数学一轮函数的奇偶性与周期性
- 格式:doc
- 大小:64.50 KB
- 文档页数:5
第二章基本初等函数、导数及其应用函数的奇偶性及周期性教材回顾▼夯实基础课本温故追根求源和课梳理1.函数的奇偶性2. 周期性(1)周期函数:对于函数j=/(x),如果存在一个非零常数T,那么就称函数y=/a )为周期函数,称F 为这个函数的周期.(2)最小正周期:如果在周期函数/(兀)的所有周期中存在一个正周期.要点整會尸1. 辨明三个易误点 (1)应用函数的周期性时,应保证自变量在给定的区间内.使得当兀取定义域内的任何值时,都有 f(x+T)=f(x)的正数,那么这个最小 正数就叫做沧)的最小(2)判断函数的奇偶性,易忽视函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. (3)判断函数/(兀)是奇函数,必须对定义域内的每一个x,均有/(一兀)=一/(兀),而不能说存在丸使/(一兀0)=—/(兀0),对于偶函数的判断以此类推.2.活用周期性三个常用结论对/(*)定义域内任一自变量的值(1)®f(x+a)= —f(x)9则T=2a;i⑵若Z(x+a)=y (乂),则T=2a; (1)(3)若f(x-\-a)=—屮(比)“,则T= 2a.3.奇、偶函数的三个性质(1)在奇、偶函数的定义中,f(-x)=-f(x)^ 定义域上的恒等式.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也成立.利用这一性质可简化一些函数图象的画法.(3)设心),g(x)的定义域分别是Di,6,那么在它们的公共定义域上:奇+奇=奇,奇><奇=偶,偶+偶=偶,偶X偶 =偶,奇乂偶=奇.(2015•高考福建卷)下列函数为奇函数的是(D B. y=e D. j=e x -e"x 双基自测 C ・ j=cosx1.2.已知/(x)=«x 2+Z»x 是定义在[«-1,加]上的偶函数,那 么"+方的值是(B )解析:因为f(x)=ax 2-\-bx 是定义在[«-1,加]上的偶函数, 所以a~l+2a=0,所以 a =-. 3X/(—x)=/(x),所以方=0,所以a+b=£ 3 A.D. 3 23.(2016•河北省五校联盟质量监测)设/(兀)是定义在R上的周期为3的函数,当xe[ - 2, 1)时,f(x)=4x2— 2, — 2WxW 0,X, 0<x<l,B. 1A. 0D. -1解析:因为心)是周期为3的周期函数,所以龙)=/(一扌+3)4.(必修1 P39习题1.3B组T3改编)若/(x)是偶函数且在(0,+ 8)上为增函数,则函数心)在(一8, °)上捋函数5.(必修1 P39习题X3A组T6改编)已知函数/(x)是定义在R 上的奇函数,当xMO时,gx) = x(1+x),则xVO时,/(x) = x(l—x)解析:当xVO时,则一x>0,所以/(—x) = (—x)(1—x)・又/(X)为奇函数,所以/(-x) = -/(x) = (-x)(1-x),所以/(X)=x(1—X)・國例1 (2014-高考安徽卷)若函ft/(x)(xe R)是周期为4的典例剖析护考点突破」 考点一函数的周期性名师导悟以例说法奇函数,且在[0 , 2]上的解析式为/(x)=\x (1—x) , OWxWl, 、sin Ji x, 1<X W2, 5/?)+眉)=—^因为当 1 <xW2 时,/(x)=sin Tix,所以 XS =sinZ r =_2-所以 3因为当 OWxWl 时,/(x)=x(l-x), 所以简兮X 。
§2.3 函数的奇偶性、周期性与对称性考试要求 1.了解函数奇偶性的含义,结合三角函数,了解周期性与对称性及其几何意义. 2.会依据函数的性质进行简单的应用.知识梳理 1.函数的奇偶性奇偶性 定义图象特点 偶函数一般地,设函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I ,且f (-x )=f (x ),那么函数f (x )就叫做偶函数 关于y 轴对称奇函数 一般地,设函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I ,且f (-x )=-f (x ),那么函数f (x )就叫做奇函数关于原点对称2.周期性(1)周期函数:一般地,设函数f (x )的定义域为D ,如果存在一个非零常数T ,使得对每一个x ∈D 都有x +T ∈D ,且f (x +T )=f (x ),那么函数y =f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 常用结论1.奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性. 2.函数周期性常用结论对f (x )定义域内任一自变量的值x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=1f (x ),则T =2a (a >0). 3.函数对称性常用结论(1)f (a -x )=f (a +x )⇔f (-x )=f (2a +x )⇔f (x )=f (2a -x )⇔f (x )的图象关于直线x =a 对称. (2)f (a +x )=f (b -x )⇔f (x )的图象关于直线x =a +b2对称.f (a +x )=-f (b -x )⇔f (x )的图象关于点⎝⎛⎭⎫a +b 2,0对称.(3)f (2a -x )=-f (x )+2b ⇔f (x )的图象关于点(a ,b )对称.