2010届中考数学二元一次方程组专项训练
- 格式:doc
- 大小:147.00 KB
- 文档页数:8
中考数学总复习《二元一次方程组》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________知识点复习一、二元一次方程组定义1:含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程,它的一般形式是()00,0ax by c a b ++=≠≠。
定义2:把两个方程合在一起,就组成了方程组。
定义3:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,这样的方程组叫做二元一次方程组。
定义4:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
定义5:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
二、解二元一次方程组的方法(1)代入消元法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这种方法叫做代入消元法,简称代入法。
(2)加减消元法:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
这种方法叫做加减消元法,简称加减法。
三、方程(组)与实际问题解有关方程(组)的实际问题的一般步骤:第1步:审题。
认真读题,分析题中各个量之间的关系。
第2步:设未知数。
根据题意及各个量的关系设未知数。
第3步:列方程(组)。
根据题中各个量的关系列出方程(组)。
第4步:解方程(组)。
根据方程(组)的类型采用相应的解法。
第5步:答。
专题练习一、单选题1.已知关于x ,y 的二元一次方程组3221ax y x y +=⎧⎨-=⎩无解,则a 的值是( ) A .2 B .6 C .2- D .6-2.已知23a b -=,1a b +=则36a b -的值为( )A .6B .4C .3D .23.某班有x 人,分y 组活动,若每组7人,则余下3人;每组8人,则有一组差5人,根据题意下列方程组正确的是( )A .7385y x y x =+⎧⎨=+⎩B .7385y x x y =+⎧⎨=-⎩C .7385y x y x =-⎧⎨=+⎩D .7385x y x y =-⎧⎨=+⎩ 4.文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入144元;第2天,卖出18支牙刷和11盒牙膏,收入219元;第3天,卖出23支牙刷和20盒牙膏,收入368元;第4天,卖出17支牙刷和11盒牙膏,收入216元.已知第1天和第2天的记录无误,第3天和第4天有一天的记录有误,则记录有误的一天收入( )A .多记1元B .多记2元C .少记1元D .少记2元5.两位同学在解方程组273ax by cx y +=⎧⎨+=⎩时,甲同学正确地解出11x y =-⎧⎨=-⎩,乙同学因把c 抄错了解得32x y =-⎧⎨=-⎩,则a 、b 、c 正确的值应为( )A .315a b c =-=-=-,,B .115a b c ==-=-,,C .2410a b c ==-=-,,D .315a b c ===-,,6.小华准备购买单价分别为4元和5元的两种瓶装饮料,且每种瓶装饮料的购买数量不为0.若小华将50元恰好用完,则购买方案共有( )A .2种B .3种C .4种D .5种7.在一个停车场,停了小轿车和摩托车一共32辆,这些车一共有108个轮子,则该停车场小轿车和摩托车的辆数分别为( )A .21,11B .22,10C .23,9D .24,8 8.已知关于x ,y 的方程2|18|(26)(2)0n m m x n y +--++=是二元一次方程,则m n +的值(若29m =,则3m =±)是( )A .5-B .3-C .1D .3二、填空题9.当方程组2520x ay x y +=⎧⎨-=⎩解是正整数时,整数a 值为 . 10.如果35x y =⎧⎨=-⎩是方程22mx y +=-的一组解,那么m 的值为 . 11.若关于x y ,的方程组1235x y c x y c +=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,则方程组()()()()12113151x y c x y c ⎧-++=⎪⎨-++=⎪⎩的解为 .12.A,B两地相距80千米,一船从A出发顺水行驶4小时到达B,而从B出发逆水行驶5小时才能到达A,则船在静水中的航行速度是千米/时.13.若关于x的不等式组20,21xx m-<⎧⎨-≥-⎩恰有三个整数解,关于x的方程组26,3x yx y m+=⎧⎨-=⎩的解是正数,则m的取值范围是.三、解答题14.解方程组:(1)25 328 y xx y=-⎧⎨-=⎩(2)434 2312x yx y⎧+=⎪⎨⎪-=⎩15.已知方程组45321x yx y+=⎧⎨-=⎩和31ax byax by+=⎧⎨-=⎩有相同的解,求222a ab b-+的值.16.用加减法解方程组344328x y x y -=⎧⎨-=⎩①②其解题过程如下: 第一步:-①②,得4248y y --=-,解得23y =. 第二步:把23y =,代入①,得8343x -=,解得209x =. 第三步:所以这个方程组的解为20923x y ⎧=⎪⎪⎨⎪=⎪⎩上述解题过程是否正确?若不正确,则从第几步开始出现错误?请写出正确的解题过程.17.印江河是印江的母亲河,为了确保河道畅通,现需要对一段长为180米的河道进行清淤处理,清淤任务由A 、B 两个工程队先后接力完成,A 工程队每天完成12米,B 工程队每天完成8米,共用时20天. 根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:128x y x y ⎧+=⎪⎨+=⎪⎩ 乙:128x y x y ⎧+=⎪⎨+=⎪⎩(1)根据甲同学所列的方程组,请你指出未知数x 、y 表示的意义.x 表示______,y 表示______;请你补全乙同学所列的方程组______(2)求A 、B 两工程队分别完成河道清淤多少米?(写出完整的解答过程)18.“一盔一带”安全守护行动在我县开展以来,市场上头盔出现了热销,某商场购进了一批头盔.已知购进6个A型头盔和4个B型头盔需要440元,购进4个A型头盔和6个B型头盔需要510元.(1)购进1个A型头盔和1个B型头盔分别需要多少元?(2)若该商场准备购进200个这两种型号的头盔,总费用不超过10200元,那么最多可购买B型头盔多少个?(3)在(2)的条件下,若该商场分别以售价为58元/个、98元/个的售价销售完A、B两类型号的头盔共200个,能否实现利润不少于6190元的目标?若能,直接写出相应的采购方案;若不能,请说明理由.参考答案:1.D2.A3.C4.C5.C6.A7.B8.B9.1或3-10.83/22311.65 xy⎧=⎨=⎩12.1813.21m-<≤-14.(1)21 xy=⎧⎨=-⎩(2)1083 xy=⎧⎪⎨=⎪⎩15.116.不正确,从第一步开始出现错误;正确的解题过程见解析,原方程组的解为:42 xy=⎧⎨=⎩17.(1)x表示A工程队工作的天数,y表示B工程队工作的天数,18020 128x yx y+=⎧⎪⎨+=⎪⎩(2)A工程队完成河道清淤60米,B工程队完成河道清淤120米18.(1)购进1个A型头盔30元,1个B型头盔65元;(2)最多可购买B型头盔120个;(3)三种购买方案。
