2010年中考数学试题分析
- 格式:doc
- 大小:89.00 KB
- 文档页数:3
2010年安徽省中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(2010•安徽)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A.﹣1 B.0 C.1 D.22.(2010•安徽)计算(2x)3÷x的结果正确的是()A.8x2B.6x2C.8x3D.6x33.(2010•安徽)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°4.(2010•安徽)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A.2.89×107B.2。
89×106C.2。
89×105D.2。
89×1045.(2010•安徽)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是()A.B.C.D.6.(2010•安徽)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差于1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元7.(2010•安徽)若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0,5 B.0,1 C.﹣4,5 D.﹣4,18.(2010•安徽)如图,⊙O过点B、C.圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.B.2C.3D.9.(2010•安徽)下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()A.495 B.497 C.501 D.50310.(2010•安徽)甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)11.(2010•安徽)计算:×﹣=_________.12.(2010•安徽)不等式组的解集是_________.13.(2010•安徽)如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是BAC上一点,则∠D=_________度.14.(2010•安徽)如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是_________.(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.三、解答题(共9小题,满分90分)15.(2010•安徽)先化简,再求值:(1﹣)÷,其中a=﹣1.16.(2010•安徽)若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是60°,船的速度为5米/秒,求船从A到B处约需时间几分.(参考数据:≈1。
2010年广东省中考数学试卷一、填空题(共6小题,满分23分)1、(2010•广东)﹣2的绝对值是.考点:绝对值。
分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣2|=2.故填2.点评:规律总结:一个正数的绝对值是它本身;一个负数的绝对值是是它的相反数;0的绝对值是0.2、(2010•广东)据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8 000 000人次.试用科学记数法表示8 000 000= .考点:科学记数法—表示较大的数。
专题:应用题。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:用科学记数法表示8 000 000=8×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2010•定西)分式方程的解x= .考点:解分式方程。
专题:计算题。
分析:本题的最简公分母是x+1,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.解答:解:方程两边都乘x+1,得2x=x+1,解得x=1.检验:当x=1时,x+1≠0.∴x=1是原方程的解.点评:(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.4、(2010•广东)如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=,则AC= .考点:解直角三角形。
分析:根据题中所给的条件,在直角三角形中解题.根据角的正弦值与三角形边的关系,可求出AC.解答:解:∵在Rt△ABC中,cosB=,∴sinB=,tanB==.∵在Rt△ABD中AD=4,∴AB=.在Rt△ABC中,∵tanB=,∴AC=×=5.点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.5、(2010•广东)某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两年内,商品房每平方米平均价格的年增长率都为x,试列出关于x的方程:.考点:由实际问题抽象出一元二次方程。
2010年台州市初中学业水平考试数学试题卷亲爱的考生:欢迎参加考试!请你认真审题,仔细答题,发挥最佳水平.请注意以下几点: 1.全卷共6页,满分150分,考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效.3.答题前,请认真阅读答题纸上的《注意事项》,按规定答题.本次考试不得使用计算器. 祝你成功!一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1. (2010浙江台州,1,4分)-4的绝对值( ) A .4B .-4C .41D .41【分析】从几何意义分析:数轴上表示数a 的点与原点的距离叫做数A 的绝对值.从代数意义分析:负数的绝对值是它的相反数,那么,-4的绝对值应该是4. 【答案】A【涉及知识点】绝对值的概念【点评】本题属于基础题,主要考查学生对概念的掌握是否全面,考查知识点单一,有利于提高本题的信度.【推荐指数】★ 2.(2010浙江台州,2,4分)下列立体图形中,侧面展开图是扇形的是( )【分析】长方体的侧面展开图是长方形,圆锥的侧面展形图是扇形,圆柱的侧面展开图是长方形,四棱锥的侧面展开图是具有公共顶点的四个三角形,所以选圆锥.【答案】B【涉及知识点】侧面展开图【点评】本题属于基础题,主要考查学生是否具有基本的识图能力,考查知识点单一,有利于提高本题的信度.【推荐指数】★★A .B .C .D .3.(2010浙江台州,3,4分)如图,△ABC 中,∠C =90°,AC =3,点P 是边BC 上的动点,则AP 长不可能...是 ( )A .2.5B .3C .4D .5【分析】AC 是BC 边上的垂线段,由垂线段最短可知,线段AP 的长度应该大于或等于AC .所以,AP 长不可能...是2.5. 【答案】A【涉及知识点】垂线段的性质【点评】本题考查了垂线段的性质,直线外一点与直线上各点连接的所有线段中,垂线段最短.能从图中能辨别出用这个性质来解,并掌握这一性质就能得分,不掌握就不能得分.【推荐指数】★★★ 4.(2010浙江台州,4,4分)下列运算正确的是( ) A .22a a a =⋅B .33)(ab ab =C .632)(a a =D .5210a a a=÷【分析】由同底数幂的乘法法则:32a a a =⋅,由积的乘方法则:333)(b a ab =, 由同底数幂的除法法则:8210a a a=÷,由幂的乘方法则632)(a a =是正确的.【答案】C【涉及知识点】幂的运算法则【点评】本题属于基础题,主要考查有关幂的运算法则,(1)同底数幂的乘法:同底数幂相乘,底数不变,指数相加. 即: a m ·a n =a m +n ( m 、 n 都是正整数) (2)幂的乘方:底数不变,指数相乘. 即: (a m )n =a mn ( m 、 n 都是正整数)(3)积的乘方:把每一个因式分别乘方,再把所得的幂相乘. 即: (ab)n =a n b n (4)同底数幂的除法:同底数幂相除、底数不变、指数相减. 即: a m ÷a n =a m-n (a ≠0 , m 、 n 都是正整数且 m>n ) 对于这几个幂的运算,恰恰是学生容易混淆的地方,要注意它们之间的联系与区别.【推荐指数】★★ 5.(2010浙江台州,5,4分)如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB 大小为 ( ) A .25° B .30° C .40° D .50°【分析】由垂径定理可得,弧BC 的度数等于弧AC 的度数,圆周角的度数等于它所对的弧的度数的一半,所以,∠CDB=25°【答案】A【涉及知识点】垂径定理 圆周角度数【点评】本题属于基础题,主要考查学生对垂径定理,圆周角度数的掌握情况,垂径(第3题)(第5题)ABOCDX 1X 2X 3y 1 y 2y 3定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.【推荐指数】★★ 6.(2010浙江台州,6,4分)下列说法中正确的是( ) A .“打开电视,正在播放《新闻联播》”是必然事件; B .某次抽奖活动中奖的概率为1001,说明每买100张奖券,一定有一次中奖; C .数据1,1,2,2,3的众数是3;D .想了解台州市城镇居民人均年收入水平,宜采用抽样调查.【分析】“打开电视,正在播放《新闻联播》”应该是偶然事件;某次抽奖活动中奖的概率为1001只能说明每买100张奖券,可能有一次中奖;数据1,1,2,2,3的众数是1和2.只有D 选项是正确的.【答案】D【涉及知识点】数据分析【点评】本题较全面的考察了学生对数据分析中的概念掌握情况. 【推荐指数】★★★★7.(2010浙江台州,7,4分)梯形ABCD 中,AD ∥BC ,AB=CD=AD =2,∠B =60°,则下底BC 的长是( )A .3B .4C . 23D .2+23 【分析】作AE ∥DC ,因为AD ∥BC ,所以四边形AECD 是平行四边形,CE=AD=2,由∠B =60°易得△ABE 为等边三角形,所以BE=AB=2,则BC=BE+CE=4.【答案】B【涉及知识点】平行四边形,等边三角形【点评】本题考察了平行四边形的判定,性质及等边三角形的性质,并且这种作辅助线的方法是梯形中最常见的一种作法,是较全面的一道基础题.【推荐指数】★★★ 8.(2010浙江台州,8,4分)反比例函数xy 6=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是( )A .321y y y <<B .312y y y <<C .213y y y <<D .123y y y <<【分析】利用图象法解,如图所示,y 3最大,由反比例函数的性质,在同一象限,k>0时,y 随着x 的增大而减小,易得312y y y <<. 【答案】B【涉及知识点】反比例函数性质【点评】函数值大小比较,可以用特殊值法、 由函数的增减性以及图象法来解,但图象法是最直观的一种方法,我们往往都利用图象法来解.【推荐指数】★★★★★C9.(2010浙江台州,9,4分)如图,矩形ABCD 中,AB >AD ,AB =A ,AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N .则DM +CN 的值为(用含a 的代数式表示)( ) A .A B .a 54C .a 22D . a 23【分析】过D 点作DE ∥MN ,易得四边形DMNE 是矩形,DM=EN ,则DM +CN 的和就是EC 的长度,由AN 平分∠DAB ,DM ⊥AN ,易得∠EDC=45度,所以,EC =a 22,即DM +CN =a 22【答案】C【涉及知识点】角平分线,矩形,等腰直角三角形【点评】本题涉及到的知识点较多,很好的考察了学生的综合能力,难度适中. 【推荐指数】★★★★★ 10.(2010浙江台州,10,4分)如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标最大值为( ) A .