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)若函数f (x )为奇函数,则f (0)=0.( × )(2)若f (x )为奇函数,g (x )为偶函数,则y =f (x )g (x )为奇函数.( × ) (3)若T 是函数f (x )的一个周期,则kT (k ∈N *)也是函数的一个周期.( √ ) (4)若函数f (x )满足f (2+x )=f (2-x ),则f (x )的图象关于直线x =2对称.( √ ) 教材改编题1.下列函数中为偶函数的是( ) A .y =x 2sin x B .y =x 2cos x C .y =|ln x | D .y =2-x答案 B解析 根据偶函数的定义知偶函数满足f (-x )=f (x )且定义域关于原点对称,A 选项为奇函数;B 选项为偶函数;C 选项定义域为(0,+∞),不具有奇偶性;D 选项既不是奇函数,也不是偶函数.2.若f (x )是定义在R 上的周期为2的函数,当x ∈[0,2)时,f (x )=2-x ,则f (2 023)=________. 答案 12解析 ∵f (x )的周期为2, ∴f (2 023)=f (1)=2-1=12.3. 设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集为________.答案 (-2,0)∪(2,5]解析 由图象可知,当0<x <2时,f (x )>0; 当2<x ≤5时,f (x )<0, 又f (x )是奇函数, ∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0.综上,f (x )<0的解集为(-2,0)∪(2,5].题型一 函数的奇偶性 命题点1 判断函数的奇偶性 例1 判断下列函数的奇偶性: (1)f (x )=3-x 2+x 2-3;(2)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2+x ,x >0;(3)f (x )=log 2(x +x 2+1).解 (1)由⎩⎪⎨⎪⎧3-x 2≥0,x 2-3≥0,得x 2=3,解得x =±3,即函数f (x )的定义域为{-3,3}, 从而f (x )=3-x 2+x 2-3=0. 因此f (-x )=-f (x )且f (-x )=f (x ), 所以函数f (x )既是奇函数又是偶函数.(2)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称. ∵当x <0时,-x >0, 则f (-x )=-(-x )2-x =-x 2-x =-f (x ); 当x >0时,-x <0,则f (-x )=(-x )2-x =x 2-x =-f (x );综上可知,对于定义域内的任意x ,总有f (-x )=-f (x )成立, ∴函数f (x )为奇函数.(3)显然函数f (x )的定义域为R , f (-x )=log 2[-x +(-x )2+1] =log 2(x 2+1-x ) =log 2(x 2+1+x )-1=-log 2(x 2+1+x )=-f (x ), 故f (x )为奇函数.思维升华 判断函数的奇偶性,其中包括两个必备条件(1)定义域关于原点对称,否则即为非奇非偶函数.(2)判断f (x )与f (-x )是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数))是否成立. 命题点2 函数奇偶性的应用例2 (1)(2022·哈尔滨模拟)函数f (x )=x (e x +e -x )+1在区间[-2,2]上的最大值与最小值分别为M ,N ,则M +N 的值为( ) A .-2 B .0 C .2 D .4 答案 C解析 依题意,令g (x )=x (e x +e -x ), 显然函数g (x )的定义域为R , 则g (-x )=-x (e -x +e x )=-g (x ), 即函数g (x )是奇函数,因此,函数g (x )在区间[-2,2]上的最大值与最小值的和为0,而f (x )=g (x )+1, 则有M =g (x )max +1,N =g (x )min +1, 于是得M +N =g (x )max +1+g (x )min +1=2, 所以M +N 的值为2.(2)(2021·新高考全国Ⅰ)已知函数f (x )=x 3(a ·2x -2-x )是偶函数,则a =________. 答案 1解析 方法一 (定义法)因为f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数,所以f (-x )=f (x )对任意的x ∈R 恒成立,所以(-x )3(a ·2-x -2x )=x 3(a ·2x -2-x )对任意的x ∈R 恒成立,所以x 3(a -1)(2x +2-x )=0对任意的x ∈R 恒成立,所以a =1.方法二 (取特殊值检验法)因为f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数,所以f (-1)=f (1),所以-⎝⎛⎭⎫a 2-2=2a -12,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1. 方法三 (转化法)由题意知f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数.