高中函数对称性总结安徽省太湖县朴初中学/苏深强新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。
尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。
以笔者的经验看,这方面一直是教学的难点,尤其是抽象函数的对称性判断。
所以这里我对高中阶段所涉及的函数对称性知识做一个粗略的总结。
一、对称性的概念及常见函数的对称性1、对称性的概念①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。
②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。
2、常见函数的对称性(所有函数自变量可取有意义的所有值)①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。
②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。
③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)。
④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。
⑤指数函数:既不是轴对称,也不是中心对称。
⑥对数函数:既不是轴对称,也不是中心对称。
⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。
⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。
⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化。
中考数学总复习《二元一次方程组》专项测试卷(附答案)一、单选题(共12题;共24分)1.方程组 {y =2x 3x +y =15,的解是( ) A .{x =3y =6,B .{x =4y =3, C .{x =4y =8,D .{x =2y =3,2.以下是方程3x +2y =12的一个解的是( )A .{x =−1y =2B .{x =2y =−1C .{x =2y =3D .{x =3y =23.如图,在某张桌子上放相同的木块, R =32 , S =96 ,则桌子的高度是( )A .63B .58C .60D .644.已知{x =1,y =−2是关于x ,y 的二元一次方程ax +y =1的一个解,那么a 的值为( ) A .3B .1C .-1D .-35.已知关于x 、y 的方程组 {x +y =1−ax −y =3a +5 ,满足 x ≥12y ,则下列结论:①a ≥−2 ;②a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组{x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( ) A .1个B .2个C .3个D .4个6.一个长方形的长减少3cm ,宽增加2cm ,就成为一个正方形,并且长方形的面积与正方形的面积相等.如果设这个长方形的长为xcm ,宽为ycm ,那么所列方程组正确的是( )A .{x +3=y −2(x +3)(y −2)=xyB .{x −3=y +2(x −3)(y +2)=xyC .{3−x =y +2(3−x)(y +2)=xyD .{x −2=y +3(x −2)(y +3)=xy7.若 |b +2|+(a −3)2=0 ,则 b a 的值为( )A .﹣bB .−18C .﹣8D .88.已知关于 x,y 的二元一次方程组 {3x +y =−4m +2x −y =6 的解满足 x +y <3 ,则m 的取值范围是( ) A .m >−52B .m <−52C .m >52D .m <529.已知关于x ,y 的二元一次方程ax +b =y ,当x 取不同值时,对应y 的值分别如下表所示:x … -1 0 1 2 3 … y…321-1…A .x <0B .x >0C .x <2D .x >210.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2(见下页).图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是{3x +2y =19x +4y =23,类似地,图2所示的算筹图我们可以表述为A .{2x +y =114x +3y =27B .{2x =y =114x +3y =22C .{3x +2y =19x +4y =23D .{2x +y =64x +3y =2711.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为( ) A .54B .45C .27D .7212.用代入消元法解方程组 {3x −y =2,①y =1−2x ,② 时,把②代入①,得( )A .3x-1-2x= 2B .3x-(1-2x )= 2C .3x+(1-2x )=2D .3(1-2x )-y=2二、填空题(共6题;共6分)13.若 (a −1)2+|b −2|=5 ,则以a 、b 为边长的等腰三角形的周长为 14.如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形的长与宽之比为5:3,则AD :AB=15.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品(必须保证买两种),共花35元.毽子单价3元,跳绳单价5元,关于购买毽子和跳绳两种体育用品的数量购买的方案共有种.16.如果√x−2+(2y+1)2=0,那么xy=17.方程x2-y2=31的正整数解为。
中考数学专项练习解二元一次方程组(含解析)【一】单项选择题1.方程﹣x+4y=﹣15用含y的代数式表示x是〔〕A.﹣x=4y﹣15B.x=﹣15+4yC.x=4 y+15D.x=﹣4y+152.方程3x+y=7的正整数解的个数是〔〕A.1个B.2个C.3个D.4个3.关于的二元一次方程的正整数解的个数有〔〕个A.1B.2C.3D.44.将方程中的x的系数化为整数,那么以下结果正确的选项是〔〕A.B.C.D.5.在二元一次方程x+3y=1的解中,当x=4时,对应的y的值是〔〕A.﹣B.C.﹣1D.46.在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,那么〔〕A.y=5x-3 B.y=-x-3 C.y=5x+3 D.y=-5x-37.方程2x﹣3y=7,用含x的代数式表示y为〔〕A.y=B.y=C.x=D.x=8.方程组将②×3-①×2得〔〕A.-3y=2B.4y+1=C.y=D.7y=-89.二元一次方程3x﹣y=1,当x=2时,y﹣8等于〔〕A.5B.-3C.-7D.710.方程2x﹣y=3和2x+y=9的公共解是〔〕A.B.C.D.11.