-3 B .1 C .5 D .8【分析】C 、D 两点是抛物线与x线的顶点在A 处,把C(3-,0),A(1,4)41-,当抛物线的顶点在B 处时,可以取得D 4+,易得最大值为8.【答案】D【涉及知识点】二次函数【推荐指数】★★★★DE二、填空题(本题有6小题,每小题5分,共30分) 11.(2010浙江台州,11,5分)函数xy 1-=的自变量x 的取值范围是 ▲ . 【分析】由于分式的分母不能为0,x 在分母上,因此x ≠0.【答案】0≠x【涉及知识点】分式的意义【点评】初中阶段涉及有意义的地方有三处,一是分式的分母不能为0,二是二次根式的被开方数必须是非负数,三是零指数的底数不能为零.【推荐指数】★★12.(2010浙江台州,12,5分)因式分解:162-x = ▲ .【分析】逆用平方差公式,16=42,所以,162-x =224-x =)4)(4(-+x x . 【答案】)4)(4(-+x x【涉及知识点】平方差公式因式分解【点评】本题是对基本运算能力的考查,因式分解是整式部分的重要内容,也是分式运算和二次根式运算的基础,因式分解的步骤,一提(提公因式),二套(套公式,主要是平方差公式和完全平方公式),三分组(对于不能直接提公因式和套公式的题目,我们可将多项式先分成几组后后,分组因式分解).【推荐指数】★★★13.(2010浙江台州,13,5分)某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 ▲ . 【分析】现价=原价×(1一降价率),两次降价后就是2)1(x -,所以可得100)1(1202=-x【答案】100)1(1202=-x【涉及知识点】一元二次方程【点评】本题主要考察了学生的实际应用能力,考察了有关销售问题,学生往往对于这种类型的题目并不是很清晰,老师在平时上课时,可以多注意这个方面,让学清晰的理解.【推荐指数】★★★14.(2010浙江台州,14,5分)如图是甲、乙两射击运动员的10次射击训练成绩(环数)的折线统计图,观察图形,甲、乙这10次射击成绩的方差甲2S ,乙2S 之间的大小关系是▲ .(第 14 题)8912 3 4 5 6 7 8 9 10【分析】从折线图,可以看出实线较稳定,虚线较不稳定,方差越小,越稳定,所以甲2S <乙2S .【答案】甲2S <乙2S【涉及知识点】方差【点评】本题考察了学生对数据分析中的方差真正意义的理解. 【推荐指数】★★★★★15.(2010浙江台州,15,5分)如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于E .则直线CD 与⊙O 的位置关系是 ▲ ,阴影部分面积为(结果保留π) ▲ .【分析】连接OE ,阴影部分面积=△BCD 的面积一△BOE 的面积一扇形EOC 的面积 【答案】相切, 6π【涉及知识点】相切,三角形面积,扇形面积【点评】与圆有关的计算一直是中考考查的重要内容,主要考点有:弧长和扇形面积及其应用等.【推荐指数】★★★★★AB DOE(第15题)16.(2010浙江台州,16,5分)如图,菱形ABCD 中,AB =2 ,∠C =60°,菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过36次这样的操作菱形中心O 所经过的路径总长为(结果保留π) ▲ .【分析】如右图所示,是圆心O 的运动轨迹,易得,大圆弧的半径为3,小圆弧半径为1,翻滚3次的弧长为3132+π,所以翻滚36次,菱形中心O 所经过的路径总长为(83+4)π.【答案】(83+4)π 【涉及知识点】弧长公式【点评】扇形弧长可用公式:180n rl π=,与圆有关的计算一直是中考考查的重要内容.与之类似的一道题曾经在以前的中考题中出现过.【推荐指数】★★★★★三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(1)(2010浙江台州,17(1),4分)计算:)1()2010(40---+;【分析】根据二次根式、零次幂24=,1)2010(0=-【答案】(1)解:原式=2+1+1 ………………………………………………………3分 =4 ………………………………………………………………1分【涉及知识点】二次根式,零次幂,运算符号法则【点评】对运算的考查主要突出基础性,题目一般不难,主要考查学生基本的运算能力. 【推荐指数】★★★ (2)(2010浙江台州,17(2),4分)解方程:123-=x x . 【分析】由分式方程等式性质,去分母即可做. 【答案】解:x x 233=-3=x . ……………………………………………………………………3分经检验:3=x 是原方程的解.…………………………………………………………1分 所以原方程的解是3=x .(第16题)l①②【涉及知识点】分式方程【点评】分式方程的计算,学生的易错点是符号法则、去分母时漏乘、忘了检验.对运算的考查主要突出基础性,题目一般不难,主要考查学生基本的运算能力.【推荐指数】★★ 18.(2010浙江台州,18,8分)解不等式组⎩⎨⎧+>>-12026x x x ,并把解集在数轴上表示出来.【分析】①式②式分别计算,由①式得<x 26,x<3,由②式得2x-x>1,得x >1.【答案】⎩⎨⎧+>>-.12,026x x x解①得,x <3, …………………………………………………………………2分 解②得,x >1, ………………………………………………………………………2分 ∴不等式组的解集是1<x <3. ……………………………………………………2分在数轴上表示 ………………………………………………………………………2分【涉及知识点】一元一次不等式组【点评】解一元一次不等式的易错点是当除以负数时,学生忘了改变不等号.平时在教学时,多注意这一点.【推荐指数】★★★ 19.(2010浙江台州,19,8分)施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米.(1)求坡角∠D 的度数(结果精确到1°);(2)若这段斜坡用厚度为17c m 的长方体台阶来铺,需要铺几级台阶?【分析】(1)先利用余弦,求出∠ABC 的度数,再利用平行线间内错角相等,即可求出∠D .(2)利用正弦求出EF 的长度,即可求出台阶的级数.【答案】(1) cos ∠D =cos ∠ABC =BC AB =25.44≈0.94, ……………………………… 3分∴∠D ≈20°. ………………………………………………………………………1分 (2)EF =DE sin ∠D =85sin20°≈85×0.34=28.9(米) , ……………………………3分(第19题)共需台阶28.9×100÷17=170级. ………………………………………………1分 【涉及知识点】平行线,解直角三角形【点评】解直角三角形是每年中考的必考知识点之一,主要考查直角三角形的边角关系及其应用,难度一般不会很大,本题是基本概念的综合题,主要考查考生应用知识解决问题的能力.【推荐指数】★★★★★ 20.(2010浙江台州,20,8分)A ,B 两城相距600千米,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (千米)与行驶时间 x (小时)之间的函数图象.(1)求甲车行驶过程中y 与x 之间的函数解析式,并写出自变量x 的取值范围; (2)当它们行驶7了小时时,两车相遇,求乙车速度.【分析】(1)由题意可得,折线OCD 是甲车行驶状况,线段OE 是乙车的行驶状况.易求解析式.(1)两车相遇点就是F 点,把x =7代入105075+-=x y ,就可求出相遇时的路程,即可求出乙车的速度. 【答案】(1)①当0≤x ≤6时, ………………………………………………………1分x y 100=; ………………………………………………………………………………2分②当6<x ≤14时, ……………………………………………………………………1分设b kx y +=,∵图象过(6,600),(14,0)两点, ∴⎩⎨⎧=+=+.014,6006b k b k 解得⎩⎨⎧=-=.1050,75b k∴105075+-=x y .∴⎩⎨⎧≤<+-≤≤=).146(105075)60(100x x x x y (2)分(2)当7=x 时,5251050775=+⨯-=y , ……………………………………1分757525==乙v (千米/小时). ………………………………………………………1分 【涉及知识点】一次函数【点评】本题涉及到分段函数求解析式,及考察了图象中两函数交点的实际意义. 【推荐指数】★★★★21.(2010浙江台州,21,10分)果农老张进行杨梅科学管理试验.把一片杨梅林分成甲、乙两部分,甲地块用新技术管理,乙地块用老方法管理,管理成本相同.在甲、乙两地块上各随机选取20棵杨梅树,根据每棵树产量把杨梅树划分成A ,B ,C ,D ,E 五个等级(甲、乙的等级划分标准相同,每组数据包括左端点不包括右端点).画出统计图如下:(1)补齐直方图,求a 的值及相应扇形的圆心角度数;(2)选择合适的统计量,比较甲乙两地块的产量水平,并说明试验结果; (3)若在甲地块随机抽查1棵杨梅树,求该杨梅树产量等级是B 的概率.【分析】两张统计图是孤立的,第一张直方图是甲地块统计图,第二张扇形图是乙地块的统计图,分清两张统计图,就简单了.【答案】(1)画直方图 …………………………………………………………………2分 a =10, 相应扇形的圆心角为:360°×10%=36°. ………………………………2分 (2)5.8020155365575685595=⨯+⨯+⨯+⨯+⨯=甲x ,7520255465975285395=⨯+⨯+⨯+⨯+⨯=乙x , …………………………………2分甲x >乙x ,由样本估计总体的思想,说明通过新技术管理甲地块杨梅产量高于乙地块杨梅产量. ……………………………………………………………………………1分 (若没说明“由样本估计总体”不扣分) (3)P =3.0206=. ………………………………………………………………………3分【涉及知识点】数据分析【点评】本题较全面的考察了学生对数据分析中的概念掌握情况,也对学生的阅图能力进行了考验.【推荐指数】★★★★ 22.(2010浙江台州,22,12分)类比学习:一动点沿着数轴向右平移3个单位,再向左平(第21题)移2个单位,相当于向右平移1个单位.用实数加法表示为 3+(2-)=1.若坐标平面上的点作如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移a 个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移b 个单位),则把有序数对{a ,b }叫做这一平移的“平移量”;“平移量”{a ,b }与“平移量”{c ,d }的加法运算法则为}{}{}{d b c a d c b a ++=+,,,. 解决问题:(1)计算:{3,1}+{1,2};{1,2}+{3,1}.(2)①动点P 从坐标原点O 出发,先按照“平移量”{3,1}平移到A ,再按照“平移量”{1,2}平移到B ;若先把动点P 按照“平移量”{1,2}平移到C ,再按照“平移量” {3,1}平移,最后的位置还是点B 吗? 在图1中画出四边形OABC . ②证明四边形OABC 是平行四边形.(3)如图2,一艘船从码头O 出发,先航行到湖心岛码头P (2,3),再从码头P 航行到码头Q (5,5),最后回到出发点O . 请用“平移量”加法算式表示它的航行过程.【分析】要解这一题,必须深度理解“平移量”的表达形式,及平移量表达的真正意义,及运算规则.【答案】(1){3,1}+{1,2}={4,3}. ……………………………………………2分 {1,2}+{3,1}={4,3}. …………………………………………………………………2分(2)①画图 …………………………………………………2分最后的位置仍是B .……………………………………1分 ② 证明:由①知,A (3,1),B(4,3),C (1,2) ∴OC=AB =2221+=5,OA=BC =2213+=10, ∴四边形OABC 是平行四边形.…………………………3分(3){2,3}+{3,2}+{-5,-5}={0, 0}.……………………2分【涉及知识点】阅读理解 平行四边形【点评】本题是阅读理解题,解决本题的关键是读懂题意,理清题目中平移量的实际意义和运算规则,然后套用题目提供的对应关系解决问题.