设g (x )=x 3,h (x )=a ·2x -2-x ,因为g (x )=x 3为奇函数,所以h (x )=a ·2x -2-x 为奇函数, 所以h (0)=a ·20-2-0=0,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1. 教师备选1.已知函数f (x )=9-x 2|6-x |-6,则函数f (x )( )A .既是奇函数也是偶函数B .既不是奇函数也不是偶函数C .是奇函数,但不是偶函数D .是偶函数,但不是奇函数 答案 C解析 由9-x 2≥0且|6-x |-6≠0, 解得-3≤x ≤3且x ≠0,可得函数f (x )的定义域为{x |-3≤x ≤3且x ≠0}, 关于原点对称,所以f (x )=9-x 2|6-x |-6=9-x 26-x -6=9-x 2-x ,又f (-x )=9-(-x )2x =-9-x 2-x=-f (x ),所以f (x )是奇函数,但不是偶函数.2.若函数f (x )=⎩⎪⎨⎪⎧g (x ),x <0,2x -3,x >0为奇函数,则f (g (-1))=________.答案 -1解析 ∵f (x )为奇函数且f (-1)=g (-1), ∴f (-1)=-f (1)=-(-1)=1, ∴g (-1)=1, ∴f (g (-1))=f (1)=-1.思维升华 (1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.跟踪训练1 (1)(2021·全国乙卷)设函数f (x )=1-x1+x ,则下列函数中为奇函数的是( )A .f (x -1)-1B .f (x -1)+1C .f (x +1)-1D .f (x +1)+1答案 B解析 f (x )=1-x 1+x =2-(x +1)1+x =21+x -1,为保证函数变换之后为奇函数,需将函数y =f (x )的图象向右平移一个单位长度,再向上平移一个单位长度,得到的图象对应的函数为y =f (x -1)+1.(2)已知函数f (x )是定义在R 上的奇函数,当x ≥0,f (x )=2x -2x +a ,则a =________;当x <0时,f (x )=________. 答案 -1 -2-x -2x +1解析 ∵f (x )是定义在R 上的奇函数, ∴f (0)=0,即1+a =0, ∴a =-1.∴当x ≥0时,f (x )=2x -2x -1, 设x <0,则-x >0,∴f (-x )=2-x -2(-x )-1=2-x +2x -1, 又f (x )为奇函数, ∴f (-x )=-f (x ), ∴-f (x )=2-x +2x -1, ∴f (x )=-2-x -2x +1. 题型二 函数的周期性例3 (1)(2022·重庆质检)已知函数f (x )是定义在R 上的奇函数,对任意的实数x ,f (x -2)=f (x +2),当x ∈(0,2)时,f (x )=x 2,则f ⎝⎛⎭⎫132等于( ) A .-94B .-14C.14D.94答案 A解析 由f (x -2)=f (x +2),知y =f (x )的周期T =4, 又f (x )是定义在R 上的奇函数, ∴f ⎝⎛⎭⎫132=f ⎝⎛⎭⎫8-32 =f ⎝⎛⎭⎫-32=-f ⎝⎛⎭⎫32=-94. (2)函数f (x )满足f (x )f (x +2)=13,且f (1)=2,则f (2 023)=________. 答案132解析 ∵f (x )f (x +2)=13, ∴f (x +2)=13f (x ),∵f (x +4)=13f (x +2)=1313f (x )=f (x ),∴f (x )的周期为4, ∴f (2 023)=f (3)=13f (1)=132.教师备选若函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,f (x -1)-f (x -2),x >0,则f (2 023)=________.答案 -1 解析 当x >0时, f (x )=f (x -1)-f (x -2), ① ∴f (x +1)=f (x )-f (x -1),②①+②得,f (x +1)=-f (x -2), ∴f (x )的周期为6,∴f (2 023)=f (337×6+1)=f (1) =f (0)-f (-1)=20-21=-1.思维升华 (1)求解与函数的周期有关的问题,应根据题目特征及周期定义,求出函数的周期. (2)利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.跟踪训练2(1)(2022·安庆模拟)定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2 023)等于() A.336 B.338C.337 D.339答案 B解析因为f(x+6)=f(x),所以函数的周期T=6,于是f(1)=1,f(2)=2,f(3)=f(-3)=-(-3+2)2=-1,f(4)=f(-2)=-(-2+2)2=0,f(5)=f(-1)=-1,f(6)=f(0)=0,所以f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1,而2 023=6×337+1,所以f(1)+f(2)+f(3)+…+f(2 023)=337×1+1=338.(2)函数f(x)满足f(x+1)=f(x-1),且f(x)为定义在R上的奇函数,则f(2 021)+f(2 022)=________.