二元一次方程x+2y=3的解的个数是〔〕A.1B.2C.3D.无数12.二元一次方程x+2y=3的解的个数是〔〕A.1B.2C.3D.无数13.二元一次方程3x+y=9的正整数解的组数是〔〕A.1B.2C.3D.不确定14.关于x,y的二元一次方程2x+3y=18的正整数解的个数为〔〕A.1B.2C.3D.415.假设方程2x+3y=﹣7,那么假设x=2,那么y值为〔〕A.﹣1B.﹣C.1D.【二】填空题16.二元一次方程3x+2y=11的所有正整数解是________.17. ,用含x的代数式表示y为:________.18.方程2x+3y﹣4=0,用含x的代数式表示y为:y=________;用含y的代数式表示x为:x=________19.在2x﹣y=5中,用y的代数式表示x,那么x=________20.在方程2x﹣y=1中,假设x=﹣4,那么y=________.21.在x+3y=3中,用含x的代数式表示y,那么y=________.22.在二元一次方程2y+x=8中,假设x=0,那么y=________;假设x= 2,那么y=________.23.在方程7x﹣2y=8中用含x的代数式表示y=________.【三】计算题24.解方程组25.解方程:x2+4x﹣2=0.26.解方程组:【四】解答题27.〔开放题〕是否存在整数m,使关于x的方程2x+9=2﹣〔m﹣2〕x 在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?28.怎样运用一个字母代数式表示另一个字母呢?如:4x﹣3y=20,用含y的式子表示x.解:4x﹣3y=20.〔把常数项,含y的式子放在方程等式右边〕移项,得4x=20﹣3y.两边除以4,得x=﹣y+5.以上过程对吗?为什么?【五】综合题29.有理数x、y满足等式:2x+y=3.〔1〕假设x=,求y的值.〔2〕假设x≥,求y的取值范围30.先用一个未知数的代数式表示另一个未知数,然后再求出以下每个方程的三组解:〔1〕2〔x﹣y〕=5〔2〕4x+2y=x﹣y+1【一】单项选择题1.方程﹣x+4y=﹣15用含y的代数式表示x是〔〕A.﹣x=4y﹣15B.x=﹣15+4yC.x=4 y+15D.x=﹣4y+15【考点】解二元一次方程【解析】【解答】解:移项,得﹣x=﹣15﹣4y,系数化为1,得x=4y +15.应选C、【分析】将原方程进行移项、系数化为1,变换成x=ay+b的形式.2.方程3x+y=7的正整数解的个数是〔〕A.1个B.2个C.3个D.4个【考点】解二元一次方程【解析】【解答】由得:y=7﹣3x,要使x,y都是正整数,∴x=1,2时,相应的y=4,1.∴正整数解为.应选B、【分析】要先把其中一个未知数用另一个未知数表示出来.然后根据解为正整数分析它的解的情况.3.关于的二元一次方程的正整数解的个数有〔〕个A.1B.2C.3D.4【考点】解二元一次方程4.将方程中的x的系数化为整数,那么以下结果正确的选项是〔〕A.B.C.D.【考点】解二元一次方程【解析】【分析】由题意把原方程两边同时乘以-2即可得到结果.【解答】方程两边同时乘以-2可得,应选B.【点评】此题属于基础应用题,只需学生熟练掌握解二元一次方程的方法,即可完成.5.在二元一次方程x+3y=1的解中,当x=4时,对应的y的值是〔〕A.﹣B.C.﹣1D.4【考点】解二元一次方程【解析】【解答】解:把x=4代入方程x+3y=1得:4+3y=1,y=﹣1.应选C、【分析】把x=4代入方程x+3y=1求出y即可.6.在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,那么〔〕A.y=5x-3 B.y=-x-3 C.y=5x+3 D.y=-5x-3【考点】解二元一次方程【解析】【解答】去括号,得2x+2y-3y+3x=3,化简,得5x-y=3,移项,得y=5x-3.应选A、【点评】此题考查方程的基本变形,能够熟练运用等式的性质进行变形.7.方程2x﹣3y=7,用含x的代数式表示y为〔〕A.y=B.y=C.x=D.x=【考点】解二元一次方程【解析】【解答】解:移项,得﹣3y=7﹣2x,系数化为1,得y=,即y=.应选:B、【分析】此题是将二元一次方程变形,先移项、再系数化为1即可.8.方程组将②×3-①×2得〔〕A.-3y=2B.4y+1=C.y=D.7y=-8【考点】解二元一次方程【解析】【分析】此题考查的是解二元一次方程组时的加减消元法,只要把原方程中每一项都和3或2相乘,然后进行加减即可.【解答】(2)×3得:6x-9y=12(3),(1)×2得:6x-10y=12(4),(3)-(4)得:y=0.应选C、【点评】此题应注意:-9y-〔-10y)=y.9.二元一次方程3x﹣y=1,当x=2时,y﹣8等于〔〕A.5B.-3C.-7D.7【考点】解二元一次方程10.方程2x﹣y=3和2x+y=9的公共解是〔〕A.B.C.D.【考点】解二元一次方程【解析】【解答】解:联立得:,①+②得:4x=12,解得:x=3,把x=3代入①得:y=3,那么方程组的解为,应选D【分析】联立两方程组成方程组,求出方程组的解即可.11.二元一次方程x+2y=3的解的个数是〔〕A.1B.2C.3D.无数【考点】解二元一次方程【解析】【解答】由二元一次方程的解的定义知,任意一个二元一次方程都有无数个解.应选:D、【分析】由于二元一次方程x+2y=3是不定方程,所以有无数组解.12.二元一次方程x+2y=3的解的个数是〔〕A.1B.2C.3D.无数【考点】解二元一次方程【解析】【解答】解:由二元一次方程的解的定义知,任意一个二元一次方程都有无数个解.应选:D、【分析】由于二元一次方程x+2y=3是不定方程,所以有无数组解.13.二元一次方程3x+y=9的正整数解的组数是〔〕A.1B.2C.3D.不确定【解析】【解答】解:方程3x+y=9变形得y=9﹣3x.要使x,y都是正整数,那么,,所以原方程的正整数解有2组,应选B、【分析】此题是求不定方程的整数解,先将方程做适当变形,确定其中一个未知数的值,然后再求出另一个未知数的值.14.关于x,y的二元一次方程2x+3y=18的正整数解的个数为〔〕A.1B.2C.3D.4【考点】解二元一次方程【解析】【解答】解:2x+3y=18,解得:x=,当y=2时,x=6;当y=4时,x=3,那么方程的正整数解有2对.应选B、【分析】将y看做数求出x,即可确定出方程的正整数解.15.假设方程2x+3y=﹣7,那么假设x=2,那么y值为〔〕A.﹣1B.﹣C.1D.【解析】【解答】解:方程2x+3y=﹣7,把x=2代入得:4+3y=﹣7,解得:y=﹣,应选B【分析】把x的值代入方程计算即可求出y的值.【二】填空题16.二元一次方程3x+2y=11的所有正整数解是________.【考点】解二元一次方程17. ,用含x的代数式表示y为:________.【考点】解二元一次方程18.方程2x+3y﹣4=0,用含x的代数式表示y为:y=________;用含y的代数式表示x为:x=________【考点】解二元一次方程【解析】【解答】解:〔1〕移项得:3y=4﹣2x,系数化为1得:y=;〔2〕移项得:2x=4﹣3y,系数化为1得:x=.【分析】把方程2x+3y﹣4=0写成用含x的式子表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后系数化1就可用含x的式子表示y的形式:y=;写成用含y的式子表示x的形式,需要把含有x 的项移到等号一边,其他的项移到另一边,然后系数化1就可用y的式子表示x的形式:x=.19.在2x﹣y=5中,用y的代数式表示x,那么x=________【考点】解二元一次方程20.在方程2x﹣y=1中,假设x=﹣4,那么y=________.【考点】解二元一次方程21.在x+3y=3中,用含x的代数式表示y,那么y=________.【考点】解二元一次方程22.在二元一次方程2y+x=8中,假设x=0,那么y=________;假设x= 2,那么y=________.【考点】解二元一次方程23.在方程7x﹣2y=8中用含x的代数式表示y=________.【考点】解二元一次方程【三】计算题24.解方程组【考点】解二元一次方程【解析】【分析】运用加减消元法解方程组。
