函数(高三复习笔记)
- 格式:doc
- 大小:1.35 MB
- 文档页数:3
高中数学笔记(3)-----------------三角函数基本概念:1、 诱导公式:奇变偶不变,符号看象限。
2π23 5tan2α=α21tg -。
8、三倍角公式是:sin3α=αα3sin 4sin 3- cos3α=ααcos 3cos 43-9、半角公式是:sin2α=2cos 1α-± cos 2α=2cos 1α+±tan2α=ααcos 1cos 1+-±=ααsin cos 1-=ααcos 1sin +。
10、升幂公式是:2cos2cos 12αα=+ 2sin2cos 12αα=-。
11、降幂公式是:22cos 1sin 2αα-=22cos 1cos 2αα+=。
122αtg12αtg -2αtg 1314 1516=,==(=2;2=-(1819、由余弦定理第一形式,2b =B ac c a cos 222-+由余弦定理第二形式,cosB=acb c a 2222-+20、△ABC 的面积用S 表示,外接圆半径用R 表示,内切圆半径用r 表示,半周长用p 表示则:① =⋅=a h a S 21 ==A bc S sin 21; ③C B A R S sin sin sin 22=;④RabcS 4=;⑤))()((c p b p a p p S ---=;⑥pr S =21、三角学中的射影定理:在△ABC 中,A c C a b cos cos ⋅+⋅=, 22、在△ABC 中,B A B A sin sin <⇔<, 2324①②③④25①②③④26○1 a r c t g x y =的定义域是R ,值域是)22(ππ,-,奇函数,增函数;a r c c t g x y =的定义域是R ,值域是)0(π,,非奇非偶,减函数。
○2、当x x x x x ==-∈)cos(arccos )sin(arcsin ]11[,时,,; 221)cos(arcsin 1)sin(arccos x x x x -=-=,x x x x arccos )arccos(arcsin )arcsin(-=--=-π, 2arccos arcsin π=+x x对任意的R x ∈,有:)()()()(π-=--=-==arcctgx x arcctg arctgx x arctg xarcctgx ctg x arctgx tg ,,当○327{}。
目录:函数与极限 (1)1、集合的概念 (1)2、常量与变量 (2)2、函数 (3)3、函数的简单性态 (4)4、反函数 (4)5、复合函数 (5)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (8)9、函数的极限 (9)10、函数极限的运算规则 (11)一、函数与极限1、集合的概念一般地我们把研究对線统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互界性(给定集合中的元素是互不相同的)。
比如“身材较商的人”不能构成集合•因为它的元素不是确定的。
我们通常用大字拉丁字母爪B. C、……表示集合.用小写拉丁字母也b. c……表示集合中的元素。
如果a 是集合A中的元素,就说a属于A,记作:aGA-否则就说a不属于A,记作:a 2(IX全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N(2).所有正整数组成的集合叫做正整数集。
记作N宇或N“(3人全体整数组成的集合叫做整数集。
记作Z。
(4八全体有理数组成的集合叫做有理数集。
记作Q。
<5).全体实数组成的集合叫做实数集。
记作R,集合的表示方法(1八列举法:把集合的元素一一列举出來,并用“”括起來表示集合(2入描述法:用集合所有元素的共同特征來表示集合。
集合间的基本关系(1八子集:一般地,对于两个集合A. B.如果集合A中的任总:一个元素都是集合B的元素,我们就说A. B有包含关系,称集合A为集合B的子集.记作A B (或B A) °。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集.此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B.(3人真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