答案0解析∵f(x+1)=f(x-1),∴f(x)的周期为2,∴f(2 021)+f(2 022)=f(1)+f(0),又f(x)为定义在R上的奇函数,∴f(0)=0,且f(-1)=-f(1),①又f(x)的周期为2,∴f(-1)=f(1),②由①②得f(1)=0,∴f(2 021)+f(2 022)=0.题型三函数的对称性例4(1)(多选)(2022·承德模拟)已知函数f(x)的定义域为R,对任意x都有f(2+x)=f(2-x),且f (-x )=f (x ),则下列结论正确的是( ) A .f (x )的图象关于直线x =2对称 B .f (x )的图象关于点(2,0)对称 C .f (x )的周期为4 D .y =f (x +4)为偶函数 答案 ACD解析 ∵f (2+x )=f (2-x ),则f (x )的图象关于直线x =2对称,故A 正确,B 错误; ∵函数f (x )的图象关于直线x =2对称, 则f (-x )=f (x +4),又f (-x )=f (x ), ∴f (x +4)=f (x ),∴T =4,故C 正确;∵T =4且f (x )为偶函数,故y =f (x +4)为偶函数,故D 正确.(2)已知函数y =f (x )-2为奇函数,g (x )=2x +1x ,且f (x )与g (x )图象的交点分别为(x 1,y 1),(x 2,y 2),…,(x 6,y 6),则y 1+y 2+…+y 6=________. 答案 12解析 ∵函数y =f (x )-2为奇函数, ∴函数y =f (x )的图象关于点(0,2)对称,又g (x )=2x +1x =1x +2,其图象也关于(0,2)对称,∴两函数图象交点关于(0,2)对称, 则y 1+y 2+…+y 6=3×4=12.延伸探究 在本例(2)中,把函数“y =f (x )-2”改为“y =f (x +1)-2”,把“g (x )=2x +1x ”改为“g (x )=2x -1x -1”,其他不变,求x 1+x 2+…+x 6+y 1+y 2+…+y 6的值.解 ∵y =f (x +1)-2为奇函数, ∴函数f (x )的图象关于点(1,2)对称, 又g (x )=2x -1x -1=1x -1+2,∴g (x )的图象也关于点(1,2)对称,则x 1+x 2+…+x 6+y 1+y 2+…+y 6=3×2+3×4=18. 教师备选1.函数f (x )=lg|2x -1|图象的对称轴方程为________. 答案 x =12解析 内层函数t =|2x -1|的对称轴是x =12,所以函数f (x )=lg |2x -1|图象的对称轴方程是x=12. 2.已知函数f (x )=x 3-ax 2+bx +1的图象关于点(0,1)对称,且f ′(1)=4,则a -b =________. 答案 -1解析 因为f (x )关于点(0,1)对称, 所以f (x )+f (-x )=2, 故f (1)+f (-1)=2,即1-a +b +1+(-1)-a -b +1=2, 解得a =0,所以f (x )=x 3+bx +1, 又因为f ′(x )=3x 2+b ,所以f ′(1)=3+b =4,解得b =1, 所以a -b =-1.思维升华 (1)求解与函数的对称性有关的问题时,应根据题目特征和对称性的定义,求出函数的对称轴或对称中心.(2)解决函数对称性有关的问题,一般结合函数图象,利用对称性解决求值或参数问题. 跟踪训练3 (1)函数f (x )的周期为6,且f (x +2)为偶函数,当x ∈[0,2]时,f (x )=2x -1,则 f (2 025)=________. 答案 1解析 ∵f (x )的周期为6,则f (2 025)=f (3), 又f (x +2)为偶函数,∴f (x )的图象关于直线x =2对称, ∴f (3)=f (1)=1,∴f (2 025)=1.(2)(多选)关于函数f (x )=sin x +1sin x 有如下四个命题,其中正确的是( )A .f (x )的图象关于y 轴对称B .f (x )的图象关于原点对称C .f (x )的图象关于直线x =π2对称D .f (x )的图象关于点(π,0)对称 答案 BCD解析 ∵f (x )=sin x +1sin x 的定义域为{x |x ≠k π,k ∈Z },f (-x )=sin(-x )+1sin (-x )=-sin x -1sin x=-f (x ),∴f (x )为奇函数,图象关于原点对称, 故A 错误,B 正确. ∵f ⎝⎛⎭⎫π2-x =cos x +1cos x , f ⎝⎛⎭⎫π2+x =cos x +1cos x , ∴f ⎝⎛⎭⎫π2-x =f ⎝⎛⎭⎫π2+x , ∴f (x )的图象关于直线x =π2对称,故C 正确.又f (x +2π)=sin(x +2π)+1sin (x +2π)=sin x +1sin x ,f (-x )=-sin x -1sin x ,∴f (x +2π)=-f (-x ),∴f (x )的图象关于点(π,0)对称,故D 正确.课时精练1.如果奇函数f (x )在[3,7]上单调递增且最小值为5,那么f (x )在区间[-7,-3]上( ) A .单调递增且最小值为-5B .单调递减且最小值为-5C .单调递增且最大值为-5D .单调递减且最大值为-5 答案 C解析 因为奇函数f (x )在[3,7]上单调递增且最小值为5,而奇函数的图象关于原点对称, 所以f (x )在区间[-7,-3]上单调递增且最大值为-5. 2.