中考数学《二元一次方程组》专项练习题及答案一、单选题1.某公司上半年生产甲、乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架设甲种型号无人机有x 架,乙种型号无人机有y 架,根据题意可列出的方程组是( )A .{x =13(x +y)+11y =12(x +y)+2B .{x =13(x +y)+11y =12(x +y)−2C .{x =13(x +y)−11y =12(x +y)+2D .{x =12(x +y)+11y =13(x +y)−22.对于非零的两个实数a ,b ,规定a⊕b=am ﹣bn ,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为( ) A .﹣13B .13C .2D .﹣23.若二元一次方程组 {x −y =a,x +y =3a 的解是二元一次方程 3x −5y −7=0 的一个解,则 a 为( ) A .3B .5C .7D .94.关于x 、y 的方程组 {2x +3y =k3x +5y =k +2 的解x 、y 的和为12,则k 的值为( )A .14B .10C .0D .﹣145.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则正确方程组是( ) A .{x =y +512x =y −5B .{x =y +512x =y +5C .{x =y +52x =y −5D .{x =y −52x =y +56.有两种文具,每种价格分别是2元、3元,现在有19元钱,两种文具都要买,恰好使钱用完的买法数有( ) A .3种B .4种C .5种D .6种7.下列四个方程组中,属于二元一次方程组的是( ) ①{1x +y =116x −6y =−9②{xy =9x +2y =16③{2x +y =1x +z =9④{x =2y =3.A .①B .②C .③D .④8.下列方程组中,是二元一次方程组的是( )A .{2x −y =73y =2x −3B .{x +y =1xy =12C .{y 3−x 2−12x 2+3y −15D .{1x −2y =1x +y =109.我国明代数学读本《算法统宗》一书中有这样一道题:“一支竿一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托。
二元一次方程组一、填空题1.用加减消元法解方程组,由①×2﹣②得.2.在方程3x﹣y=5中,用含x的代数式表示y为:y= ,当x=3时,y= .3.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k= ;当m=2,n=﹣3时代数式的值是.4.已知方程组与有相同的解,则m= ,n= .5.若(2x﹣3y+5)2+|x+y﹣2|=0,则x= ,y= .6.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,则用代数式表示原两位数为,根据题意得方程组.7.如果是方程6x+by=32的解,则b= .8.若是关于x、y的方程ax﹣by=1的一个解,且a+b=﹣3,则5a﹣2b= .9.已知a2﹣a+1=2,那么a﹣a2+1的值是.10.若|3a+4b﹣c|+(c﹣2b)2=0,则a:b:c= .二、选择题11.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣212.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1 B.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=113.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3 B.﹣3 C.﹣4 D.414.若二元一次方程3x﹣2y=1有正整数解,则x的取值应为()A.正奇数B.正偶数C.正奇数或正偶数D.015.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>116.方程ax﹣4y=x﹣1是二元一次方程,则a的取值为()A.a≠0 B.a≠﹣1 C.a≠1 D.a≠217.当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时这个式子的值为()A.6 B.﹣4 C.5 D.118.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4 B.x=v+4 C.2x﹣u=4 D.x﹣v=4三、解答题19.解方程组:.20.解方程组:.21.解方程组:.22.王大伯承包了25亩土地,今年春季改种黄瓜和西红柿两种大棚蔬菜,用去了44 000元,其中种黄瓜每亩用了1700元,获纯利润2600元;种西红柿每亩用了1800元,获纯利润2800元,问王大伯一共获纯利润多少元?23.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量已知关于x、y的方程组与有相同的解,求a、b的值.28.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如表所示.现租用该公司的甲种货车3辆乙种货车5辆,一次刚好运完这批货物,如果按每吨付运费30元计算,问货主应付运费多少元?第一次第二次甲种货车辆(辆) 2 5 乙种货车辆(辆) 3 6 累计运货吨数(吨)15.5 35二元一次方程组参考答案与试题解析一、填空题1.用加减消元法解方程组,由①×2﹣②得2x=﹣3 .【考点】解二元一次方程组.【专题】计算题.【分析】此题主要考查加减消元法的应用,按照题目要求解答即可.【解答】解:①×2﹣②得,6x+2y﹣(4x+2y)=﹣2﹣1,合并同类项得,2x=﹣3.【点评】注意掌握二元一次方程的加减消元法.2.在方程3x﹣y=5中,用含x的代数式表示y为:y= 12x﹣20 ,当x=3时,y= 16 .【考点】解二元一次方程.【分析】本题是将二元一次方程变形,用一个未知数表示另一个未知数,可先移项,再系数化为1,得到y的表达式,最后把x的值代入方程求出y值.【解答】解:①由已知方程3x﹣y=5,移项,得,系数化为1,得y=12x﹣20;②当x=3代入y=12x﹣20,得y=16.【点评】本题考查的是方程的基本运算技能:移项,合并同类项,系数化为1等.3.