【推荐指数】★★★★ 23.(2010浙江台州,23,12分)如图1,Rt △ABC ≌Rt △EDF ,∠ACB =∠F =90°,∠A =∠E =30°.△EDF 绕着边AB 的中点D 旋转, DE ,DF 分别交线段..AC 于点M ,K .(第22图1(1)观察: ①如图2、图3,当∠CDF =0° 或60°时,AM +CK _______MK (填“>”,“<”或“=”).②如图4,当∠CDF =30° 时,AM +CK ___MK (只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF <60°时,AM +CK _______MK ,证明你所得到的结论. (3)如果222AM CK MK =+,请直接写出∠CDF 的度数和AMMK 的值.【分析】(1)①要解出当∠CDF =0° 或60°时,AM +CK _______MK 的关系,只要得到M 是AC 中点即可.②只要得出△ADM 、△DKC 、△MDK 都是等腰三角形即可. (2)作C 点关于DF 的对称点,连接GK 、GM ,易证△ADM ≌△GDM ,可得AM=GM ,在△GMK 中,由两边之和大于第三边,可得GM +GK >MK ,即AM +CK >MK . (3)由222AM CK MK =+,可得222MG GK MK =+,所以∠GKM=90°,易得∠GKC=90°,因为DF 是对称轴,则∠FKC=∠FKG=45°,易证∠KCD=30°,由三角形外角等于两个不相邻的内角和,可得∠CDF =15°,因为∠MGK =∠DAM +∠DKC =60°,所以23=AMMK .【答案】(1)① = ……………………………………………………………………2分 ② > …………………………………………………………………………………2分 (2)>………………………………………………………………………………………2分 证明:作点C 关于FD 的对称点G ,连接GK ,GM ,GD , 则CD =GD ,GK = CK ,∠GDK =∠CDK ,∵D 是AB 的中点,∴AD =CD =GD .∵=∠A 30°,∴∠CDA =120°,∵∠EDF =60°,∴∠GDM +∠GDK =60°,∠ADM +∠CDK =60°.∴∠ADM =∠GDM ,………………………………………………………………………3分 ∵DM =DM ,∴△ADM ≌△GDM ,∴GM =AM .∵GM +GK >MK ,∴AM +CK >MK .……………………………………………………1分图1图2图3(第23题)EEE图4A(3)∠CDF =15°,23=AMMK .…………………………………………………………2分【涉及知识点】轴对称 勾股定理 解直角三角形 等腰三角形 全等三角形【点评】本题是一个动态图形中的线段大小比较的问题,线段大小比较的问题,关键是把三条边转化到同一三角形中,以三角形的两边之和大于第三边来比较,本题题型新颖是个不可多得的好题,有利于培养学生的思维能力,但难度较大,具有明显的区分度.【推荐指数】★★★★ 24.(2010浙江台州,24,14分)如图,Rt △ABC 中,∠C =90°,BC =6,AC =8.点P ,Q 都是斜边AB 上的动点,点P 从B 向A 运动(不与点B 重合),点Q 从A 向B 运动,BP=AQ .点D ,E 分别是点A ,B 以Q ,P 为对称中心的对称点, HQ ⊥AB 于Q ,交AC 于点H .当点E 到达顶点A 时,P ,Q 同时停止运动.设BP 的长为x(1)求证:△DHQ ∽△ABC ;(2)求y 关于x 的函数解析式并求y 的最大值; (3)当x 为何值时,△HDE 为等腰三角形?【分析】(1)A 、D 关于点Q 成中心对称,HQ ⊥AB ,易得HD =HA ,得A HDQ ∠=∠,所以△DHQ ∽△ABC .(2)由题意可得BP=PE=DQ=AQ ,43==ACBC AQQH ,BC =6,AC =8,由勾股定理AB=10.求y 关于x 的函数解析式要分两种情况讨论,①当5.20≤<x 时,ED =x 410-,QH =x 43,即可求出面积. ②当55.2≤<x 时,ED =104-x ,QH =x 43,即可求出面积.再根据二次函数最大值的求法即可求出最大值.(3)△HDE 为等腰三角形,要先从E 点的位置考虑,再从以下三方面考虑,DE =DH ,ED =EH ,HD =HE ,即可解出答案.【答案】(1)∵A 、D 关于点Q 成中心对称,HQ ⊥AB , ∴C HQD ∠=∠=90°,HD =HA , ∴A HDQ ∠=∠,…………………………………………………………………………3分 ∴△DHQ ∽△ABC . ……………………………………………………………………1分(图1)C(图2)(第24题)H(2)①如图1,当5.20≤<x 时,ED =x 410-,QH =x A AQ 43tan =∠, 此时x x x x y 4152343)410(212+-=⨯-=. …………………………………………3分当45=x 时,最大值3275=y .②如图2,当55.2≤<x 时,ED =104-x ,QH =x A AQ 43tan =∠, 此时x x x x y 4152343)104(212-=⨯-=. …………………………………………2分当5=x 时,最大值475=y .∴y 与x 之间的函数解析式为⎪⎩⎪⎨⎧≤<-≤<+-=).55.2(41523),5.20(4152322x x x x x x yy 的最大值是475.……………………………………………………………………1分 (3)①如图1,当5.20≤<x 时,若DE =DH ,∵DH =AH =x A QA 45cos =∠, DE =x 410-,∴x 410-=x 45,2140=x . 显然ED =EH ,HD =HE 不可能; ……………………………………………………1分②如图2,当55.2≤<x 时, 若DE =DH ,104-x =x 45,1140=x ; …………………………………………1分 若HD =HE ,此时点D ,E 分别与点B ,A 重合,5=x ; ………………………1分若ED =EH ,则△EDH ∽△HDA ,∴AD DH DH ED =,x x x x 24545104=-,103320=x . ……………………………………1分 ∴当x 的值为103320,5,1140,2140时,△HDE 是等腰三角形.(其他解法相应给分) 【涉及知识点】相似三角形,二次函数,等腰三角形,中心对称.【点评】本题是一个动态图形中的问题,也是一个典型的分类讨论的问题,关键是能否考虑全面,如果考虑不全面就解不完整,本题个不可多得的一个分类讨论和动态结合的题,有利于培养学生的思维能力,但难度较大,具有明显的区分度.【推荐指数】★★★★★。
2010年山东省菏泽市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2010•菏泽)2010年元月19日,山东省气象局预报我市元月20日的最高气温是4℃,最低气温是﹣6℃,那么我市元月20日的最大温差是()A.10℃ B.6℃C.4℃D.2℃【考点】M114 有理数【难度】容易题【分析】用最高气温减去最低气温,根据有理数的减法法则减去一个数等于加上这个数的相反数计算即4﹣(﹣6)=4+6=10℃.故选A.【解答】A.【点评】本题是与生活实际相联系,列式后利用有理数的减法运算法则计算求解是关键.2.(3分)(2010•菏泽)负实数a的倒数是()A.﹣a B.C.﹣D.a【考点】M112 倒数【难度】容易题【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数可知,负实数a的倒数是.故选B.【解答】B.【点评】本题主要考查了倒数的定义,注意:若两个数的乘积是1,我们就称这两个数互为倒数3.(3分)(2010•菏泽)下列运算正确的是()A.(a+b)(b﹣a)=a2﹣b2B.(a﹣2)2=a2﹣4 C.a3+a3=2a6 D.(﹣3a2)2=9a4【考点】M11H 整式M11N 因式分解M11Q 指数幂M11R 乘方【难度】容易题【分析】根据平方差、完全平方公式,合并同类项,积的乘方等知识进行计算即:A、应为(a+b)(b﹣a)=b2﹣a2,故本选项错误;B、应为(a﹣2)2=a2﹣4a+4,故本选项错误;C、应为a3+a3=(1+1)a3=2a3,故本选项错误;D、(﹣3a2)2=(﹣3)2a2×2=9a4,正确.故选D.【解答】D.【点评】本题考查平方差公式,完全平方公式,合并同类项法则,积的乘方的性质,熟练掌握运算法则和公式是解题的关键.4.(3分)(2010•菏泽)如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.【考点】M413 视图与投影【难度】容易题【分析】由俯视图易得此组合几何体有3层,三列,2行.则从左面看可得到2列正方形从左往右的个数依次为2,3,故选D.【解答】D.【点评】本题考查了三视图的知识,注意:左视图是从物体的左面看得到的视图.5.(3分)(2010•菏泽)如图,直线PQ∥MN,C是MN上一点,CE交PQ于A,CF交PQ于B,且∠ECF=90°,如果∠FBQ=50°,则∠ECM的度数为()A.60°B.50°C.40°D.30°【考点】M31B 平行线的判定及性质【难度】容易题【分析】先根据两直线平行,同位角相等求出∠BCN=∠FBQ=50°,又∠ECF=90°,∴∠ECM=180°﹣90°﹣50°=40°.故选C.【解答】C.【点评】本题是基础题,主要利用平行线的性质和平角的定义解答,注意:两直线平行同位角、内错角相等,同旁内角互补.6.(3分)(2010•菏泽)如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,记与点A重合的点为A′,则△A′BG的面积与该矩形面积的比为()A.B.C.D.【考点】M32F 相似三角形性质与判定M411 图形的折叠M32A 勾股定理【难度】容易题【分析】根据已知条件,易求BD=5.根据折叠的性质得DA′=AD=3,得A′B=2.又∠BA′G=∠A=90°,∠A′BG=∠ABD,则△ABD∽△A′BG,根据相似三角形的面积比等于相似比的平方得S△A′BG:S△ABD==,又∵S△ABD:S矩形ABCD=1:2,∴S△A′BG:S矩形ABCD=1:8.故选:C.【解答】C.【点评】此题考查了图形的折叠变换,同时考查了相似三角形的判定和性质,综合性较强.关键在于知道:相似三角形的面积比等于相似比的平方7.(3分)(2010•菏泽)如图所示,在正方形铁皮中,剪下一个圆和一个扇形,使余料尽量少.用圆做圆锥的底面,用扇形做圆锥的侧面,正好围成一个圆锥,若圆的半径为r,扇形的半径为R,那么()A.R=2r B.R=r C.R=3r D.R=4r【考点】M351 弧长公式M353 圆锥的概念、性质、计算M352 扇形及其面积公式【难度】容易题【分析】根据扇形的弧长等于圆的周长,∴扇形弧长等于小圆的周长,即:=2πr,解得R=4r,故选D.【解答】D.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.8.(3分)(2010•菏泽)如图,菱形ABCD中,∠B=60°,AB=2cm,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为()A.2cm B.3cm C.4cm D.3cm【考点】M317 角平分线的性质与判定M32A 勾股定理M32K 三角形中线、高线M334 菱形的性质与判定M326 等腰三角形性质与判定M327 等边三角形性质与判定M329 全等三角形性质与判定【难度】中等题【分析】首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD 为等边三角形.根据等腰三角形三线合一的定理又可推出△AEF是等边三角形.根据勾股定理可求出AE的长继而求出周长.具体为:解:∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE和△ADF中,∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF.连接AC,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD(等腰三角形底边上的中线与底边上的高线重合),∴∠BAE=∠DAF=30°,∴∠EAF=60°,∴△AEF是等边三角形.∴AE=cm,∴周长是3cm.故选B.【解答】B.【点评】此题考查的知识点:菱形的性质、等边三角形的判定,三角形中位线定理,全等三角形性质与判定.综合性稍强,注意:有一角为60°的等腰三角形即为等边三角形。