(2022·南昌模拟)函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称答案 B解析 f (x )=32x +13x =3x +3-x ,f (-x )=3-x +3x ,∴f (-x )=f (x ),故f (x )为偶函数,其图象关于y 轴对称.3.已知函数f (x )的图象关于原点对称,且周期为4,f (3)=-2,则f (2 021)等于( ) A .2 B .0 C .-2 D .-4 答案 A解析 依题意,函数f (x )的图象关于原点对称,则函数f (x )是奇函数,又f (x )的周期为4,且f (3)=-2,则有f (2 021)=f (-3+506×4)=f (-3)=-f (3)=2,所以f (2 021)=2.4.(2022·宁德模拟)已知f (x )是定义在R 上的奇函数,且对任意的x ∈R 都有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=x 2+ax +b ,则a +b 等于( ) A .0 B .-1 C .-2 D .2 答案 C解析 因为f (x )是定义在R 上的奇函数, 且x ∈[0,2]时,f (x )=x 2+ax +b , 所以f (0)=b =0,f (-x )=-f (x ), 又对任意的x ∈R 都有f (x +2)=-f (x ), 所以f (x +2)=f (-x ),所以函数图象关于直线x =1对称,所以-a=1,解得a=-2,2所以a+b=-2.5.(多选)已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是()A.y=f(|x|) B.y=f(-x)C.y=xf(x) D.y=f(x)+x答案BD解析由奇函数的定义f(-x)=-f(x)验证,A项,f(|-x|)=f(|x|),为偶函数;B项,f[-(-x)]=f(x)=-f(-x),为奇函数;C项,-xf(-x)=-x·[-f(x)]=xf(x),为偶函数;D项,f(-x)+(-x)=-[f(x)+x],为奇函数.可知BD正确.6.(多选)(2022·湖北新高考9+N联盟模拟)已知f(x)为R上的偶函数,且f(x+2)是奇函数,则()A.f(x)的图象关于点(2,0)对称B.f(x)的图象关于直线x=2对称C.f(x)的周期为4D.f(x)的周期为8答案AD解析∵f(x)为偶函数,∴f(x)的图象关于y轴对称,f(-x)=f(x),又∵f(x+2)是奇函数,∴f(-x+2)=-f(x+2),∴f(x-2)+f(x+2)=0,∴f(x+8)=-f(x+4)=f(x),∴函数f(x)的图象关于点(2,0)对称,f(x)为周期函数且周期为8.7.(2022·湘豫名校联考)已知f(x)=ax2+bx+1是定义在[a-1,2a]上的偶函数,则a+b=________.答案 13解析 因为f (x )=ax 2+bx +1是定义在[a -1,2a ]上的偶函数, 则有(a -1)+2a =3a -1=0,则a =13,同时f (-x )=f (x ),即ax 2+bx +1=a (-x )2+b (-x )+1, 则有bx =0,必有b =0. 则a +b =13.8.已知函数f (x )满足对∀x ∈R ,有f (1-x )=f (1+x ),f (x +2)=-f (x ),当x ∈(0,1)时,f (x )=x 2+mx ,若f ⎝⎛⎭⎫352=12,则m =______. 答案 12解析 由f (1-x )=f (1+x ), f (x +2)=-f (x ),知f (x )的图象关于直线x =1对称,f (x )的周期为4, ∴f ⎝⎛⎭⎫352=f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫12=12, ∴14+12m =12, ∴m =12.9.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ), 于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2) 要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数; (2)当x ∈[2,4]时,求f (x )的解析式. (1)证明 ∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数.(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2], ∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2 =-x 2+6x -8.∵f (4-x )=f (-x )=-f (x ), ∴-f (x )=-x 2+6x -8, 即当x ∈[2,4]时,f (x )=x 2-6x +8.11.(2022·重庆模拟)已知函数f (x )=ax 5+bx 3+2,若f (2)=7,则f (-2)等于( ) A .-7 B .-3 C .3 D .7 答案 B解析 设g (x )=f (x )-2=ax 5+bx 3,则g (-x )=-ax 5-bx 3=-g (x ), 即f (x )-2=-f (-x )+2, 故f (-2)=-f (2)+4=-3.12.已知定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=a 2x -a -2x+1(a >0,a ≠1),则f (1)等于( )A .