(4八空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
(5入由上述集合之间的基木关系,可以得到下面的结论①.任何一个集合是它木身的子集。
函数知识点高三复习笔记函数是高中数学学习中的一个重要章节,也是数学建模和解决实际问题中的基础工具之一。
在函数的学习过程中,我们需要了解函数的定义、性质、图像以及一些常见的函数类型。
下面是一些函数的知识点,供高三学生进行复习。
一、函数的定义与性质1. 函数的定义:函数是一个输入和一个输出之间的一种映射关系。
用数学符号表示,如果对于任意的输入x,存在唯一的输出y与之对应,那么我们就说y是x的函数。
通常用f(x)来表示函数。
2. 定义域和值域:函数的定义域是所有自变量可能取值的集合,而值域则是函数输出的所有可能取值的集合。
3. 奇偶性:函数的奇偶性可以通过函数的图像关于y轴的对称性来确定。
如果一个函数满足f(-x) = -f(x),则该函数为奇函数;若满足f(-x) = f(x),则该函数为偶函数。
4. 单调性:函数的单调性描述了其是否随着自变量的增加或减少而单调变化。
如果对于定义域内的任意x1、x2,当x1<x2时有f(x1)<f(x2),则称函数为增函数;若f(x1)>f(x2),则称函数为减函数。
5. 周期性:函数的周期性描述了其是否以一定的间隔重复出现相同的值。
如果对于定义域内的任意x,存在一个正数T使得f(x+T)=f(x),则称函数为周期函数,T为函数的周期。
二、常见函数类型及其性质1. 一次函数:一次函数的形式为f(x) = kx+b,其中k和b为常数。
一次函数的图像是一条直线,斜率k决定了函数的增长或减小速率,常数b决定了函数与y轴的交点。
2. 二次函数:二次函数的一般形式为f(x) = ax^2+bx+c。
其中a、b和c为常数,且a≠0。
二次函数的图像是一条抛物线,开口的方向由a的正负决定,顶点坐标为(-b/2a, f(-b/2a))。
3. 幂函数:幂函数的一般形式为f(x) = x^a,其中a为常数。
幂函数的图像形状与指数a的奇偶性密切相关,若a为正奇数,则图像上升;若a为正偶数,则图像下降;若a为负数,则图像关于x 轴对称。
第三章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念1.概念的概念设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合f x x ∈A }叫做函数的值域.2.函数三要素:定义域、对应关系、值域。
3.区间若a ,b ∈R ,且a <b ,则(1)x |a ≤x ≤b =a ,b 闭区间(2)x |a <x <b =a ,b 开区间(3)x |a ≤x <b =a ,b ) 半开半闭区间x |a <x ≤b =(a ,b ]半开半闭区间∞表示无穷大,R =-∞,+∞(4)x |x <a =-∞,a x |x ≤a =-∞,a ] (5)x |x >a =(a ,+∞)x |x ≥a =[a ,+∞)4.常见求函数定义域方法(1)分式的分母不等于零;(2)偶次根号下被开方数大于等于零;(3)零的零次方无意义;a 0=1,a ≠0(4)对数式的真数大于零;(5)定义域多个取值范围同时满足,求交集。
例:函数f (x )=-x 2+4x +12+1x -4的定义域是.解:要使函数有意义,需满足-x 2+4x +12≥0x -4≠0,即-2≤x ≤6x ≠4 .即-2≤x <4或4<x ≤6,故函数的定义域为[-2,4)⋃4,6 .5.判断函数为同一函数如果两个函数的定义域相同,并且对应关系也完全一致,那么这两个函数是同一个函数。
3.1.2函数的表示方法1.函数的表示方法:表格法、图像法、解析式法2.分段函数如果一个函数,在其定义域内,对于自变量x 的不同取值区间,有不同的对应关系,则称其为分段函数。
第一章1、映射:Y中有唯一与x对应的元素,f为x到y的映射,y称为像,x称为原像条件:x,y均为非空集合,但是y反过来对应的x不一定是唯一的可以多个x对应一个y,不可一个x对应一个y。
y中所有元素均被对应,f称为满射。
一个x对应着一个y是单射,若即是单射又是满射则是双射。
2、函数的有界性:上有界,下有界。
恒小于一个值,恒大于一个值。