2010年广东省中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)1.(4分)﹣3的相反数是()A.3 B.C.﹣3 D.﹣考点:难易度M111 相反数容易题分析:根据相反数的概念解答即可.即:∵互为相反数相加等于0,∴﹣3的相反数是3.故选:A.解答: A点评:此题主要考查了相反数的意义,属于中考的一个高频考点,要注意一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)下列运算正确的是()A.2a+3b=5ab B.2(2a﹣b)=4a﹣b C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b2考点:容易题:M11K 整式运算容易题分析:A、利用合并同类项的法则即可判定∵2a,3b不是同类项,∴2a+3b≠5ab,故选项错误;B、利用去括号的法则可得2(2a﹣b)=4a﹣2b,故选项错误;C、利用平方差公式可得(a+b)(a﹣b)=a2﹣b2,正确;D、利用完全平方公式可得(a+b)2=a2+b2+2ab,故选项错误.故选C.解答: C点评:此题较容易,属于送分题,主要考查了整式的运算法则,其中对于平方差公式和完全平方公式的公式结构一定要熟练.3.(4分)如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70°B.100°C.110°D.120°考点:M31B 平行线的判定及性质M31A 相交线(对顶角、邻补角、同位角、同旁内角、内错角、).难易度:容易题.分析:此题解法不唯一,可以先求出∠1的邻补角,再根据两直线平行,同位角相等即可求出.亦可以先求出∠1的对顶角,再根据两直线平行,同旁内角相等即可求出,具体解法如下:解:如图,∵∠1=70°,∴∠2=∠1=70°,∵CD∥BE,∴∠B=180°﹣∠1=180°﹣70°=110°.故选:C.解答: C点评:本题解法不唯一,主要考查平行线的判定及性质,属于中考高频考点,需要熟练掌握.4.(4分)某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为()A.6,6 B.7,6 C.7,8 D.6,8考点:难易度:M214 中位数、众数容易题分析:首先把所给数据按从小到大的顺序重新排序,然后利用中位数和众数的定义就可以求出结果.具体如下:把已知数据按从小到大的顺序排序后为5元,6元,6元,7元,8元,9元,10元,∴中位数为7∵6这个数据出现次数最多,∴众数为6.故选B.解答: B点评:本题结合众数与中位数考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为中位数.如果是偶数个则找中间两位数的平均数.众数只要找次数最多的即可.5.(4分)如图为主视图方向的几何体,它的俯视图是()A .B .C .D .考点: 难易度 M414 视图与投影 容易题分析: 找到从上面看所得到的图形即可.从上面看可得到三个左右相邻的长方形,故选D 解答: D .点评:本题考查了三视图的知识,属于中考常考知识,注意俯视图是从物体的上面看得到的视图是解题的关键.6.(4分)如图,把等腰直角△ABC 沿BD 折叠,使点A 落在边BC 上的点E 处.下面结论错误的是( )A .AB=BEB .AD=DC C .AD=DED .AD=EC 考点: 难易度: M411 图形的折叠、镶嵌 容易题 分析: 根据折叠性质,有AB=BE ,AD=DE ,∠A=∠DEC=90°.∴A 、C 正确; 又∠C=45°,∴△CDE 是等腰直角三角形,EC=DE ,CD >DE . ∴D 正确,B 错误. 故选B . 解答:B 点评: 本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应边、角相等.7.(4分)已知方程x 2﹣5x+4=0的两根分别为⊙O 1与⊙O 2的半径,且O 1O 2=3,那么两圆的位置关系是( )A .相交B .外切C .内切D .相离 考点: 难易度: M34C 圆与圆的位置关系 M127 解一元二次方程 容易题. 分析: 解答此题,先要求一元二次方程的两根,然后根据圆与圆的位置关系判断条件,确定位置关系.具体解法如下:解:解方程x2﹣5x+4=0得x1=1,x2=4,∵O1O2=3,x2﹣x1=3,∴O1O2=x2﹣x1∴⊙O1与⊙O2内切.故选C.解答: C点评:此题综合考查一元二次方程的解法及两圆的位置关系的判断方法.属于中考常考题,注意:外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).8.(4分)已知一次函数y=kx﹣1的图象与反比例函数的图象的一个交点坐标为(2,1),那么另一个交点的坐标是()A.(﹣2,1)B.(﹣1,﹣2) C.(2,﹣1)D.(﹣1,2)考点:M154 反比例函数的应用M144 一次函数的应用难易度:较难题分析:把交点坐标代入一次函数可求得一次函数的解析式,让一次函数解析式与反比例函数解析式组成方程组即可求得另一交点的坐标.具体解法如下:解:∵(2,1)在一次函数解析式上,∴1=2k﹣1,解得k=1,y=x﹣1,与反比例函数联立得:;解得x=2,y=1;或x=﹣1,y=﹣2.故选:B.解答: B点评:本题考查了反比例函数与一次函数交点的问题,解法不唯一,点在函数图象上,那么点适合函数图象,注意也可根据反比例函数上的点的横纵坐标的积为2可很快得到答案.二、填空题(共5小题,每小题4分,满分20分)9.(4分)据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8 000 000人次.试用科学记数法表示8 000 000=.考点:M11C 科学记数法.难易度:容易题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.则此题用科学记数法表示为:8 000 000=8×106解答:8×106点评:此题考查科学记数法的表示方法.属于中考热点,注意科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(4分)分式方程的解x=.考点:M12B 解可化为一元一次方程的分式方程.难易度:容易题.分析:本题的最简公分母是x+1,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.具体解法如下:解:方程两边都乘x+1,得2x=x+1,解得x=1.检验:当x=1时,x+1≠0.∴x=1是原方程的解.解答: 1点评:本题不难,主要考查了解可化为一元一次方程的分式方程,解此类题型的一般步骤如下:(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.11.(4分)如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=,则AC=.考点:难易度:M32E 解直角三角形容易题分析:对于此题,在直角三角形中,根据角的正弦值与三角形边的关系,可求出AC.具体解法如下:解:∵在Rt△ABC中,cosB=,∴sinB=,tanB==.∵在Rt△ABD中AD=4,∴AB=.在Rt△ABC中,∵tanB=,∴AC=×=5.解答: 5点评:本题考查了解直角三角形,属于中考常考知识点,注意边角之间的函tanB=,是解决此题的根本所在.数关系tanB=、12.(4分)某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两年内,商品房每平方米平均价格的年增长率都为x,试列出关于x的方程:.考点:M12A 一元二次方程的应用M127 解一元二次方程.难易度:中等题分析:由于设2007年后的两年内,商品房每平方米平均价格的年增长率都为x,那么2008年商品房每平方米平均价格为4000(1+x),2009年商品房每平方米平均价格为4000(1+x)(1+x),再根据2009年商品房每平方米平均价格为5760元即可列出方程.具体解法如下:解:设2007年后的两年内,商品房每平方米平均价格的年增长率都为x,依题意得4000(1+x)(1+x)=5760,即4000(1+x)2=5760.故填空答案:4000(1+x)2=5760.解答:4000(1+x)2=5760点评:此类题为中考热点题型,主要考查了增长率的问题,注意:一般公式为原来的量(1±x)2=现在的量,x为增长或减少百分率.增加用+,减少用﹣.13.(4分)如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为.考点:M335 正方形的性质与判定M339 四边形的面积M612 规律型题.难易度:较难题.分析:本题需先根据已知条件得出延长n次时面积的公式,再根据求正方形A4B4C4D4正好是要求的第5次的面积,把它代入即可求出答案.具体解法如下:解:最初边长为1,面积1,延长一次为,面积5,再延长为51=5,面积52=25,下一次延长为5,面积53=125,以此类推,当N=4时,正方形A4B4C4D4的面积为:54=625.故答案为:625.解答:625点评:本题属于规律型题,主要考查了正方形的性质与判定,属于中考必考题型,在解题时要根据已知条件找出规律,从而得出正方形的面积.三、解答题(共11小题,满分98分)14.(7分)计算:.考点:难易度: M119 实数的混合运算M32D 特殊角三角函数的值M11E 二次根式的化简容易题.分析:对于本题,在计算时,需要针对每个式子分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:=2﹣2﹣1+1 (4)=0 (6)点评:本题考查实数的实数的综合运算能力,涉及零指数幂、负指数幂、二次根式化简、特殊角的锐角三角函数值等考点,是各地中考题中常见的计算题型.解题时注意各个式子的计算方式,确保正确无误。
2010年安徽省中考试题数 学一.选择题(本大题10小题,每小题4分,满分40分)每一个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号.每一小题:选对得 4 分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2010安徽,1,4分)在-1,0,1,2这四个数中,既不是正数也不是负数的是………………( )A .1-B .0C .1D .2【分析】大于0的数是正数,小于0的数是负数. 【答案】B【涉及知识点】正、负数的概念【点评】本题考查有理数的概念,考查知识点单一,属于基础题. 【推荐指数】★ 2.(2010安徽,2,4分)计算x x ÷3)2(的结果正确的是…………………………( ) A .28x B .26x C .38x D .36x【分析】先将系数相除得2,再将字母及其指数相除得2x 【答案】A【涉及知识点】单项式除法【点评】熟悉单项式除法法则即可解决,属于简单题. 【推荐指数】★3.(2010安徽,3,4分)如图,直线1l ∥2l ,∠1=550,∠2=650,则∠3为…………………………( )A .500.B .550C .600D .650【分析】可将∠3看成三角形的一个内角,利用两直线平行,同位角相等和对顶角相等可求出三角形的其他两个内角,再用三角形内角和即可求出∠3.【答案】C【涉及知识点】平行线的性质,三角形的内角和【点评】本题考查综合运用平行线的性质和三角形的内角和两个知识点,属于简单题. 【推荐指数】★★4.(2010安徽,4,4分)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是…………………………()A.2.89×107. B.2.89×106 .C.2.89×105. D.2.89×104.【分析】289万=2890000【答案】B【涉及知识点】科学记数法【点评】科学记数法是每年中考试卷中的必考问题,把一个数写成a×10n的形式(其中1≤a<10,n为整数,这种计数法称为科学记数法),其方法是(1)确定a,a是只有一位整数的数;(2)确定n;当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).