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k= ﹣2 ;当m=2,n=﹣3时代数式的值是﹣7 .【考点】代数式求值.【分析】直接把m=﹣2,n=1代入代数式,求得k,再利用代入法求代数式的解.【解答】解:∵m=﹣2,n=1∴3m+5n﹣k=1∴k=﹣2∵m=2,n=﹣3,k=﹣2∴3m+5n﹣k=3×2+5×(﹣3)﹣(﹣2)=﹣7.【点评】解题关键是先把m=﹣2,n=1代入代数式求出k的值,再把k的值,m=2,n=﹣3代入代数式求值.4.已知方程组与有相同的解,则m= ,n= 12 .【考点】同解方程组.【专题】计算题.【分析】解此题可先将第二个方程组解出x、y的值,再代入第一个方程组,化为只有m、n的方程组,即可求出n、m.【解答】解:由(1)×2+(2),得10x=20,x=2,代入,得y=0.将x、y代入第一个方程组可得,解,得.【点评】此题考查的是考生对二元一次方程组的解的理解和二元一次方程组的解法,解出x、y的值,再代入方程组求出m、n的值、最重要的是将方程化简到只含有两个未知数.5.若(2x﹣3y+5)2+|x+y﹣2|=0,则x= ,y= .【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x、y的值.【解答】解:∵(2x﹣3y+5)2+|x+y﹣2|=0,∴,解,得x=,y=.【点评】本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.6.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,则用代数式表示原两位数为10y+x ,根据题意得方程组.【考点】由实际问题抽象出二元一次方程组.【分析】如果设原两位数的个位数字为x,十位数字为y,那么原两位数可表示为10y+x.此题中的等量关系有:①有一个两位数,它的两个数字之和为11可得出方程x+y=11;②根据“把这个两位数的个位数字与十位数字对调,所得的新数比原数大63”,可得出方程为(10x+y)﹣(10y+x)=63,那么方程组是.【解答】解:根据数位的意义,该两位数可表示为10y+x.根据有一个两位数,它的两个数字之和为11,可得方程x+y=11;根据把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,可得方程(10x+y)﹣(10y+x)=63.那么方程组是.故答案为:10y+x,.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.本题要注意两位数的表示方法.7.如果是方程6x+by=32的解,则b= 7 .【考点】二元一次方程的解.【专题】方程思想.【分析】将x=3,y=2代入方程6x+by=32,把未知数转化为已知数,然后解关于未知系数b的方程.【解答】解:把x=3,y=2代入方程6x+by=32,得6×3+2b=32,移项,得2b=32﹣18,合并同类项,系数化为1,得b=7.【点评】本题的关键是将方程的解代入原方程,把关于x、y的方程转化为关于系数b的方程,此法叫做待定系数法,在以后的学习中,经常用此方法求函数解析式.8.若是关于x、y的方程ax﹣by=1的一个解,且a+b=﹣3,则5a﹣2b= ﹣43 .【考点】二元一次方程的解.【分析】要求5a﹣2b的值,要先求出a和b的值.根据题意得到关于a和b的二元一次方程组,再求出a和b的值.【解答】解:把代入方程ax﹣by=1,得到a+2b=1,因为a+b=﹣3,所以得到关于a和b的二元一次方程组,解这个方程组,得b=4,a=﹣7,所以5a﹣2b=5×(﹣7)﹣2×4=﹣35﹣8=﹣43.【点评】运用代入法,得关于a和b的二元一次方程组,再解方程组求解是解决此类问题的关键.9.已知a2﹣a+1=2,那么a﹣a2+1的值是0 .【考点】代数式求值.【专题】整体思想.【分析】先求出a2﹣a的值,再把原式化为﹣(a2﹣a)+1的形式进行解答.【解答】解:∵a2﹣a+1=2,∴a2﹣a=1,∴a﹣a2+1=﹣(a2﹣a)+1,=﹣1+1=0.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a2﹣a的值,然后利用“整体代入法”求代数式的值.10.若|3a+4b﹣c|+(c﹣2b)2=0,则a:b:c= ﹣2:3:6 .【考点】解三元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】解此题可以根据函数的非负性进行求解,含不等式的式子必大于0,含平方的式子也必大于0,因此可知|3a+4b﹣c|=0,且(c﹣2b)2=0,据此可以求出a,b,c的比.【解答】解:依题意得:|3a+4b﹣c|=0,且(c﹣2b)2=0,∴,∴由②得3a=﹣2b,即a=﹣b,∴a:b:c=﹣b:b:2b=﹣2:3:6.故答案为:﹣2:3:6.【点评】此题考查的是非负数的性质,据此可以列出二元一次方程组,求出相应的比,就可以计算出此题.二、选择题11.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣2【考点】同类项;解二元一次方程组.【专题】计算题.【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选B.【点评】根据同类项的定义列出方程组,是解本题的关键.12.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1 B.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=1【考点】二元一次方程组的解.【分析】解此题时可将x,y的值代入方程,化简可得出结论.【解答】解:根据题意得,原方程可化为要确定a和b的关系,只需消去c即可,则有9a+4b=1.故选D.【点评】此题考查的是对方程组性质的理解,运用加减消元法来求解.13.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3 B.﹣3 C.﹣4 D.4【考点】解三元一次方程组.【专题】计算题.【分析】由题意建立关于x,y的方程组,求得x,y的值,再代入y=kx﹣9中,求得k的值.【解答】解:解得:,代入y=kx﹣9得:﹣1=2k﹣9,解得:k=4.故选D.【点评】本题先通过解二元一次方程组,求得后再代入关于k的方程而求解的.14.若二元一次方程3x﹣2y=1有正整数解,则x的取值应为()A.正奇数B.正偶数C.正奇数或正偶数D.0【考点】解二元一次方程.【分析】应先用方程表示y的值,然后再根据解为正整数分析解的情况.【解答】解:由题意,得,要使x,y都是正整数,必须满足3x﹣1大于0,且是2的倍数.根据以上两个条件可知,合适的x值为正奇数.故选A.【点评】解题关键是把方程做适当的变形,再确定符合条件的x的取值范围.15.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>1【考点】解二元一次方程组;解一元一次不等式.【分析】解此题时可以解出二元一次方程组中x,y关于a的式子,代入x+y>0,然后解出a的取值范围.【解答】解:方程组中两个方程相加得4x+4y=2+2a,即x+y=,又x+y>0,即>0,解一元一次不等式得a>﹣1,故选C.