有界的充要条件是即有上界又有下界(函数绝对值恒小于一正数)数列收敛的定义1数列收敛极限唯一2数列收敛,数列一定有界3从某一项开始大于零,则其极限大于零4数列收敛,子数列收敛两函数相同的条件:定义域,表达式4、函数极限:δ,函数极限定义:定义、ε5、极限运算法则无穷小加无穷小为无穷小(零是无穷小,但是无穷小不一定为零)有界函数(常数)×无穷小也是无穷小6、重要极限7、极限存在准则:单调有界有极限夹逼准则函数的保号性常见等价无穷小1、sinx~x~tanx~ln(1+x)~arcsin(x)~arctan(x)~e x-12、1-cosx~1/2x23、(1+x)a-1函数连续间断定义某一点连续(左右极限存在且相等等于该点函数值,称之为连续1、左极限等于该点函数值——左连续,右极限等于该点函数值——右连续2、闭区间连续。
右左端点处对应左右连续,开区间上连续间断点类型1、没定义2、有定义,极限不存在3、有定义,极限存在。
但是极限不等于函数值1、第一类间断点左右极限都存在(都相等但是不等于函数值——可去间断点)(极限不相等,跳跃间断点)2、第二类间断点左右极限至少有一个不存在称为第二类间断点基本初等函数必连续(三角、反三角,幂函数,指数函数,对数函数)加减乘除(分母不为零)、复合函数只要原函数连续,则连续最值定理:闭区间连续函数一定可以取到最大最小值零点定理:端点处函数值异号,开区间内存在零点(开区间使用)介值定理:闭区间连续函数,区间内比存在一点,使其函数值取到最大值最小值之间(闭区间使用,且多个函数相加存在)第二章函数导数存在就是可导可导一定连续(可以推出极限值等于函数值)不连续一定不可导函数倒数存在——函数左右导数存在且相等验证可导与否,先看是否连续,后看左右导数是否相等Secx=1/cosx cscx=1/sinx三角函数N 阶导数——sinx 求导——sin(x+n*pai/2) cosx 同理1')(!*)1()1(++-=+n nn n b ax a n b ax 乘积函数求N 阶导数隐函数求导(两侧同时对x 求导,最后解出导数)参数方程求导)(')(')()(t t f dx dy t x t f y ϕϕ===可导《=》可微=>连续第三章三个条件拉格朗日中值定理:1、拉格朗日等价形式:)(*])([')()(a b a b a f a f b f --+=-θ2、三个点,采用两次拉格朗日定理 柯西中值定理:二阶可导——一阶可导——连续 洛必达法则:(存在局限性,如果上下求导最后极限不存在,但是其极限有可能存在,洛必达法则不适用) 1、0/0型。
目录:函数与极限 (1)1、集合的概念 (1)2、常量与变量 (2)2、函数 (3)3、函数的简单性态 (4)4、反函数 (4)5、复合函数 (5)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (8)9、函数的极限 (9)10、函数极限的运算规则 (11)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
高中数学必修一第四章指数函数与对数函数重点归纳笔记单选题1、已知2a =5,log 83=b ,则4a−3b =( ) A .25B .5C .259D .53答案:C分析:根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 因为2a=5,b =log 83=13log 23,即23b=3,所以4a−3b=4a 43b=(2a )2(23b )2=5232=259.故选:C.2、设log 74=a,log 73=b ,则log 4936=( ) A .12a −b B .12b +a C .12a +b D .12b −a答案:C分析:根据对数的运算性质计算即可.解:log 4936=log 7262=log 76=log 72+log 73=12log 74+log 73=12a +b . 故选:C.3、已知函数f (x )={−2x,x <0−x 2+2x,x ≥0 若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是( ) A .[0,34]B .(0,34)C .[0,916]D .(0,916) 答案:D分析:根据题意,作出函数f (x )={−2x, x <0,−x 2+2x,x ≥0 与y =12x +m 的图像,然后通过数形结合求出答案.