【推荐指数】★5.(2010安徽,5,4分)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是【分析】正方体的三视图都是正方形;球的三视图都是圆;直三棱柱的主视图是矩形,两边长分别是棱长、底面上的高,俯视图是矩形,两边长分别是棱长、底面的边长,左视图是正三角形;圆柱的主视图、俯视图都是矩形且这两个矩形全等;左视图是圆,符合题意.【答案】D【涉及知识点】视图与投影【点评】本题主要考查已知物体画三视图的能力,属于简单题.【推荐指数】★★★★6.(2010安徽,6,4分)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是………………()A.1~2月份利润的增长快于2~3月分利润的增长B.1~4月份利润的极差于1~5月分利润的极差不同C.1~5月份利润的的众数是130万元D.1~5月份利润的的中位数为120万元【分析】1~2月份利润增长10万元,2~3月份利润增长20万元;1~4月份利润的极差与1~5月份利润的极差都是30万元;1~5月份利润的的中位数为115万元【答案】C【涉及知识点】折线统计图、极差、众数、中位数【点评】折线统计图是统计图之一,极差、众数、中位数等都是统计学中的重要概念,准确理解概念的内涵是解决此类问题的“法宝”,属于中档题.【推荐指数】★★★★7.(2010安徽,7,4分)若二次函数52++=bx x y 配方后为k x y +-=2)2(则b 、k 的值分别为………………( )A .0,5B .0,1C .—4,5D .—4,1【分析】可将配方后的式子展开,比较两个解析式的系数,二次项系数都是1,一次项系数相等,常数项相等【答案】D【涉及知识点】配方法、待定系数法【点评】配方法是数学中一种重要思想方法,在二次项系数是1的情况下,一般是配上一次项系数一半的平方,本题将顶点式化简成一般式,再由待定系数法即可写出b 、k 的值,属于中档题.【推荐指数】★★★ 8.(2010安徽,8,4分)如图,⊙O 过点B 、C .圆心O 在等腰直角△ABC 的内部,∠BAC =90°,OA =1,BC =6,则⊙O 的半径为………………( ) A .10 B .32 C .13 D .23【分析】因为等腰直角三角形和圆都是轴对称图形,延长AO 交BC 于D ,连接OB ,则AD=BD=DC=21BC=3,所以OD=A D -OA=2,由勾股定理,得:OB=13 【答案】C【涉及知识点】垂径定理,勾股定理【点评】求圆的半径是圆中常见的计算题,基本方法是构造以半径为斜边,半弦长、弦心距为直角边的直角三角形,利用勾股定理求出,属于中档题.【推荐指数】★★★【典型错误】选D ,将AB 当成圆的半径;选B ,仍将AB 当成圆的半径,但以为:AB=33BC ;选A 的同学还是将AB 当成圆的半径了,用:101322=+。
年河南省中考数学试卷2010参考答案与试题解析分)18分,满分3小题,每小题6一、选择题(共的相反数是(深圳)﹣•2011(分)3(.1 ) 2 .D .C .B2 ﹣.A ﹣相反数.:考点根据相反数的定义:只有符号不同的两个数叫相反数即可求解.分析:解答:.B.故选的相反数是解:根据概念得:﹣”﹣“一个数的相反数就是在这个数前面添上本题考查了相反数的意义,点评:一个一个正数的相反数是负数,号:.不要把相反数的意义与倒数的意义混淆.0的相反数是0负数的相反数是正数,亿元.19367,达到约10.7%年增长2008年全年生产总值比200河南)我省•2010(分)3(.2亿元用科学记19367 )数法表示为(14131211.D .C .B.A 元10×.93671 元10×.93671 元10×.93671 元10×.93671:考点表示较大的数.—科学记数法应用题.:专题n 分析:为整数.确定n,10<|a|≤1的形式,其中10×a科学记数法的表示形式为时,a的值时,要看把原数变成n是正数;当原数的n时,1的绝对值与小数点移动的位数相同.当原数绝对值大于n小数点移动了多少位,是负数.n时,1绝对值小于12 解答:×1.9367元用科学记数法表示为1 936 700 000 000亿元即19 367解:.B元.故选10n 点评:为整数,表示n,10<|a|≤1的形式,其中10×a此题考查科学记数法的表示方法.科学记数法的表示形式为的值.n的值以及a时关键要正确确定,1.85,1.71)分别为:m位同学的立定跳远成绩(单位:6河南)在某次体育测试中,九年级三班•2010(分)3(.3 ).则这组数据的众数和极差分别是(2.31,2.10,1.96,1.85.C0.46 和.112 .B0.21 和.851.A 0.60 和.312 .D0.60 和.851 众数;极差.:考点根据众数、极差的概念求解即可.分析:;1.85次,次数最多,所以众数是2出现 1.85解:数据解答:.1.71=0.60﹣=2.31极差.C故选考查众数、极差的概念.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.极差是最大的点评:数与最小的数的差.分)3(.4;ABC△∽ADE△②;BC=2DE①则下列结论:的中点,AC、AB分别是E、D点中,ABC△如图,河南)•2010().其中正确的有(③ 个0 .D 个1 .C 个2 .B 个3.A 1三角形中位线定理;相似三角形的判定与性质.:考点压轴题.:专题可根据三角形中位线定理得出的等量条件进行判断.的中位线,ABC△是DE则的中点,AC、AB是E、D若分析:的中点,AC、AB是E、D解:∵解答:的中位线;ABC△是DE∴正确)(故①;BC=2DE,BC∥DE∴正确)(故②;ABC△∽ADE△∴正确)(故③;,即∴因此本题的三个结论都正确,故选.A 此题主要考查了三角形中位线定理以及相似三角形的判定和性质.点评:2)的根为(3=0﹣x河南)一元二次方程•2010(分)3(.5=3 x .D .C .B.A 3 ﹣=x,=3x ﹣=x,=x =x2121直接开平方法.-解一元二次方程:考点压轴题.:专题2分析:的平方根.3,把问题转化为求=3x先移项,写成2解答:.C.故选﹣=x,=x,开方得=3x解:移项得21用直接开方法求一元二次方程的解,要仔细观察方程的特点.点评:′A,则点)b,a的坐标为(A,设点A'B'C△得到°180)旋转1,﹣0(C绕点ABC△河南)如图,将•2010(分)3(.6 )的坐标为()2﹣b,﹣a﹣(.AD )b+1,﹣a﹣(. C )1﹣b.﹣a﹣(.B )b,﹣a﹣(.旋转.-坐标与图形变化:考点压轴题.:专题我们已知关于原点对称的点的坐标规律:横坐标和纵坐标都互为相反数;还知道平移规律:上加下减;左分析:坐标后求A对应点′A坐标和A的对应点A 个单位得1向上平移′AA加右减.在此基础上转化求解.把21解.解答:.)b+1,a坐标为(A的对应点A个单位得1向上平移′AA解:把1.)1﹣b,﹣a(﹣A对应点′A关于原点对称,所以A、A因221A∴.)2﹣b,﹣a(﹣′ .D故选此题通过平移把问题转化为学过的知识,从而解决问题,体现了数学的化归思想.点评:分)27分,满分3小题,每小题9二、填空题(共2. 5 =)2(﹣1|+﹣|河南)计算•2010(分)3(.7:考点有理数的乘方;绝对值. 2负数的绝对值是它的相反数,负数的偶次幂是正数.分析:2解答:.=1+4=5)2(﹣1|+﹣|解:此题综合考查了绝对值的性质和乘方的意义.点评:表示在数轴上,其中能被如图所示的墨迹覆盖的数是河南)若将三个数•2010(分)3(.8 .实数与数轴.:考点图表型.:专题分析:,从而可判断前后的整数(即它们分别在那两个整数之间),,首先利用估算的方法分别得到﹣出被覆盖的数.解答:,3﹣1,且墨迹覆盖的范围是4<<3,<﹣3<<2,1<﹣2﹣解:∵能被墨迹覆盖的数是∴.本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.点评:. y=x答案不唯一,如增大而增大的一次函数的解析式:x随y河南)写出一个•2010(分)3(.9一次函数的性质.:考点开放型.:专题即可.0根据一次函数的性质只要使一次项系数大于分析:等,答案不唯一.y=x+2,或y=x解:例如:解答:k (y=kx+b此题比较简单,考查的是一次函数点评:)的性质:0≠ 的增大而增大;x随y时,0>k当的增大而减小.x随y 时,0<k当角的三角板的一条直°45角的三角板的直角边和含°30河南)将一副直角三角板如图放置,使含•2010(分)3(.10 度. 75 的度数为1角边重合,则∠三角形内角和定理;平行线的性质.:考点计算题;压轴题.:专题求解.°180根据三角形三内角之和等于分析:解:如图.解答:∠∵,°4=45,∠°3=60.°4=75﹣∠3﹣∠°5=180∠1=∠∴.°180考查三角形内角之和等于点评:如图,河南)•2010(分)3(.11,°ABO=32若∠的一点,A、C上异于点是D点,C于点O交⊙BO,A于点O切⊙AB 的度数是ADC则∠度. 29 3切线的性质;圆周角定理.:考点压轴题.:专题由圆周角定理即可解答.的度数,AOB再根据三角形内角和定理求出∠的度数,AOC先根据切线的性质求出∠分析:,A于点O切⊙AB解:∵解答:,AB⊥OA∴,°ABO=32∠∵,°=58°32﹣°AOB=90∠∴.°=29°58×AOB=∠ADC=∠∴此题比较简单,解答此题的关键是熟知切线的性质、三角形内角和定理及圆周角定理,有一定的综合性.点评:的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两5,4,3,2河南)现有点数为:•2010(分)3(.12.张牌上的数字之和为偶数的概率为列表法与树状图法.:考点用树状图法列举出所有情况,看所求的情况与总情况的比值即可得答案.分析:解:根据题意,作树状图可得:解答:种情况符合条件;4种情况,有12分析可得,共.故其概率为所求情况数与总情况数之比.=树状图法适用于两步或两部以上完成的事件.用到的知识点为:概率点评:如图是由大小相同的小正方体组成的简单几何体的主视图和左视图那么组成这个几何体的河南)•2010(分)3(.13 . 7 小正方体的个数最多为由三视图判断几何体.:考点列,先看第一层正方体可能的最多个数,再看第二层正方体的可能的最2行,3层,2易得这个几何体共有分析:多个数,相加即可.2行,3解:解答:个正方体,1个正方体,第二层有2=6×3列,最底层最多有个正方体组成.6+1=7那么共有.7故答案为:主视图和左视图确定组合几何体的层数,行数及列数.点评:•2010(分)3(.14 ,则图中E于点BC交A的长为半径的⊙AD,以AD=,AB=1中,ABCD河南)如图矩形.阴影部分的面积为 4扇形面积的计算;矩形的性质.:考点压轴题.:专题的面积.ADE的面积和扇形ABE.则阴影部分的面积等于矩形的面积减去直角三角形AE连接分析:.°DAE=45,则∠°BAE=45,∠BE=1,则AE=AD=根据题意,知.AE解:连接解答:.AE=AD=根据题意,知.BE=1则根据勾股定理,得.°BAE=45根据三角形的内角和定理,得∠.°DAE=45则∠.﹣﹣=则阴影部分的面积此题综合运用了等腰直角三角形的面积、扇形的面积公式.点评:边上一点BC是E边上,点AB在D.点,∠AB=6,°ABC=30°C=90中,∠ABC△Rt河南)如图,•2010(分)3(.15 . 3<AD≤2 的取值范围是AD,则DA=DE,且重合)C、B(不与点度角的直角三角形.30直线与圆的位置关系;含:考点压轴题.:专题AD 相切时,BC当圆与的长为半径画圆,AD为圆心,D以分析:AD时,C或B相交且交点为BC与线段最小,最大,分别求出即可得到范围.的长为半径画圆AD为圆心,D解:以解答:时,BC⊥DE相切时,BC,当圆与1如图① ,°ABC=30∠∵,BDDE=∴,AB=6∵;AD=2∴C或B相交时,若交点为BC,当圆与2如图② ,AB=3AD=,则.3<AD≤2的取值范围是AD∴ 5最小和最大的两种情况是解决本题的关键.AD与圆的位置关系解答,分清BC利用边点评:分)75小题,满分8三、解答题(共2010(分)8(.16的形式,请C÷B﹣A或C÷)B ﹣A.将它们组合成(河南)已知• .x=3你从中任选一种进行计算,先化简,再求值其中分式的化简求值.:考点压轴题;开放型.:专题代入计算即可.x=3的式子代入原式,再根据分式化简的方法进行化简,最后把C、B、A先把表示分析:解答: C=÷)B﹣A(解:选一: =.