-1B .0C .1D .2 答案 C解析 由已知可得f (1)+g (1)=a 2-a -2+1, f (-1)+g (-1)=a -2-a 2+1, 因为f (x )为偶函数,g (x )为奇函数, 所以f (1)-g (1)=a -2-a 2+1,联立⎩⎪⎨⎪⎧f (1)+g (1)=a 2-a -2+1,f (1)-g (1)=a -2-a 2+1,解得f (1)=1.13.(多选)(2022·本溪统考)已知定义在R 上的奇函数f (x )对∀x ∈R 都有f (x +2)=-f (x ),则下列判断正确的是( ) A .f (x )是周期函数且周期为4 B .f (x )的图象关于点(1,0)对称 C .f (x )的图象关于直线x =-1对称 D .f (x )在[-4,4]上至少有5个零点 答案 ACD解析 对于A 选项,因为f (x +2)=-f (x ), 所以f (x +4)=-f (x +2)=-[-f (x )] =f (x ),所以函数f (x )的周期为4,故A 项正确; 对于B 选项,因为f (x +2)=-f (x ), 且f (-x )=-f (x ), 所以f (x +2)=f (-x ),所以f (x )的图象关于直线x =1对称, 故B 项错误;对于C 选项,因为f (x +2)=-f (x ), 所以f (x )=-f (x -2), 又因为f (-x )=-f (x ), 所以f (x -2)=f (-x ),所以f (x )的图象关于直线x =-1对称, 故C 项正确;对于D 选项,因为f (x )为定义在R 上的奇函数, 所以f (0)=0,因为T =4, 所以f (4)=f (-4)=0, 因为f (x +2)=-f (x ), 所以f (0+2)=-f (0)=0, 所以f (2)=0,因为T =4, 所以f (-2)=0,故D 项正确.14.已知函数f (x )=4x 4x +2,则f (x )+f (1-x )=____________,f ⎝⎛⎭⎫12 023+f ⎝⎛⎭⎫22 023+f ⎝⎛⎭⎫32 023+…+f ⎝⎛⎭⎫2 0222 023=________. 答案 1 1 011解析 因为f (x )=4x4x +2,所以f (x )+f (1-x )=4x4x +2+41-x41-x +2=4x4x +2+44x44x+2 =4x4x +2+44x4+2·4x4x=4x 4x +2+44+2·4x =2·4x +44+2·4x =1,设f ⎝⎛⎭⎫12 023+f ⎝⎛⎭⎫22 023+f ⎝⎛⎭⎫32 023+…+f ⎝⎛⎭⎫2 0222 023=m , ① 则f ⎝⎛⎭⎫2 0222 023+…+f ⎝⎛⎭⎫32 023+f ⎝⎛⎭⎫22 023+f ⎝⎛⎭⎫12 023=m ,②①+②得2 022=2m ,即m =1 011,故f ⎝⎛⎭⎫12 023+f ⎝⎛⎭⎫22 023+f ⎝⎛⎭⎫32 023+…+f ⎝⎛⎭⎫2 0222 023=1 011.15.(多选)(2022·岳阳质检)设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数,也叫取整函数.令f (x )=x -[x ],以下结论正确的有( ) A .f (-1.1)=0.9 B .函数f (x )为奇函数 C .f (x +1)=f (x )+1 D .函数f (x )的值域为[0,1) 答案 AD解析 对于A ,f (-1.1)=-1.1-[-1.1] =-1.1+2=0.9,故A 正确.对于B ,取x =-1.1,则f (-1.1)=0.9, 而f (1.1)=1.1-[1.1]=1.1-1=0.1, 故f (-1.1)≠-f (1.1),所以函数f (x )不为奇函数,故B 错误.对于C ,f (x +1)=x +1-[x +1]=x +1-[x ]-1=f (x ),故C 错误. 对于D ,由C 的判断可知,f (x )为周期函数,且周期为1, 当0≤x ≤1时,则当x =0时,f (0)=0-[0]=0,当0<x <1时,f (x )=x -[x ]=x -0=x , 当x =1时,f (x )=1-[1]=1-1=0, 故当0≤x ≤1时,则有0≤f (x )<1, 故函数f (x )的值域为[0,1),故D 正确.16.(2022·北京西城区模拟)设函数f (x )的定义域为R .若存在常数T ,A (T >0,A >0),使得对于任意x ∈R ,f (x +T )=Af (x )成立,则称函数f (x )具有性质P . (1)判断函数y =x 和y =cos x 是否具有性质P ?(结论不要求证明)(2)若函数f (x )具有性质P ,且其对应的T =π,A =2.已知当x ∈(0,π]时,f (x )=sin x ,求函数f (x )在区间[-π,0]上的最大值. 解 (1)因为函数y =x 是增函数, 所以函数y =x 不具有性质P , 当A =1,T =2π时,函数y =cos x 对于任意x ∈R , f (x +T )=Af (x )成立, 所以y =cos x 具有性质P . (2)设x ∈(-π,0], 则x +π∈(0,π],由题意得f (x +π)=2f (x )=sin(x +π), 所以f (x )=-12sin x ,x ∈(-π,0],由f (-π+π)=2f (-π),f (0+π)=2f (0), 得f (-π)=14f (π)=0,所以当x ∈[-π,0]时,f (x )=-12sin x ,所以当x =-π2时,f (x )在[-π,0]上有最大值f ⎝⎛⎭⎫-π2=12.。