函数f (x )={−2x, x <0,−x 2+2x,x ≥0的图像如下图所示:若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则函数f (x )的图像与直线y =12x +m 有三个交点,若直线y =12x +m 经过原点时,m =0,若直线y =12x +m 与函数f (x )=12x +m 的图像相切,令−x 2+2x =12x +m ⇒x 2−32x +m =0,令Δ=94−4m =0⇒m =916. 故m ∈(0,916).故选:D .4、已知函数f(x)={a x ,x <0(a −2)x +3a,x ≥0,满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,则a 的取值范围是( )A .a ∈(0,1)B .a ∈[34,1)C .a ∈(0,13]D .a ∈[34,2) 答案:C分析:根据条件知f(x)在R 上单调递减,从而得出{0<a <1a −2<03a ≤1,求a 的范围即可.∵f(x)满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,∴f(x)在R 上是减函数,∴{0<a <1a −2<0(a −2)×0+3a ≤a 0,解得0<a ≤13, ∴a 的取值范围是(0,13].故选:C .5、已知函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点,则a 的取值范围是( )A .√e )B .(−∞,√e )C .√e)D .(0,√e )答案:B分析:f (x )=x 2+e x −12(x <0)关于y 轴对称的函数为:f(−x)=x 2+e −x −12(x >0), 函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点, 即f(−x)=g(x)有解,通过数形结合即可得解. f (x )=x 2+e x −12(x <0)关于y 轴对称的函数为: f(−x)=x 2+e −x −12(x >0),函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点,即f(−x)=g(x)有解,即x 2+e −x −12=x 2+ln(x +a),整理的:e −x −12=ln(x +a), y =e −x −12和y =ln(x +a)的图像存在交点,如图:临界值在x =0处取到(虚取),此时a =√e ,故当a <√e 时y =e −x −12和y =ln(x +a)的图像存在交点, 故选:B.6、已知函数f(x)={log 12x,x >0,a ⋅(13)x,x ≤0,若关于x 的方程f[f(x)]=0有且只有一个实数根,则实数a 的取值范围是( )A .(−∞,0)∪(0,1)B .(−∞,0)∪(1,+∞)C .(−∞,0)D .(0,1)∪(1,+∞) 答案:B分析:利用换元法设t =f (x ),则等价为f (t )=0有且只有一个实数根,分a <0,a =0,a >0 三种情况进行讨论,结合函数的图象,求出a 的取值范围. 令f(x)=t ,则方程f[f(x)]=0等价于f(t)=0,当a =0时,此时当x ≤0时,f (x )=a ⋅(13)x=0,此时函数有无数个零点,不符合题意;当a ≠0,则f(x)=a ⋅(13)x≠0,所以由f(t)=log 12t =0,得t =1,则关于x 的方程f[f(x)]=0有且只有一个实数根等价于关于x 的方程f(x)=1有且只有一个实数根,作出f(x)的图象如图:当a <0时,由图象可知直线y =1与y =f(x)的图象只有一个交点,恒满足条件; 当a >0时,要使直线y =1与y =f(x)的图象只有一个交点, 则只需要当x ≤0时,直线y =1与f(x)=a ⋅(13)x的图象没有交点, 因为x ≤0 时,f (x )=a ⋅(13)x∈[a,+∞),此时f (x ) 最小值为a , 所以a >1,综上所述,实数a 的取值范围是(−∞,0)∪(1,+∞), 故选:B.7、已知对数式log (a+1)24−a(a ∈Z )有意义,则a 的取值范围为( )A .(−1,4)B .(−1,0)∪(0,4)C .{1,2,3}D .{0,1,2,3} 答案:C分析:由对数的真数大于0,底数大于0且不等于1列出不等式组,然后求解即可. 由题意可知:{a +1>0a +1≠124−a >0 ⇔{a >−1a ≠0a <4 ,解之得:−1<a <4且a ≠0.