【点评】本题是综合考查了二元一次方程组和一元一次不等式的综合运用,灵活运用二元一次方程组的解法是解决本题的关键.16.方程ax﹣4y=x﹣1是二元一次方程,则a的取值为()A.a≠0 B.a≠﹣1 C.a≠1 D.a≠2【考点】二元一次方程的定义.【专题】计算题.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑求a的取值.【解答】解:方程ax﹣4y=x﹣1变形得(a﹣1)x﹣4y=﹣1,根据二元一次方程的概念,方程中必须含有两个未知数,所以a﹣1≠0,即a≠1.故选C.【点评】二元一次方程必须符合以下三个条件:(1)方程中必须只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.解本题时是根据条件(1).17.(2013春•苏州期末)当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时这个式子的值为()A.6 B.﹣4 C.5 D.1【考点】代数式求值.【专题】整体思想.【分析】把x=2代入ax3+bx+1=6,得到8a+2b=5;又当x=﹣2时,ax3+bx+1=﹣8a﹣2b+1=﹣(8a+2b)+1.所以把8a+2b当成一个整体代入即可.【解答】解:当x=2时,代数式ax3+bx+1的值为6,即8a+2b+1=6,∴8a+2b=5①当x=﹣2时,ax3+bx+1=﹣8a﹣2b+1=﹣(8a+2b)+1②把①代入②得:ax3+bx+1=﹣5+1=﹣4.故选B.【点评】此题考查的是代数式的性质,将已知变形然后求解.18.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4 B.x=v+4 C.2x﹣u=4 D.x﹣v=4【考点】由实际问题抽象出二元一次方程.【专题】行程问题.【分析】首先由题意可得,甲乙各走了一小时的路程.根据题意,得甲走的路程差4千米不到2x千米,即u=2x﹣4或2x﹣u=4;乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.【解答】解:根据甲走的路程差4千米不到2x千米,得u=2x﹣4或2x﹣u=4.则C正确;根据乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.则B,D正确,A错误.故选:A.【点评】此题的关键是用代数式表示甲、乙走一小时的路程,同时用到了路程公式,关键是能够根据题中的第三个条件得到甲、乙所走的路程分别和总路程之间的关系.三、解答题19.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】观察本题可知x的系数的最小公倍数较小,应考虑消去x,具体用加减消元法.【解答】解:(1)×7+(2)×2得:﹣11y=66,y=﹣6,把y=﹣6代入(1)得:2x+18=8,x=﹣5,∴原方程组的解为.【点评】两个未知数系数的符号都相反,可考虑消去最小公倍数较小的未知数.20.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】在方程2中,y的系数为1,所以可用含x的式子表示y,即用代入消元法比较简单.【解答】解:由(2)变形得:y=3x+1,代入(1)得:x+2(3x+1)=9,解得:x=1.代入y=3x+1得:y=4.∴方程组的解为.【点评】这类题目的解题关键是掌握方程组解法中的加减消元法和代入法.21.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.【解答】解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.【点评】本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.22.王大伯承包了25亩土地,今年春季改种黄瓜和西红柿两种大棚蔬菜,用去了44 000元,其中种黄瓜每亩用了1700元,获纯利润2600元;种西红柿每亩用了1800元,获纯利润2800元,问王大伯一共获纯利润多少元?【考点】二元一次方程组的应用.【专题】应用题.【分析】根据建立方程组,先求到两种蔬菜种植的亩数,再求一共获的纯利润.【解答】解:设王大伯种了x亩黄瓜,y亩西红柿,根据题意可得.共获纯利润=2600×10+2800×15=68 000(元)答:王大伯一共获纯利润68 000元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题一共获的纯利润指黄瓜和西红柿的利润和.23.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量(2014春•惠山区校级期末)已知关于x、y的方程组与有相同的解,求a、b的值.【考点】同解方程组.【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【解答】解:据题意得,解得,代入其他两个方程,可得方程组为,解得.【点评】此题比较复杂,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.28.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如表所示.现租用该公司的甲种货车3辆乙种货车5辆,一次刚好运完这批货物,如果按每吨付运费30元计算,问货主应付运费多少元?第一次第二次甲种货车辆(辆) 2 5乙种货车辆(辆) 3 6累计运货吨数(吨)15.5 35【考点】二元一次方程组的应用.【分析】应先算出甲种货车和乙种货车一次各运多少吨货物.等量关系为:2×每辆甲种车的载重+3×每辆乙种车的载重=15.5;5×每辆甲种车的载重+6×每辆乙种车的载重=35.【解答】解:设甲种车每辆装x吨,乙种车每辆装y吨.则解得,运费为30×(3×4+5×2.5)=735(元).答:货主应付运费735元.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.。
中考数学复习《二元一次方程组》专项练习题及答案学校:___________班级:___________姓名:___________考号:___________温故而知新:二元一次方程组 1、二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是( 2、二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。
3、二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。
4二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
5、二元一次方正组的解法 (1)代入法(2)加减法 6、三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程。
7、三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。