第七讲 函数的奇偶性与周期性班级________ 姓名________ 考号________ 日期________ 得分________一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.定义在R 上的函数f (x )满足:f (x )·f (x +2)=13,f (1)=2,则f (99)=( )A .13B .2 C.132 D.213解析:由f (x )·f (x +2)=13,知f (x +2)·f (x +4)=13,所以f (x +4)=f (x ),即f (x )是周期函数,周期为4.所以f (99)=f (3+4×24)=f (3)=13f (1)=132. 答案:C2.(2010·郑州)定义在R 上的函数f (x )满足:对于任意α,β∈R ,总有f (α+β)-[f (α)+f (β)]=2010,则下列说法正确的是( )A .f (x )-1是奇函数B .f (x )+1是奇函数C .f (x )-2010是奇函数D .f (x )+2010是奇函数解析:依题意,取α=β=0,得f (0)=-2010;取α=x ,β=-x ,得f (0)-f (x )-f (-x )=2010,f (-x )+2010=-[f (x )-f (0)]=-[f (x )+2010],因此函数f (x )+2010是奇函数,选D.答案:D3.设f (x )是定义在R 上以2为周期的偶函数,已知x ∈(0,1)时,f (x )=log 12(1-x ),则函数f (x )在(1,2)上( )A .是增函数,且f (x )<0B .是增函数,且f (x )>0C .是减函数,且f (x )<0D .是减函数,且f (x )>0解析:由题意得当x ∈(1,2)时,0<2-x <1,0<x -1<1,f (x )=f (-x )=f (2-x )=log 12[1-(2-x )]=log 12(x -1)>0,则可知当x ∈(1,2)时,f (x )是减函数,选D.答案:D4.设f (x )是连续的偶函数,且当x >0时是单调函数,则满足f (x )=f ⎝⎛⎭⎫x +3x +4的所有x 之和为( ) A .-3 B .3C .-8D .8解析:因为f (x )是连续的偶函数,且x >0时是单调函数,由偶函数的性质可知若f (x )=f ⎝⎛⎭⎫x +3x +4,只有两种情况:①x =x +3x +4;②x +x +3x +4=0. 由①知x 2+3x -3=0,故两根之和为x 1+x 2=-3.由②知x 2+5x +3=0,故其两根之和为x 3+x 4=-5.因此满足条件的所有x 之和为-8.答案:C5.已知奇函数f (x )在区间[3,7]上是增函数,且最小值为5,那么函数f (x )在区间[-7,-3]上( )A .是增函数且最小值为-5B .是增函数且最大值为-5C .是减函数且最小值为-5D .是减函数且最大值为-5解析:∵f (x )为奇函数,∴f (x )的图象关于原点对称.∵f (x )在[3,7]上是增函数,∴f (x )在[-7,-3]上也是增函数.∵f (x )在[3,7]上的最小值为5,∴由图可知函数f (x )在[-7,-3]上有最大值-5.答案:B评析:本题既涉及到函数的奇偶性,又涉及到函数的单调性,还涉及到函数的最值,是一道综合性较强的题目,由于所给的函数没有具体的解析式,因此我们画出函数f (x )在区间[3,7]上的示意图,由图形易得结论.6.(2010·新课标全国)设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}解析:当x <0时,-x >0,∴f (-x )=(-x )3-8=-x 3-8,又f (x )是偶函数,∴f (x )=f (-x )=-x 3-8,∴f (x )=⎩⎨⎧ x 3-8,x ≥0-x 3-8,x <0. ∴f (x -2)=⎩⎨⎧ (x -2)3-8,x ≥2-(x -2)3-8,x <2, ⎩⎨⎧ x ≥2(x -2)3-8>0或⎩⎨⎧ x <2-(x -2)3-8>0,解得x >4或x <0.故选B.答案:B二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)7.(2010·江苏)设函数f (x )=x (e x +a e -x)(x ∈R )是偶函数,则实数a 的值为________.解析:设g (x )=x ,h (x )=e x +a e -x ,因为函数g (x )=x 是奇函数,则由题意知,函数h (x )=e x +a e -x为奇函数,又函数f (x )的定义域为R ,∴h (0)=0,解得a =-1.答案:-18.已知函数f (x +1)是奇函数,f (x -1)是偶函数,且f (0)=2,则f (4)=________. 解析:依题意有f (-x +1)=-f (x +1),f (-x -1)=f (x -1),所以f (4)=f (-(-3)+1)=-f (-2)=-f (-1-1)=-f (0)=-2.答案:-29.(2010·湖北八校)设函数f (x )的定义域、值域分别为A 、B ,且A ∩B 是单元集,下列命题①若A ∩B ={a },则f (a )=a ;②若B 不是单元集,则满足f [f (x )]=f (x )的x 值可能不存在;③若f (x )具有奇偶性,则f (x )可能为偶函数;④若f (x )不是常数函数,则f (x )不可能为周期函数.