∵a ∈Z ,∴a 的取值范围为{1,2,3}. 故选:C.8、若函数f (x )=ln(ax +√x 2+1)是奇函数,则a 的值为( ) A .1B .-1 C .±1D .0 答案:C分析:根据函数奇函数的概念可得ln(−ax +√x 2+1)+ln(ax +√x 2+1)=0,进而结合对数的运算即可求出结果.因为f (x )=ln(ax +√x 2+1)是奇函数,所以f (-x )+f (x )=0.即ln(−ax +√x 2+1)+ln(ax +√x 2+1)=0恒成立,所以ln [(1−a 2)x 2+1]=0,即(1−a 2)x 2=0 恒成立,所以1−a 2=0,即a =±1. 当a =1时,f (x )=ln(x +√x 2+1),定义域为R ,且f (−x )+f (x )=0,故符合题意; 当a =−1时,f (x )=ln(−x +√x 2+1),定义域为R ,且f (−x )+f (x )=0,故符合题意; 故选:C. 多选题9、如图,某池塘里的浮萍面积y (单位:m 2)与时间t (单位:月)的关系式为y =ka t (k ∈R 且k ≠0,a ≠1).则下列说法正确的是( )A.浮萍每月增加的面积都相等B.第6个月时,浮萍的面积会超过30m2C.浮萍面积从2m2蔓延到64m2只需经过5个月D.若浮萍面积蔓延到4m2,6m2,9m2所经过的时间分别为t1,t2,t3,则t1+t3=2t2答案:BCD分析:由题意结合函数图象可得{ka=1ka3=4,进而可得y=2t−1;由函数图象的类型可判断A;代入x=6可判断B;代入y=2、y=64可判断C;代入y=4、y=6、y=9,结合对数的运算法则即可得判断D;即可得解.由题意可知,函数过点(1,1)和点(3,4),则{ka=1ka3=4,解得{k=12a=2(负值舍去),∴函数关系式为y=12×2t=2t−1,对于A,由函数是曲线型函数,所以浮萍每月增加的面积不相等,故选项A错误;对于B,当x=6时,y=25=32>30,故选项B正确;对于C,令y=2得t=2;令y=64得t=7,所以浮萍面积从2m2增加到64m2需要5个月,故选项C正确;对于D,令y=4得t1=3;令y=6得t2=log212;令y=9得t3=log218;所以t1+t3=3+log212=log2144=2log212=2t2,故选项D正确.故选:BCD.小提示:本题考查了函数解析式的确定及函数模型的应用,考查了运算求解能力,合理转化条件是解题关键,属于基础题.10、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项. 依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD11、已知函数f(x)=lg(√x2−2x+2−x+1),g(x)=2x+62x+2则下列说法正确的是()A.f(x)是奇函数B.g(x)的图象关于点(1,2)对称C.若函数F(x)=f(x)+g(x)在x∈[1−m,1+m]上的最大值、最小值分别为M、N,则M+N=4D.令F(x)=f(x)+g(x),若F(a)+F(−2a+1)>4,则实数a的取值范围是(−1,+∞)答案:BCD分析:利用函数的奇偶性的定义,可判定A错误;利用图像的平移变换,可判定B正确;利用函数的图象平移和奇偶性,可得判定C正确;利用函数的单调性,可判定D正确.由题意函数f(x)=lg(√x2−2x+2−x+1)=lg(√(x−1)2+1−(x−1)),因为√(x−1)2+1−(x−1)>0恒成立,即函数f(x)的定义域为R,又因为f(0)=lg(√2+1)≠0,所以f(x)不是奇函数,所以A错误;将g (x )=2x +62x +2的图象向下平移两个单位得到y =2x +62x +2−2=2−2x 2+2x,再向左平移一个单位得到ℎ(x )=2−2x+12+2x+1=1−2x 1+2x,此时ℎ(−x )=1−2−x1+2−x =2x −12x +1=−ℎ(x ),所以ℎ(x )图象关于点(0,0)对称, 所以g (x )的图象关于(1,2)对称,所以B 正确;将函数f (x )的图象向左平移一个单位得m (x )=lg(√x 2+1−x), 因为m (−x )+m (x )=lg(√x 2+1+x)+lg(√x 2+1−x)=lg1=0, 即m(−x)=−m(x),所以函数m (x )为奇函数, 所以函数f (x )关于(1,0)点对称,所以F (x )若在1+a 处 取得最大值,则F (x )在1−a 处取得最小值,则F(1+a)+F(1−a)=f(1+a)+f(1−a)+g(1+a)+g(1−a)=0+4=4,所以C 正确; 由F(a)+F(−2a +1)>4,可得f(a)+f(1−2a)+g(a)+g(1−2a)>4, 由f (x )=lg(√(x −1)2+1−(x −1)), 设m (x )=lg(√x 2+1−x),t =√x 2+1−x , 可得t ′=√x 2+1−1<0,所以t =√x 2+1−x 为减函数,可得函数m (x )=lg(√x 2+1−x)为减函数,所以函数f (x )=lg(√(x −1)2+1−(x −1))为单调递减函数, 又由g (x )=2x +62x +2=1+42x +2为减函数,所以F (x )为减函数,因为F (x )关于点(1,2)对称,所以F (a )+F (−2a +1)>4=F(a)+F(2−a),即F(−2a +1)>F(2−a), 即−2a +1<2−a ,解得a >−1,所以D 正确. 故选:BCD.小提示:求解函数有关的不等式的方法及策略: 1 、解函数不等式的依据是函数的单调性的定义, 具体步骤:①将函数不等式转化为f(x 1)>f(x 2)的形式;②根据函数f (x )的单调性去掉对应法则“f ”转化为形如:“x 1>x 2”或“x 1<x 2”的常规不等式,从而得解. 2 、利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解. 填空题12、若√4a 2−4a +1=√(1−2a )33,则实数a 的取值范围_________ .答案:(−∞,12]分析:由二次根式的化简求解由题设得√4a 2−4a +1=√(2a −1)2=|2a −1|,√(1−2a )33=1−2a ,所以|2a −1|=1−2a 所以1−2a ≥0,a ≤12.所以答案是:(−∞,12]13、已知10p =3,用p 表示log 310=_____. 答案:1p ##p −1分析:根据指数和对数的关系,以及换底公式,分析即得解. ∵10p =3,∴p =lg3,∴log 310=1g101g3=11g3=1p . 所以答案是:1p .14、对于任意不等于1的正数a ,函数f (x )=log a (2x +3)+4的图像都经过一个定点,这个定点的坐标是_______. 答案:(−1,4)分析:根据log a 1=0求得正确结论.依题意,当2x +3=1,即x =−1时,f (−1)=log a 1+4=4, 所以定点为(−1,4). 所以答案是:(−1,4)解答题15、已知函数f(x)=2x−12x.(1)判断f(x)在其定义域上的单调性,并用单调性的定义证明你的结论;(2)解关于x的不等式f(log2x)<f(1).答案:(1)f(x)在R上是增函数,证明见解析;(2)(0,2).分析:(1)由题可判断函数为奇函数且为增函数,利用定义法的步骤证明即可;(2)利用函数f(x)的单调性及对数函数的单调性即解.(1)∵f(−x)=2−x−2x=−(2x−12x)=−f(x),则函数f(x)是奇函数,则当x⩾0时,设0⩽x1<x2,则f(x1)−f(x2)=2x1−12x1−2x2+12x2=2x1−2x2+2x2−2x12x12x2=(2x1−2x2)2x12x2−12x12x2,∵0⩽x1<x2,∴1⩽2x1<2x2,即2x1−2x2<0,2x12x2>1,则f(x1)−f(x2)<0,即f(x1)<f(x2),则f(x)在[0,+∞)上是增函数,∵f(x)是R上的奇函数,∴f(x)在R上是增函数.(2)∵f(x)在R上是增函数,∴不等式f(log2x)<f(1)等价为不等式log2x<1,即0<x<2.即不等式的解集为(0,2).。
高数学习笔记总结,帮你快速复习数学知识高数学习笔记总结:
一、函数与极限
1. 函数的定义:函数是数学表达关系的符号,它表示两个变量之间的依赖关系。
函数的定义域和值域是函数的两个重要属性。
2. 极限的概念:极限是函数在某个点附近的变化趋势,它可以用来研究函数的特性。
极限的运算法则包括加减乘除和复合函数的极限运算法则。
3. 无穷小和无穷大的概念:无穷小是指一个函数在某个点的值趋于0,而无穷大是指一个函数在某个点的值趋于无穷大。
无穷小和无穷大是研究函数的重要工具。
