其鸣笛声的频率为428 Hz .求乙火车上的乘客听到乙火车鸣笛的频率和乙火车对于地面的速度(设空气中声波的速度为340 m/s ).(答案:468 Hz ,18.4 m/s )12-29 一个观察者站在铁路附近,听到迎面开来的火车汽笛声的频率为640 Hz ,当火车驶过他身旁后,听到汽笛声的频率降低为530 Hz .问火车的时速为多少?(设空气中声速为330 m/s )(答案:31.0 m /s )12-30 甲和乙两个声源的频率均为500 Hz.甲静止不动,乙以40 m/s的速度远离甲.在甲乙之间有一观察者以20 m/s的速度向着乙运动.此观察者听到的声音的拍频是多少?(已知空气中的声速为330 m/s)(答案:3.3 Hz)12-31 一人手执一频率为400 Hz的声源以2.0 m/s的速度正对一高墙运动.声音在空气中的速度为330 m/s.此人听到的声音的拍频是多少?(答案:4.88 Hz)。