其中,正确命题的序号为________.解析:如f (x )=x +1,A =[-1,0],B =[0,1]满足A ∩B ={0},但f (0)≠0,且满足f [f (x )]=f (x )的x 可能不存在,①错,②正确;如,f (x )=1,A =R ,B ={1},则f (x )=1,A =R 是偶函数,③正确;如f (x )=x -2k +1,A =[2k -1,2k ],B =[0,1],k ∈Z ,f (x )是周期函数,但不是常数函数,所以④错误.答案:②③10.对于定义在R 上的函数f (x ),有下述四个命题,其中正确命题的序号为________.①若f (x )是奇函数,则f (x -1)的图象关于点A (1,0)对称;②若对x ∈R ,有f (x +1)=f (x -1),则y =f (x )的图象关于直线x =1对称;③若函数f (x -1)的图象关于直线x =1对称,则f (x )为偶函数;④函数y =f (1+x )与函数y =f (1-x )的图象关于直线x =1对称.解析:f (x -1)的图象是由f (x )的图象向右平移一个单位而得到,又f (x )是奇函数,其图象关于原点对称,所以f (x -1)的图象关于点A (1,0)对称,故①正确;由f (x +1)=f (x -1)可知f (x )的周期为2,无法判断其对称轴,故②错误;f (x -1)的图象关于直线x =1对称,则f (x )关于y 轴对称,故f (x )为偶函数,③正确;y =f (1+x )的图象是由y =f (x )的图象向左平移一个单位后得到,y =f (1-x )是由y =f (x )的图象关于y 轴对称后再向右平移一个单位而得到,两者图象关于y 轴对称,故④错误.答案:①③三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.已知定义域为R 的函数f (x )=-2x +b 2x +1+a是奇函数. (1)求a 、b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.分析:(1)由f (0)=0可求得b ,再由特殊值或奇函数定义求得a ;(2)先分析函数f (x )的单调性,根据单调性去掉函数符号f ,然后用判别式解决恒成立问题.解:(1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,即b -1a +2=0⇒b =1,所以f (x )=1-2xa +2x +1, 又由f (1)=-f (-1)知1-2a +4=-1-12a +1⇒a =2. (2)由(1)知f (x )=1-2x 2+2x +1 =-12+12x +1, 易知f (x )在(-∞,+∞)上为减函数.又因f (x )是奇函数,从而不等式: f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因f (x )为减函数,由上式推得:t 2-2t >k -2t 2,即对t ∈R 有:3t 2-2t -k >0,从而Δ=4+12k <0⇒k <-13. 12.设函数f (x )的定义域为R ,对于任意的实数x ,y ,都有f (x +y )=f (x )+f (y ),当x >0时,f (x )<0,求证:(1)f (x )为奇函数;(2)f (x )在(-∞,+∞)上是减函数.证明:(1)令x =y =0,得f (0)=f (0)+f (0),∴f (0)=0.再令y =-x ,得f (0)=f (x )+f (-x ),∴f (-x )=-f (x ),∴f (x )为奇函数.(2)设x 1、x 2∈(-∞,+∞)且x 1<x 2,则x 2-x 1>0,∵当x >0时,f (x )<0,∴f (x 2-x 1)<0.又∵对于任意的实数x ,y 都有f (x +y )=f (x )+f (y )且f (x )为奇函数,∴f (x 2-x 1)=f [x 2+(-x 1)]=f (x 2)+f (-x 1)=f (x 2)-f (x 1).∴f (x 2)-f (x 1)<0,∴f (x )在(-∞,+∞)上是减函数.13.设函数f (x )的定义域关于原点对称,且满足①f (x 1-x 2)=f (x 1)f (x 2)+1f (x 2)-f (x 1); ②存在正常数a ,使f (a )=1.求证:(1)f (x )是奇函数;(2)f (x )是周期函数,并且有一个周期为4a .证明:(1)不妨令x =x 1-x 2,则f (-x )=f (x 2-x 1)=f (x 2)f (x 1)+1f (x 1)-f (x 2)=-f (x 1)f (x 2)+1f (x 2)-f (x 1)=-f (x 1-x 2) =-f (x ).∴f (x )是奇函数.(2)要证f (x +4a )=f (x ), 可先计算f (x +a ),f (x +2a ), ∵f (x +a )=f [x -(-a )]=f (-a )f (x )+1f (-a )-f (x )=-f (a )f (x )+1-f (a )-f (x )=f (x )-1f (x )+1,(f (a )=1). ∴f (x +2a )=f [(x +a )+a ]=f (x +a )-1f (x +a )+1=f (x )-1f (x )+1-1f (x )-1f (x )+1+1=-1f (x ).∴f (x +4a )=f [(x +2a )+2a ]=1-f (x +2a )=f (x )故f (x )是以4a 为周期的周期函数.。