二、导数与微分
1. 导数的概念:导数是函数在某一点的切线的斜率,它可以用来研究函数的单调性、极值、拐点等特性。
导数的运算法则包括求导法则和复合函数的导数法则。
2. 微分的概念:微分是函数在某一点附近的小增量,它可以用来近似计算函数的值。
微分的运算法则包括微分的基本公式和微分的链式法则。
3. 导数与微分的应用:导数和微分的应用非常广泛,例如求极值、求拐点、近似计算、优化问题等等。
三、积分与级数
1. 积分的概念:积分是定积分和不定积分的总称,它可以用来计算面积和体积等几何量。
定积分和不定积分的计算方法包括基本公式法和凑微分法等等。
2. 级数的概念:级数是无穷多个数的和,它可以用来研究函数的性质和行为。
级数的分类包括几何级数、调和级数、幂级数等等。
3. 积分与级数的应用:积分和级数的应用非常广泛,例如计算面积和体积、近似计算、信号处理等等。
高三冲刺笔记一、数学篇数学在高三那可是相当重要的一门学科啊。
就像打仗的兵器一样,数学学好了,很多难题都能迎刃而解。
1. 函数部分函数这玩意儿可有点绕,什么定义域、值域、单调性、奇偶性的。
比如说求函数y = x²+2x - 3的对称轴,这时候就可以用对称轴公式x = - b/2a,这里a = 1,b = 2,那对称轴就是x = - 1啦。
还有函数的奇偶性,奇函数满足f(-x)= - f(x),偶函数满足f(-x)=f(x)。
像y = x³就是奇函数,y = x²就是偶函数。
做函数题的时候一定要细心,一个小符号错了,可能整个题就错了。
2. 几何部分立体几何就需要空间想象能力啦。
像求三棱锥的体积,公式是V = 1/3Sh,S是底面积,h是高。
如果是证明线面平行或者垂直,就需要根据那些定理来。
比如说一条直线如果平行于平面内的一条直线,那这条直线就平行于这个平面。
平面几何的话,圆的方程(x - a)²+(y - b)²=r²要牢记,很多关于圆的题都是从这个方程衍生出来的。
二、语文篇语文就像是一场文化之旅,有好多好玩的东西呢。
1. 古诗词古诗词是语文里很有韵味的一部分。
就拿李白的将进酒来说,“君不见黄河之水天上来,奔流到海不复回。
”那气势多磅礴啊。
这里的“君”就是指你,李白对着朋友或者说对着天下人在抒发自己的豪情壮志。
这首诗表达了他怀才不遇但又乐观旷达的情怀。
还有一些古诗词的意象也很重要,像“月亮”常常代表思念,“柳树”代表送别。
2. 作文作文可是语文的大头啊。
高三写作文要注意立意深刻,素材新颖。
比如说写关于奋斗的作文,就不能老是用那些大家都用烂了的素材,可以找一些当下的奋斗者的故事,像那些创业者的故事。
还有作文的结构也很重要,开头要吸引人,中间论述要有条理,结尾要有力。
可以采用总分总或者分总等结构。
三、英语篇英语就像是打开世界大门的一把钥匙。
1. 单词单词是英语的基础,就像盖房子的砖头一样。
【壹】函数类型速判
①
c f f f f f f y x y x y x y x ++=+=++)()()()()()(或【正比例函数】
②)
()()()()(y x y
x y x y x f f f f f f =
∙=+)(或【指数函数】
③)()()(
)()()(y x y
x y x xy f f f
f f f -=+=或【对数函数】
④12][2
1
22)()2()()()()()2
(
)2
(
)()(-=+=
=+-+-+x x y x y x y x y
x y
x y x f f f f f f f
f
f f 或或【余弦函数】 ⑤)
()()()()(2)
()()2(112y x y x y x x x x f f f f f f f f -+=
-=
+或【正切函数】
【贰】函数奇偶性
①f (x)是奇函数:f (-x )=-f (x )或函数图像关于原点对称
②f (x)是偶函数:f (-x )=f (x )或函数图像关于y 轴对称 【叁】函数对称性和周期性
1.若f(x+T)=f(x),则周期为kT ,k ∈Z
2.f(2a-x)=f(x)⇔f(a+x)=f(a-x)
3.f(2a-x)+f(x)=2b ⇒f(2a-x)+f(x)=0
4.Y=f(x+a)为偶函数⇒f(-x+a)=f(x+a),即
f (x )关于x=a 对称.
5.f(a+x)=f(b-x)−−−→−-=x b t 令f(a+b-t)
=f(t)⇒f(2·2
b
a +-t)=f(t),即f (x )关于
x=
2
b
a +对称.