=;=时,原式x=3当 C=÷B﹣A选二: = =.==时,原式x=3当.此类题目比较简单,解答此题的关键是熟练掌握因式分解及分式的化简方法.点评:C′AB△是平行四边形,ABCD四边形如图,河南)•2010(分)9(.17C′B和AD所在的直线对称,AC关于ABC△和.′BB,连接O相交于点;)请直接写出图中所有的等腰三角形(不添加字母)1(.CDO△≌O′AB△)求证:2( 6等腰三角形的判定;全等三角形的判定;平行四边形的性质.:考点证明题.:专题;C′BB△和AOC△)根据题意,结合图形可知等腰三角形有,′ABB△1(分析:所在AC关于ABC△和C’AB△ABCD,又因为,D∠ABC=,∠AB=DC是平行四边形,所以)因为四边形2(.CDO△≌O’AB△,则可证C′AB∠ABC=,∠=AB′AB的直线对称,故;C′BB△和AOC△,′ABB△)1(解:解答:,D∠ABC=,∠AB=DC中,ABCD▱)在2(′AB由轴对称知,C′AB∠ABC=,∠=AB .D∠O=′AB,∠=CD′AB∴中CDO△和O′AB△在,.)AAS(CDO△≌O′AB△∴此题是一道把等腰三角形的判定、平行四边形的性质和全等三角形的判定结合求解的综合题.考查学生综点评:合运用数学知识的能力.”五一“现象越来越受到社会的关注.”校园手机“河南)•2010(分)9(.18期间,小记者刘凯随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:;)求这次调查的家长人数,并补全图①1(的圆心角的度数;”赞成“中表示家长)求图②2(态度的学生的概率是多少?”无所谓“)从这次接受调查的学生中,随机抽查一个,恰好是3(条形统计图;扇形统计图;概率公式.:考点:专题压轴题;图表型.有”无所谓“,从条形统计图可知,20%占”无所谓“)由扇形统计图可知,家长1(分析:人,即可求出这次调查80 的家长人数;的比,赞成°360)在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与2(人,则圆心角的度数可求;40的有)用学生3(人,除以学生赞成、无所谓、反对总人数即可求得其概率.30”无所谓“如下:,补全图①20%=400÷80)家长人数为1(解:解答: 7;的圆心角的度数为”赞成“)表示家长2(.态度的概率是”无所谓“)学生恰好持3(读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目点评:所求情况数与总情况数之=的数据;扇形统计图直接反映部分占总体的百分比大小.用到的知识点为:概率相应百分比.÷部分数目=比.总体数目,°C=45∠,CD=,BC=12,ABCDAD=5的中点,BC是E,BC∥AD在梯形中,如图,河南)•2010(分)9(.19 .x的长为PB边上一动点,设BC是P点为顶点的四边形为直角梯形;E、D、A、P时,以点8或3 的值为x)当1(E、D、A、P时,以点11或1 的值为x)当2(为顶点的四边形为平行四边形;为顶点的四边形能否构成菱形?试说明理由.E、D、A、P边上运动的过程中,以BC在P)点3(直角梯形;平行四边形的判定;菱形的判定.:考点动点型.:专题分析:AM作D、A分别过如图,)1(,°C=45∠,CD=而,AD=MN,AM=DN容易得到,N 于CB⊥DN,M于BC⊥为顶点的四边形为直角梯E、D、A、P,若点CN、BM,容易求出AD=5,又因为AM=DN由此可以求出°DEB=90或∠°APC=90形,则∠的值;x重合,即可求出此时的N与E重合或M与P,那么为顶点的四边形为平行四边形,那么E、D、A、P)若以点2(的左边,E在P当,有两种情况:①AD=PE 的长度;BP的右边,利用已知条件也可求出E在P 当的长度;②BP利用已知条件可以求出、P)以点3(为顶点E、D、A、P时,以点BP=11)知,当2为顶点的四边形能构成菱形.由(E、D、A 的四边形是平行四边形,根据已知条件分别计算一组邻边证明它们相等即可证明它是菱形.解:解答:,N于CB⊥DN,M于BC⊥AM作D、A)如图,分别过1(是矩形,AMND则四边形,AD=MN=5,AM=DN∴,°C=45,∠CD=而,=4=AM×C=4∠sin•DN=CN=CD∴,MN=3﹣CN﹣BM=CB∴为顶点的四边形为直角梯形,E、D、A、P若点或∠°APC=90则∠,°DEB=90 时,°APC=90当∠重合,M与P∴ 8;BP=BM=3∴重合,N与P时,°DPB=90当∠;BP=BN=8∴x故当为顶点的四边形为直角梯形;E、D、A、P时,以点8或3的值为、P)若以点2(,AD=PE为顶点的四边形为平行四边形,那么E、D、A 的左边,E在P当有两种情况:①是E∵的中点,BC ,BE=6∴;5=1﹣PE=6﹣BP=BE∴的右边,E在P当② ;BP=BE+PE=6+5=11D、A、P时,以点11或1的值为x故当为顶点的四边形为平行四边形;E、,4=2﹣NE=6,CN=DN=4时,此时BP=1当)知,①2)由(3(,故不能构成菱形.AD≠=2=DE=∴A、′P时,以点=11′BP当② 为顶点的四边形是平行四边形E、D、,=AD=5′EP∴于BC⊥DN 作D过,N,°C=45,∠CD=∵,DN=CN=4则′=BP′NP∴.12+4=3﹣=11)CN﹣BC﹣(′BN=BP﹣=5==′DP∴,,′=DP′EP∴是菱形.DAE′P▱故此时、P即以点为顶点的四边形能构成菱形;E、D、A本题是一个开放性试题,利用梯形的性质、直角梯形的性质、平行四边形的性质、菱形的性质等知识来解点评:决问题,要求学生对于这些知识比较熟练,综合性很强.分)9(.20元的资金再购买一批篮球和排球,1600河南)为鼓励学生参加体育锻炼,学校计划拿出不超过•2010(元.80.单价和为2:3已知篮球和排球的单价比为)篮球和排球的单价分别是多少元?1((个,有哪几种购买方案?25个,且购买的篮球数量多于36)若要求购买的篮球和排球的总数量是2一元一次不等式组的应用;一元一次方程的应用.:考点经济问题.:专题分析:,列方程求解;”元80单价和为“元.根据等量关系x元,则排球的单价为x)设篮球的单价为1(个,则购买的排球数量为(n)设购买的篮球数量为2()个.n﹣36 9元的资金购买一批篮球和排球.列不等式组,进1600不超过个;②25买的篮球数量多于根据不等关系:① 行求解.元,x)设篮球的单价为1(解:解答:,2:3篮球和排球的单价比为∵元.x则排球的单价为,x=80x+依题意,得:,x=48解得.x=32∴元.32元,排球的单价为48即篮球的单价为)个.n﹣36个,则购买的排球数量为(n)设购买的篮球数量为2(,∴.28≤n<25解,得.8,9,10的值为n﹣36,对应的28,27,26为整数,所以其取值为n 而所以共有三种购买方案:个;10个,排球26方案一:购买篮球个;9个,排球27方案二:购买篮球个.8个,排球28方案三:购买篮球解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.点评:)两3,a(B,)6,1(A)的图象交于0>x(.21与反比例函数x+by=k河南)如图,直线•2010(分)10(1点.k)求1(的值.k、21的取值范围;x时)直接写出2(和反比例函CE,E于点OD⊥CE3作C轴上,过点x边在OD,OB=CD (,OD∥BC中,OBCD)如图,等腰梯形的大小关系,并说明理由.PE和PC时,请判断12的面积为OBCD,当梯形P数的图象交于点反比例函数综合题;一次函数的性质;反比例函数系数:考点的几何意义.k 综合题;压轴题.:专题再把点代入反比例函数求得反比例函数的解析式,A先把点)1(分析:再的值,a代入反比例函数解析式求得B 的值.k代入一次函数解析式利用待定系数法求得B,A把点1)当2(之间,故可直接写出范围.B,A的范围是在x时,直线在双曲线上方,即y>y21 10列12,利用梯形的面积是OD=m+2,2﹣BC=m,CE=3,)3,m (C,易得)n,m的坐标为(P)设点3(的坐标,根据线段的长度关系可知P的值,从而求得点m方程,可求得.PC=PE 解答: 6=6 ×=1k)由题意知1(解:2)0>x(y=反比例函数的解析式为∴,0>x∵反比例函数的图象只在第一象限,∴的图象上,y=)在3,a(B又∵,a=2∴)3,2(B∴)两点3,2(B,),61(A过x+by=k直线∵1∴∴;6的值为k,3的值为﹣k故213x+9)得出﹣1)由(2(,0>﹣即直线的函数值大于反比例函数值,,2<x<1由图象可知,此时;2<x<1的取值范围为x则.PC=PE时,=12S)当3(OBCD梯形轴,x⊥BF作B,过)n,m的坐标为(P设点B,BO=CD,OD⊥CE,OD∥BC∵,)3,2(OD=OE+ED=OE+OF=m+2 ,2﹣BC=m,CE=3,)3,m(C∴12=,即=S∴OBCD梯形mn=6 ,又m=4∴∴CE PE=,即n= .PC=PE∴此题综合考查了反比例函数与一次函数的性质,此题难度稍大,综合性比较强,注意反比例函数上的点的点评:特点和利用待定系数法求函数解析式的方法.要灵活的利用梯形的面积公式来求得相关的线段的长度,从 11而确定关键点的坐标是解题的关键.)操作发现:1(河南)•2010(分)10(.22 E中,ABCD如图,矩形BG内部.小明将ABCD在矩形G,且点GBE△折叠后得到BE沿ABE△的中点,将AD是,你同意吗?说明理由.GF=DF,认为F于点DC延长交)问题解决:2(的值;,求DC=2DF)中的条件不变,若1保持()类比探求:3(的值.,求DC=nDF)中条件不变,若1保持(;直角三角形全等的判定;勾股定理.翻折变换(折叠问题):考点压轴题.:专题△≌EGF△,证EF)求简单的线段相等,可证线段所在的三角形全等,即连接1(分析:即可;EDF的BG,即可得到AB=BG的长,根据折叠的性质知AB、DC表示出x;进而可用BC=y,DF=x)可设2(中,根据勾股定BFC△Rt的表达式,进而可在BF,由此可求出GF=x,那么GF=DF)证得1表达式,由(的值;的比例关系,即可得到y、x理求出.)2)方法同(3(,EF)同意,连接1(解:解答:则根据翻折不变性得,EGF=∠,EF=EF,EG=AE=ED,°D=90∠,EDF△Rt≌EGF△Rt∴∴;GF=DF AD=y ,GF=x,则有BC=y,DF=x,设GF=DF)知,1)由(2(DC=2DF∵,,DC=AB=BG=2x,CF=x∴;BF=BG+GF=3x∴222222=BF+CFBC 中,BCF△Rt在,xy=2∴)3x(=+xy,即;∴AD=y ,GF=x,则有BC=y,DF=x,设GF=DF)知,1)由(3(DF•DC=n∵, x )n+1(BF=BG+GF=∴222222BC中,BCF△Rt 在y=2x∴]x)n+1(=[]x)1﹣n(+[y,即=BF+CF ,.或∴12此题考查了矩形的性质、图形的折叠变换、全等三角形的判定和性质、勾股定理的应用等重要知识,难度点评:适中.,)0,4(﹣A河南)在平面直角坐标系中,已知抛物线经过•2010(分)11(.23 )三点.0,2(C,)4,﹣0(B )求抛物线的解析式;1(为第三象限内抛物线上一动点,点M)若点2(的函数关系式,m关于S、求S的面积为AMB△,m的横坐标为M 的最大值.S并求出为顶点的O、B、Q、P上的动点,判断有几个位置能够使得点是抛物线上的动点,点x﹣y=是直线QP)若点3(的坐标.Q四边形为平行四边形,直接写出相应的点二次函数综合题.:考点压轴题.:专题2分析:,联立求解即+bx+cy=ax)三个点的坐标代入0,2(C,,)4,﹣0(B,)04(﹣A)由待定系数法将1(可;OD、MD的代数式表示m,即可用含)n,m的坐标为(2M.设点D轴的垂线,设垂足为x作M)过(、梯形AMD△的长,分别求出的面AOB△的面积和减去MDOB、梯形AMD△的面积,那么AOB△、MDOB 的最大值.S的函数关系式,根据函数的性质即可求得m、S的面积,由此可得关于AMB△积即为2,)4﹣+xx,x(P)解决此题需要充分利用平行四边形的性质求解.设3(∥PQ为边时,根据平行四边形的性质知OB,当1如图① 即可求出结论;PQ=OB.由)x,﹣x(Q,则OBP的横坐标互为相反数(若Q、P为对角线时,那么OB,当2如图②,)x的横坐标为﹣Q,则x的横坐标为2B、Q的纵坐标差的绝对值等于O、P.由)x,x(﹣Q即x,求出x﹣4﹣4=﹣+xx纵坐标差的绝对值,得的值即可.)x+4(y=a)设抛物线的解析式为1(解:解答:,)2﹣x(2﹣0()0+4(×4=a)代入得,﹣4,﹣0(B把,a=,解得)2;4﹣+xxy=,即)2﹣x()x+4(y=抛物线的解析式为:∴,)n,m点的坐标为(M,设D轴于点x⊥MD作M)过点2(2AD=m+4则,4﹣+mmn=,n﹣MD=,13S﹣+SS=S∴ABO△AMD△DMBO梯形 = 8 ﹣2m﹣2n﹣=2﹣2m)﹣4﹣+mm(×2﹣=8 2 4m ﹣m﹣=2;)0<m<4(﹣+4)m+2﹣(= .=4S∴最大值2(P)设3(.)4﹣+xx,x ,OB∥PQ为边时,根据平行四边形的性质知OB,当1如图① 的横坐标,P的横坐标等于Q∴,x﹣y=直线的解析式为又∵.)x,﹣x(Q则2(﹣Q不合题意,舍去.由此可得x=0.2±2,﹣4,﹣x=0,解得|=4)4﹣+xx﹣(x﹣|,得PQ=OB 由4 ;)2+2,2﹣2)或(﹣2﹣2,2+2)或(﹣4,,当2如图②横Q,BQ=OP=4为平行四边形则PBQO.四边形OP=4应该重合,P与A为对角线时,知BO .)4,﹣4为(Q得出x﹣y=,代入4坐标为点的坐标有四个,Q故满足题意的.)2+2,2﹣2(﹣,)2﹣2,2+2(﹣,)4﹣,4(,)4,4(﹣分别是此题主要考查了二次函数解析式的确定、图形面积的求法、二次函数最值的应用以及平行四边形的判定和点评:并且要考虑到各种情况才能做到不漏解.需要熟练掌握平行四边形的性质,题,)3(此题的难点在于性质; 1415。