练习题一、选择题:(本题共8小题,每小题5分,共40分.) 1.方程组02x y x y -=⎧⎨+=⎩的解为( )A .11x y =⎧⎨=-⎩B .11x y =-⎧⎨=⎩C .20x y =⎧⎨=⎩D .11x y =⎧⎨=⎩2.为响应“科教兴国”的战略号召,某学校计划成立创客实验室,现需购买航拍无人机和编程机器人,已知购买2架航拍无人机和3个编程机器人所需费用相同,购买4个航拍无人机和7个编程机器人共需3480元,设购买1架航拍无人机需x 元,购买1个编程机器人需y 元,则可列方程组为( )A .23473480x y x y =⎧⎨+=⎩B .3=24+7=3480x yx y ⎧⎨⎩C .2=37+4=3480x yx y ⎧⎨⎩D .3=27+4=3480x yx y ⎧⎨⎩3.小丽在用“加减消元法”解二元一次方程组524239x y x y -=⎧⎨+=⎩①②时,利用a b ⨯+⨯①②消去x ,则a 、b 的值可能是( ) A .2a =和5b = B .3a =和2b =C .3a =-和2b =D .2a =和=5b -4.有3堆硬币,每枚硬币的面值相同.小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放人第1堆,这样每堆有16枚硬币,则原来第1堆有硬币多少枚( ) A .22 B .16 C .14 D .12 5.已知 12x y =-⎧⎨=⎩是关于 x y 、 的二元一次方程 3mx y -= 的一个解,则 m 的值是( ) A .-1B .1C .-5D .56.若方程组31331x y ax y a +=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为( )A .-1B .1C .0D .无法确定7.已知关于x ,y 的方程组 111222a x b y c a x b y c +=⎧⎨+=⎩ 的解为 24x y =⎧⎨=⎩,则关于方程组()()()()11122212131213a x b y c a x b y c ++-=⎧⎪⎨++-=⎪⎩ 的解为( ) A .57x y =⎧⎨=⎩B .513x y =⎧⎨=⎩C .13x y =⎧⎨=⎩D .17x y =⎧⎨=⎩8.已知关于x ,y 的二元一次方程组2332x y a x y a +=-⎧⎨-=⎩,有下列说法:①当a =2时,方程的两根互为相反数;②不存在自然数a ,使得x ,y 均为正整数;③x ,y 满足关系式x -5y =6;④当且仅当a =-5时,解得x 为y 的2倍.其中正确的是( ) A .①②③④ B .①③④ C .②③ D .①②④ 二、填空题:(本题共5小题,每小题3分,共15分.)9.某班级为奖励网络课堂线上学习先进个人,花了800元钱购买甲、乙两种奖品共60件,其中甲种奖品每件16元,乙种奖品每件12元求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,根据题意可列方程组为 . 10.小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔能买 支.11.以方程组 12y x y x =+⎧⎨=-+⎩的解为坐标的点(x,y)在第 象限.12.已知 21x y =⎧⎨=⎩ 是二元一次方程组 71ax by ax by +=⎧⎨-=⎩ 的解,则 a b - = 。
中考真题50 道中考真题之《二元一次方程组计算题》-----专项练习50题(有答案)1.(2012•德州)已知,则a+b 等于( )A. 3 B C. 2 D. 12.(2012菏泽)已知⎩⎨⎧==12y x 是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则n m -2的算术平方根为( )A .±2B .2C .2D . 43.(2012临沂)关于x 、y 的方程组3,x y m x my n -=⎧⎨+=⎩的解是1,1,x y =⎧⎨=⎩ 则m n -的值是( )A .5B .3C .2D .1 4.(2012•杭州)已知关于x ,y 的方程组,其中﹣3≤a≤1,给出下列结论:①是方程组的解;②当a=﹣2时,x ,y 的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a 的解; ④若x≤1,则1≤y≤4. 其中正确的是( )A .①②B .②③C .②③④D .①③④5. (2012广东湛江) 请写出一个二元一次方程组 ,使它的解是.6.(2012广东)若x ,y 为实数,且满足|x ﹣3|+=0,则()2012的值是 1 .7.(2012安顺)以方程组的解为坐标的点(x ,y )在第 象限.8.(2012•连云港)方程组的解为 .9.(2012•广州)解方程组.10.(2012广东)解方程组:.11.(2012•黔东南州)解方程组.12、(2012湖南常德)解方程组:⎩⎨⎧==+1-25y x y x13. (2011湖南益阳,2,4分)二元一次方程21-=x y 有无数多个解,下列四组值中不是..该方程的解的是 A .012x y =⎧⎪⎨=-⎪⎩B .11x y =⎧⎨=⎩C .10x y =⎧⎨=⎩D .11x y =-⎧⎨=-⎩14. (2011四川凉山州,3,4分)下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B . 52313x y y x-=⎧⎪⎨+=⎪⎩ C .20135x z x y +=⎧⎪⎨-=⎪⎩ D .5723z x y =⎧⎪⎨+=⎪⎩15. (2011广东肇庆,4,3分)方程组⎩⎨⎧=+=-422y x y x 的解是A .⎩⎨⎧==21y x B .⎩⎨⎧==13y x C .⎩⎨⎧-==20y xD .⎩⎨⎧==02y x ①②16. (2011山东东营,4,3分)方程组31x y x y +=⎧⎨-=-⎩,的解是A .12.x y =⎧⎨=⎩, B .12.x y =⎧⎨=-⎩, C .21.x y =⎧⎨=⎩, D .01.x y =⎧⎨=-⎩,17. (2011山东枣庄,6,3分)已知2,1x y =⎧⎨=⎩是二元一次方程组7,1ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( )A .-1B .1C .2D .318. (2011安徽芜湖,13,5分)方程组237,38.x y x y +=⎧⎨-=⎩的解是 .19. (2011江西,12,3分)方程组257x y x y ì+=ïïíï-=ïî的解是 .20. (2011福建泉州,12,4分)已知x 、y 满足方程组⎩⎨⎧=+=+,42,52y x y x 则x -y 的值为.21. (2011山东潍坊,15,3分)方程组524050x y x y --=⎧⎨+-=⎩的解是___________________.22. (2011江西南昌,12,3分)方程组257x y x y ì+=ïïíï-=ïî的解是 .23. (2011安徽芜湖,13,5分)方程组237,38.x y x y +=⎧⎨-=⎩的解是 .24. (2011湖北鄂州,7,3分)若关于x ,y 的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.25. (2011湖南怀化,18,6分)解方程组:38.53 4.x y x y +=⎧⎨-=⎩26. (2011上海,20,10分)解方程组:222,230.x y x xy y -=⎧⎨--=⎩ 27.(2011湖北黄石,20,8分)解方程:)10553(4222=--+--y x y x 。