6.Y=f(b+x)为奇函数 ⇒f(b-x)=-f(b+x)
−−−→−-=x b t 令f(t)=-f(2b-t)⇒f(2b-t)+f(t)=0,
即f (x )关于(b ,0)点对称. 7.f(b+x)=-f(-x+a)−−−→−+-=a x t 令f(a+b-t)=-f(t)⇒f(2·2
b a +-t)+f(t)=0,即
f (x )关于(
2
b
a +,0) 点对称.
8.f(2a+x)=f(x)⇔f(x+a)=f(x-a),f(a+x)=-f(x),f(a+x)=±)(1
x f ,f(a+x)=1
)(1)(-+x f x f 其周期均为2a 9.F(x+a)=)
(1)(1x f x f +-,其周期T=4a
10.Y=f(x)已知关于x=a ,又关于x=b 对称,则f (x )周期T=2|a-b| 11.Y=f(x)已知关于(a,0),又关于(b,0)对称,则f (x )周期T=2a 12.Y=f(x)已知关于x=a ,又关于(b,0)对称,则f (x )周期T=4|a-b|
对称关系 对称点 函数关系式 关于x 轴 (x,-y) -y=f(x) 关于y 轴
(-x,y) Y=f(-x) 关于原点 (-x,-y) -y=f(-x) 关于x=a (2a-x,y) Y=f(2a-x) 关于y=b (x,2b-y) 2b-y=f(x) 关于x=y (y,x) X=f(y) 关于x=-y
(-y,-x)
-x=f(y) 关于(a ,b ) (2a-x,2b-y) 2b-y=f(2a-x) 关于y=x+a (y-a,x+a) X+a=-f(y-a) 关于y=-x+a
(b-y,b-x)
B-x=f(b-Y)
13.①y=f(x)为偶函数 ②y=f(x)关于x=a 对称 ③周期T=2a
[从以上3个条件中任选2个就可得到第三个] 14.①y=f(x)为奇函数 ②y=f(x)关于(a,0)对称 ③周期T=2a [从以上3个条件中任选2个就可得到第三个] 【肆】图像变换
变换
解释
Y=f(x)−−−−−→−个单位
向右平移m y=f(x-m) Y=f(x)−−−−−→−个单位
向左平移m y=f(x+m)
Y=f(x)−−−−−→−个单位
向上平移m y=f(x)+m
Y=f(x)−−−−−→−个单位
向下平移m y=f(x)-m
Y=f(x) → y=|f(x)| 保留x 轴上方的图像并翻折x 轴下方的图像到x 轴上方 Y=f(x) → y=f(|x|) 消去y 轴左边图像,保留y 轴右方的图像并对称至y 轴左边
Y=f(x) → y=f(ωx)
ω>1时,将横坐标缩小
ω
1
ω∈(0,1)时,将横坐标扩大
ω
1
Y=f(x) → y=Af(x)
A>1时,将纵坐标缩小A
1
A ∈(0,1)时,将纵坐标缩小A
1
【伍】对数运算(部分)
❶N M N
M N M N M a a a a a a log log log ;log log )(log -=+=∙
❷N
a m a a m
a a N N n m
N
n
log log log log
== ❸)1,0(log log log ≠>=b b a
N N b b a 解释:N a N a N a b b a N b N a a log log log log ,,log log =∙=∴=条及第④
a
N a
a
a a N N
b b b N
b b b a a
a
log log log log log log log log log
=
=∙=∴ ❹1log log log log log =∙=∙a a b a b b b b b a
❺b n
m
b a n
m a
log log =
❻b c
b c b c m m a a log log log log log == ❼e e d c b a d c b a log log log log log =∙∙∙
附:幂函数图像(取材自原笔记)
1.y=n
m
x ,即f(x)=n
m x ,且n m >0. 2. y=n m x ,即f(x)=n
m
x ,且n
m <0.
m 为奇数,n 为奇数
n ②m n ①m >< m 为奇数,n 为奇数 n
②m n
①m ><
m 为奇数,n 为偶数 n ④m n ③m >< A 图像按标号 m 为奇数,n 为偶数 n ④m n ③m >< B
图像按标号
m 为偶数,n 为奇数 n ⑥m n ⑤m >< m 为偶数,n 为奇数 n
⑥m n
⑤m ><
A 组
B 组。