2010年上海市初中毕业统一学业考试数学卷(满分150分,考试时间100分钟)一、选择题(本大题共6题,每题4分,满分24分)1.下列实数中,是无理数的为( C )A . 3.14B . 13C . 3D . 9【解析】无理数即为无限不循环小数,则选C 。
2.在平面直角坐标系中,反比例函数 y = kx( k <0 ) 图像的两支分别在(B )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限【解析】设K=-1,则x=2时,y=12-,点在第四象限;当x=-2时,y= 12,在第二象限,所以图像过第二、四象限,即使选B3.已知一元二次方程 x 2 + x ─ 1 = 0,下列判断正确的是( B )A .该方程有两个相等的实数根B .该方程有两个不相等的实数根C .该方程无实数根D .该方程根的情况不确定【解析】根据二次方程的根的判别式:()()224141150b ac ∆=-=-⨯⨯-=>,所以方程有两个不相等的实数根,所以选B4.某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C ),这组数据的中位数和众数分别是( D )A . 22°C ,26°CB . 22°C ,20°C C . 21°C ,26°CD . 21°C ,20°C 【解析】中位数定义:将所有数学按从小到大顺序排列后,当数字个数为奇数时即中间那个数为中位数,当数字的个数为偶数时即中间那两个数的平均数为中位数。
众数:出现次数最多的数字即为众数 所以选择D 。
5.下列命题中,是真命题的为( D )A .锐角三角形都相似B .直角三角形都相似C .等腰三角形都相似D .等边三角形都相似 【解析】两个相似三角形的要求是对应角相等,A 、B 、C 中的类型三角形都不能保证两个三角形对应角相等,即选D 。
2010年山东省烟台市中考数学试卷一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2010•烟台)﹣8的立方根为()A.2 B.﹣2 C.±2 D.±4【考点】平方根、算术平方根、立方根 M11D【难易度】容易题【分析】根据定义,如果一个数x的立方等于a,那么x是a的立方根,∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.【解答】故选B.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.2.(4分)(2010•烟台)下列四个几何体中,三视图(主视图、左视图、俯视图)相同的几何体是()A.B.C.D.【考点】视图与投影 M413【难易度】容易题【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.A、此长方体的三视图分别为长方形,长方形,正方形,不符合题意;B、圆柱的三视图分别为长方形,长方形,圆,不符合题意;C、圆锥的三视图分别为三角形,三角形,圆及圆心,不符合题意;D、球的三视图都是圆,符合题意;【解答】故选D.【点评】本题考查了几何体的三种视图,掌握定义是关键.3.(4分)(2010•烟台)手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不一定相似的是()A.B.C.D.【考点】相似多边形的性质与判定 M32I【分析】根据相似图形的定义,结合图形,对选项一一分析,排除不符合要求答案.【难易度】容易题A:形状相同,符合相似形的定义,对应角相等,所以三角形相似,故A选项不符合要求;B:形状相同,符合相似形的定义,故B选项不符合要求;C:形状相同,符合相似形的定义,故C选项不符合要求;D:两个矩形,虽然四个角对应相等,但对应边不成比例,故D选项符合要求;【解答】故选:D.【点评】本题考查的是相似形的定义,联系图形,即形状相同,大小不一定相同的图形叫做相似形.全等形是相似形的一个特例.4.(4分)(2010•烟台)据统计,截止5月31日上海世博会累计入园人数为803万.这个数字用科学记数法表示为()A.8×106B.8.03×106C.8.03×107D.803×104【考点】科学记数法 M11C【难易度】容易题【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.803万=8 030000=8.03×106.【解答】故选B.【点评】此题考查科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)(2010•烟台)如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A.80°B.70°C.60°D.50°【考点】线段垂直平分线性质、判定M313等腰三角形性质与判定M327【难易度】容易题【分析】先根据△ABC中,AB=AC,∠A=20°求出∠ABC的度数,再根据线段垂直平分线的性质可求出AE=BE,即∠A=∠ABE=20°即可解答.∵等腰△ABC中,AB=AC,∠A=20°,∴∠ABC==80°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∠A=∠ABE=20°,∴∠CBE=∠ABC﹣∠ABE=80°﹣20°=60°.【解答】故选C.【点评】此题主要考查线段的垂直平分线及等腰三角形的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.6.(4分)(2010•烟台)某射击队要从四名运动员中选拔一名运动员参加比赛,选拔赛中每名队员的平均成绩与方差S2如下表所示,如果要选择一个成绩高且发挥稳定的人参赛,则)甲8A.甲B.乙C.丙D.丁【考点】平均数、方差和标准差M212中位数、众数M214【难易度】容易题【分析】看图识图,先计算平均数、方差,选择平均数大,方差小的人参赛即可.观察图形可知甲、乙方差相等,但都小于丙、丁,∴只要比较甲、乙就可得出正确结果,∵甲的平均数小于乙的平均数,∴乙的成绩高且发挥稳定.【解答】故选:B.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.(4分)(2010•烟台)如图,小区的一角有一块形状为等腰梯形的空地,为了美化小区,社区居委会计划在空地上建一个四边形的水池,使水池的四个顶点恰好在梯形各边的中点上,则水池的形状一定是()A.等腰梯形 B.矩形 C.菱形 D.正方形【考点】菱形的性质与判定M334等腰梯形的性质与判定M337【难易度】容易题【分析】根据梯形的对角线相等,所以连接各边中点的四边形是菱形.如图,连接对角线AC、BD.∵点E为AD的中点,点F为AB的中点,∴EF=BD,同理可得:GH=BD,FG=AC,EH=AC,又等腰梯形的对角线相等,即AC=BD,∴EF=GH=FG=EH,所以连接各边中点的四边形是菱形.【解答】故选C.【点评】本题考查连接四边形各边中点得到的四边形与原四边形对角线的关系:原四边形对角线相等,得到的四边形是菱形;原四边形对角线互相垂直,得到的四边形是矩形;原四边形对角线既相等又垂直,得到的四边形是正方形;原四边形对角线既不相等又不垂直,得到的四边形是平行四边形.需要熟练掌握.8.(4分)(2010•烟台)如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2010个图案是A.B. C.D.【考点】规律探究M612图形的对称、平移、旋转M412【难易度】容易题【分析】本题的关键是要找出4个图案一循环,然后再求2010被4整除后余数是2,从而确定是第2个图形.根据题意可知图案是4个一循环.所以2010÷4=502…2.所以是第2个图案.【解答】故选B.【点评】主要考查了通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.9.(4分)(2010•烟台)如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是()A.AB2=BC•BD B.AB2=AC•BD C.AB•AD=BD•BC D.AB•AD=AD•CD【考点】相似三角形性质与判定M32H【难易度】容易题【分析】根据相似三角形的对应边成比例进行判断,要注意相似三角形的对应边和对应角.∵△ABC∽△DBA,∴;∴AB2=BC•BD,AB•AD=BD•AC;【解答】故选A.【点评】此题主要考查的是相似三角形的性质,正确地判断出相似三角形的对应边和对应角是解答此题的关键.10.(4分)(2010•烟台)如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为()A.x>1 B.x>2 C.x<1 D.x<2【考点】一次函数的图象、性质M142求一次函数的关系式M143一元一次不等式(组)的解及解集M12K【难易度】容易题【分析】求使y1<y2的x的取值范围,即求对于相同的x的取值,直线y1落在直线y2的下方时,对应的x的取值范围.直接观察图象,可得出结果.由图象可知,当x<1时,直线y1落在直线y2的下方,故使y1<y2的x的取值范围是:x<1.【解答】故选C.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.11.(4分)(2010•烟台)如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O 于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=弧AEB,正确结论的个数是()A.2 B.3 C.4 D.5【考点】垂径定理及其推论M347弦、弧、直径、扇形、弓形M342圆心角与圆周角M343【难易度】容易题【分析】已知OE是⊙O的半径,D是弦AB的中点,可根据垂径定理的推论来判断所给出的结论是否正确.∵OE是⊙O的半径,且D是AB的中点,∴OE⊥AB,弧AE=弧BE=弧AEB;(故①⑤正确)∴AE=BE;(故②正确)由于没有足够条件能够证明③④一定成立,所以一定正确的结论是①②⑤;【解答】故选B.【点评】此题主要考查了圆心角、弧、弦的关系及垂径定理的推论;垂径定理的推论:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧.12.(4分)(2010•烟台)如图,AB为半圆的直径,点P为AB上一动点,动点P从点A 出发,沿AB匀速运动到点B,运动时间为t,分别以AP与PB为直径做半圆,则图中阴影部分的面积S与时间t之间的函数图象大致为()A.B.C.D.【考点】结合图像对函数关系进行分析M138圆的弧长和扇形的面积M34B【难易度】容易题【分析】按等量关系“阴影面积=以AB为直径的半圆面积﹣以AP为直径的半圆面积﹣以PB 为直径的半圆面积”列出函数关系式,然后再判断函数图象.设P点运动速度为v(常量),AB=a(常量),则AP=vt,PB=a﹣vt;则阴影面积S===﹣+t由函数关系式可以看出,D的函数图象符合题意.【解答】故选:D.【点评】本题考查的是面积随动点匀速运动时变化的关系,关键是列出函数关系式,再与函数图象对照.二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2010•烟台)在函数y=﹣中,自变量x的取值范围是.【考点】二次根式有意义的条件M11F函数及其相关概念M135【难易度】容易题【分析】根据二次根式的性质被开方数大于等于0,列不等式求解.依题意,得x﹣5≥0,得x≥5.【解答】解得x≥5.【点评】本题考查的知识点为:二次根式的被开方数是非负数.14.(4分)(2010•烟台)在如图所示的矩形纸片上作随机扎针实验,则针头扎在阴影区域的概率为.【考点】概率的意义、应用M223矩形的性质与判定M333【难易度】容易题【分析】先根据矩形的性质求出矩形对角线所分的四个三角形面积相等,再求出S1=S2即可.根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据平行线的性质证S1=S2,故阴影部分的面积占一份,故针头扎在阴影区域的概率为.【解答】故答案为。
12010年山东省济宁市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)±D3226.若,则x﹣y的值为()7.如图,是张老师出门散步时离家的距离y与时间x之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是().B C D8.(课改)由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()9.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()cm C cm10.在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点1000m的C地去,先沿北偏东70°方向到达B 地,然后再沿北偏西20°方向走了500m到达目的地C,此时小霞在营地A的()二、填空题(共5小题,每小题3分,满分15分)11.函数中,自变量x的取值范围是_________.12.若代数式x2﹣6x+b可化为(x﹣a)2﹣1,则b﹣a的值是_________.13.如图,△PQR是△ABC经过某种变换后得到的图形.如果△ABC中任意一点M的坐标为(a,b),那么它的对应点N的坐标为_________.14.某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是_________.15.如图,是一张宽m的矩形台球桌ABCD,一球从点M(点M在长边CD上)出发沿虚线MN射向边BC,然后反弹到边AB上的P点,如果MC=n,∠CMN=α,那么P点与B点的距离为_________.三、解答题(共8小题,满分55分)16.(5分)计算:﹣4sin45°+(3﹣π)0+|﹣4|17.(5分)上海世博会自2010年5月1日到10月31日,历时184天,预测参观人数达7000万人次,如图是此次盛会在5月中旬入园人数的统计情况.18.(6分)观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=_________;(2)证明你猜想的结论;(3)求和:+++…+.19.(6分)如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.20.(7分)如图,正比例函数的图象与反比例函数(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点,且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.(只需在图中作出点B,P,保留痕迹,不必写出理由)21.某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(完成工程的工期为整数)(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量的方案有几种?请你帮助设计出来(工程队分配工程量为正整百数).22.(8分)数学课上,李老师出示了这样一道题目:如图1,正方形ABCD的边长为12,P为边BC延长线上的一点,E为DP的中点,DP的垂直平分线交边DC于M,交边AB的延长线于N.当CP=6时,EM与EN的比值是多少?经过思考,小明展示了一种正确的解题思路:过E作直线平行于BC交DC,AB分别于F,G,如图2,则可得:,因为DE=EP,所以DF=FC.可求出EF和EG的值,进而可求得EM与EN的比值.(1)请按照小明的思路写出求解过程.(2)小东又对此题作了进一步探究,得出了DP=MN的结论,你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.23.(10分)如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B 在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l 与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.2010年山东省济宁市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)=2×=40×=60×=80解:由题意,得:;=12 r==6cm==cm的圆形纸片剪去圆周的一个扇形,×=240=12r===31000=二、填空题(共5小题,每小题3分,满分15分)=.=,故答案为)解:=﹣=﹣==+﹣+﹣++﹣.∴由垂径定理得:)知:,三角形的面积已知,,则由,得;,,,结合平行线分线段成比例定理则可得:,,∴抛物线为;时,AB===,即=,解得CE=,,m+3m m m×(﹣m+(+;,。
2010年中考数学试题分析
一、试卷概况
1、考试形式
考试采用闭卷笔试形式,考试时间120分钟,试卷卷面成绩满分150分。
2、试卷结构
(1)试题类型、分值分布
(2)考试内容分布
(3)试题内容分布与往年比较
二、2010年安徽中考数学试卷特点
2010年安徽省中考数学试卷体现了基础性、应用性、探究性、教育性和发展性,是一份很好的诠释新课程理念的试卷。
试卷在难度控制上易、中、难的比值约为5:4:1;在题目设计上层次分明、坡度递进、略有起伏,对较难的题分步设问使其逐步深入,合理区分了不同层次的考生,具有较高的信度、效度和必要的区分度。
1、立足基础,体现技能
试卷注重对基础知识和基本技能的考查,如第1-7, 11-13、15-18题,整体难度不大。
考查内容包括数与代数和概率与统计的基本概念、基本运算,空间与图形的简单推理,涉及待定系数法、方程思想、解几何问题、应用题等必须掌握的知识。
此外,试题的设计在灵活性、开放性、探究性方面下了功夫,例如第9、14、18(2)、23题对学生解决开放性、探究性问题的能力进行了相应的考察。
2、注重思想,深化能力
数学思想和方法是将数学知识学习转化为能力培养的桥梁。
本份试卷渗透了对数学思想方法的考查,以促进同学们的数学能力的形成。
例如:第10、17、22题考查了函数思想,第14、19、21题考查了方程思想,第14题和第23题考查了学生运用代数方法分析几何问题的能力。
3、加强应用,重视实践
新课程标准要求学生面对实际问题时,能够主动尝试从数学的角度运用所学的知识和方法寻求解决问题的策略和方法。
今年这份试卷较好地体现了这一思想,全卷考查学生数学实际应用的有五道试题(第10、16、19、21、22题),约占总分的1/3。
这些题目涉及2010年国家房改政策、上海世博会等方面,这些取材都源于社会实际,贴近生活,具有时代气息。
而且从试题的设计上考虑到了初中生的可理解性、可接受性、教育性和实用性。
这将有利于引导学生关注生活,关注社会,学会用数学的眼光观察社会,实现生活数学化, 数学生活化。
4、增强阅读,关注发展
阅读理解能力和知识迁移能力是同学们进一步学习和走向社会所需的重要能力。
对这两种能力的考查可更好地体现同学们的数学素养,实现中考的选拔功能。
例如第6题通过图表考查学生捕捉信息的能力以及知识迁移能力,又如第9题借助文字语言的描述考查学生的阅读、理解、分析、解决问题的能力。
三、学生中考中失分点及失分原因
这份试卷对学生来说应该是感觉比较平和,能使学生以平静的心态自然进入考试状态,有利于学生将自己的数学能力正常发挥出来。
这份试卷中有部分试题有一定的区分度,例如第9题:“下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第1位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将个位数字写在第2位,对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的。
当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是…”,需要学生有一定的耐心去阅读、理解并找出解决问题的方法。
又如第10题:“甲、乙两人准备在一段长为1200m的笔直公路上进行跑步,甲、乙跑步的色度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100m处,则两人从起跑至其中一人先到达终点的过程中,甲,乙两人之间的距离y(m)与时间t(s)的函数图象……”学生不容易准确找出两个变量(两人之间的距离和时间)关系,从而找不到解决问题的切入点。
第14题中①②两个结论很容易判断,而③④两个结论得出合理的推理不易。
而第23题中的(1)比较容易得分,而第23(2)、(3)两小题难度较大,学生不易理清思路,找出合理解决问题的途径,以及对答案作出合理分析和取舍。
其次在阅卷过程中学生在答题时还存在以下问题导致出现失分。
1、基本概念不清。
如第15题将花间分时求值与解分式方程相混,还有少数学生出现多余的验根过程,第17题中,不少学生出现点P关于y轴对称的点的坐标为(-1,-a),第18题中,平移与旋转混淆不清,不少同学出现如图1所示的错误。
2、计算能力有待加强。
第22题第②问很多同学能列出函数解析式y=20(950-10x-(5-)(950-10x),但化简出错,还有不少同学得出函数关系式后又将二次项系数化为1,变成,错误运用等式的基本性质;第19题第①问学生能列出方程,但在解的过程中是先展开再求解,从而导致结果错误还损失了考试时间。
3、考生缺乏规范的审题和解题习惯是造成丢分另一重要原因。
如第17题不少同学将点P(1,)直接代入一次函数解析式中,最终得出反比例函数的解析式为;第18题在解决第2问时,不少同学是将第1问所得图形进行平移,使之与四边形成轴对称。
出现这种错误的原因可能是没读清题意,也可能是习惯认为第2问一定是在第1问基础上解决(平时教学中,两问或两问以上解答题学生经常出现大题设和小题设分不清的现象,不知道第2问能否使用第1问所得结论);第22题第1问未按题目要求写明具体变化情况(减少了10kg),第2问漏写“y随x的变化情况”。
其次,解答题好多同学并未将数学问题的答案转换成实际问题的答案。
四、对数学教学的启示与思考
1、正确处理课标、教材、教辅的关系。
以往对课程标准、教科书重视不够,教科书代替了课标,教辅代替了教科书。
事实上教科书就是最好的教学参考书,课本上的例题习题都是专家经过反复研究讨论、多次实践实验设计出来的,千万不可忽视。
2、理清知识发生的本源,构建起初中数学的基础知识网络,要毫不吝啬的剔除某些复习资料中的偏题、难题和怪题,多以课本的习题为素材,深入浅出、举一反三地加以推敲、延伸和适当变形,形成典型例题,基础知识要融会贯通;另一方面,必须讲练结合,借助于单元练习和测试来进一步夯实基础.
3、强化反思总结,注重错题分析,建立备忘录。
①养成在一个知识板块复习结束后,问自己:在解题过程中用了哪些基础知识和基本方法?解该题时哪些步骤容易出错?该问题的难点何在?我是如何突破的等等的习惯。
②养成及时发现问题与弱点,及时总结和反思,建立备忘录,随时记录,随时整理,随时翻阅的习惯。
4、强化训练,提高运算能力、画图能力和表述能力。
平时的训练要高标准、严要求、定时定量,要有意识的训练解题速度,规范解题过程,哪些步骤必须有,哪些步骤可有可无,应心知肚明。
只有这样才能做到答题规范、表述准确、推理合理,才能提高审题能力、分析能力、计算能力和画图能力,尽量减少由于这方面原因造成的失分。