中考数学总复习《二元一次方程组》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列方程中,是二元一次方程的是( )A.3x +2y =4B.12xy =5C.12x 2﹣14y =3 D.8x ﹣2x =12.已知方程3x+2y=4,用含x 的式子表示y ,则 ( ) A.y=- 32x+2 B.2y=3x -4 C.y=32x -2 D.y=32x -43.若⎩⎨⎧x =1,y =2是关于x ,y 的二元一次方程ax -3y =1的解,则a 的值为( )A.-5B.-1C.2D.74.已知方程组()⎩⎨⎧=-=--13221m yx x m 是二元一次方程组,则m =( ) A.1或﹣1 B.2或﹣2 C.﹣2 D.2 5.二元一次方程组⎩⎨⎧3x +2y =7,6x -2y =11的解是( )A.⎩⎨⎧x =-1,y =5B.⎩⎨⎧x =1,y =2C.⎩⎨⎧x =3,y =-1D.⎩⎨⎧x =2,y =126.若-2a m b 4与5a n+2b 2m+n 可以合并成一项,则m n 的值是( ) A.2 B.0 C.-1 D.17.某出租车起步价所包含的路程为0~2 km ,超过2 km 的部分按每千米另收费.津津乘坐这种出租车走了7 km ,付了16元;盼盼乘坐这种出租车走了13 km ,付了28元.设这种出租车的起步价为x 元,超过2 km 后超过部分每千米收费y 元,则下列方程组正确的是( ) A.⎩⎨⎧x +7y =16,x +13y =28B.⎩⎨⎧ x +(7-2)y =16,x +13y =28C.⎩⎨⎧x +7y =16,x +(13-2)y =28D.⎩⎨⎧x +(7-2)y =16,x +(13-2)y =288.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( ) A.B.C.D.9.四个形状、大小相同的长方形,如图,拼成一个大的长方形,如果大长方形的周长为280厘米,那么,每块小长方形的面积是( )A.900平方厘米B.1200平方厘米C.1600平方厘米D.1800平方厘米 10.已知关于x 、y 的方程组,给出下列结论:①是方程组的解;②无论a 取何值,x ,y 的值都不可能互为相反数; ③当a=1时,方程组的解也是方程x +y=4﹣a 的解; ④x ,y 的都为自然数的解有4对. 其中正确的个数为( )A.1个B.2个C.3个D.4个 二、填空题11.若关于x 、y 的二元一次方程3x -ay =1有一个解是⎩⎨⎧x =3y =2,则a =______.12.写出2x ﹣3y =0的一组整数解 .13.已知(x -3)2+│2x -3y+6│=0,则x=________,y=_________. 14.小亮解方程组的解为,由于不小心,滴上了两滴墨水, 刚好遮住了两个数●和★,请你帮他找回★这个数★=15.已知一个两位数,它的十位上的数字与个位上的数字的和为12,若对调个位与十位上的数字,得到的新数比原数小18.设原数的个位数字为x,十位数字为y,可列方程组为.16.《九章算术》有个题目,大意是:“五只雀、六只燕,共重16两,雀重燕轻,互换其中一只,恰好一样重.”设每只雀、燕的重量分别为x两,y两,可得方程组是.三、解答题17.解方程组:18.解方程组:19.在解方程组时,由于粗心,甲看错了方程组中的a,而得到方程组的解为,乙看错了方程组中的b,而得到方程组的解为(1)甲把a看成了什么?乙把b看成了什么?(2)求出原方程组的正确解.20.已知关于x、y的方程组的解满足x+y=-10,求式子m2-2m+1的值.21.打折前,买10件A商品和5件B商品共用了400元,买5件A商品和10件B商品共用了350元.(1)求打折前A商品、B商品每件分别多少钱?(2)打折后,买100件A商品和100件B商品共用了3800元.比不打折少花多少钱?22.某学校现有甲种材料35㎏,乙种材料29㎏,制作A、B两种型号的工艺品,用料情况如下表:需甲种材料需乙种材料1件A型工艺品0.9㎏0.3㎏1件B型工艺品0.4㎏1㎏(1)利用这些材料能制作A、B两种工艺品各多少件?(2)若每公斤甲、乙种材料分别为8元和10元,问制作A、B两种型号的工艺品各需材料多少钱?23.我国古代数学著作《九章算术》的“方程”一章里,一次方程组是由算筹布置完成的.如图①,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项,把图①所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是⎩⎨⎧x +4y =10,6x +11y =34.请你根据图②所示的算筹图,列出方程组,并求解.参考答案1.A.2.A3.D.4.C.5.D6.D7.D8.A9.B. 10.C. 11.答案为:4 12.答案不唯一,如.13.答案为:x=3,y=4. 14.答案为:-2 15.答案为: 16.答案为:.17.解:x=-6.2,y=-4.4; 18.解:x =1;y =0.19.解:(1)甲把a 看成了4,乙把b 看成了23; (2)x=3,y=4.20.解:关于x 、y 的方程组得(2m -6)+(-m+4)=-10.解得m=-8. ∴m 2-2m+1=(-8)2-2×(-8)+1=81.21.解:(1)设打折前A 商品每件x 元、B 商品每件y 元,根据题意,得 由题意得解之得答:打折前A 商品每件30元、B 商品每件20元. (2)打折前,买100件A 商品和100件B 商品共用: 100×30+100×20=5000 (元) 比不打折少花:5000﹣3800=1200 (元)答:打折后,买100件A 商品和100件B 商品比不打折少花1200元. 22.解:(1)设利用这些材料能制作A 工艺品x 件,B 工艺品y 件 由题意得,,解得:答:利用这些材料能制作A 工艺品30件,B 工艺品20件;(2)制作一件A 型工艺品需要的钱数为:0.9×8+0.3×10=10.2(元) 则制作A 型号的工艺品需材料的钱数为:10.2×30=306(元) 制作一件B 型工艺品需要的钱数为:0.4×8+1×10=13.2(元) 则制作A 型号的工艺品需材料的钱数为:13.2×20=264(元) 答:制作A 、B 两种型号的工艺品各需材料306元,264元. 23.解: 依题意,得⎩⎨⎧2x +y =7, ①x +3y =11. ②由①,得y =7-2x.③把③代入②,得x +3(7-2x)=11.解方程,得x =2. 把x =2代入①,得y =3. ∴方程组的解是⎩⎨⎧x =2y =3.。
第八章 二元一次方程组【课标要求】【知识梳理】1.二元一次方程(组)及解的应用:注意:方程(组)的解适合于方程,任何一个二元一次方程都有无数个解,有时考查其整数解的情况,还经常应用方程组的概念巧求代数式的值。
2.解二元一次方程组:解方程组的基本思想是消元,常用方法是代入消元和加减消元,转化思想和整体思想也是本章考查重点。
3.二元一次方程组的应用:列二元一次方程组的关键是能正确分析出题目中的等量关系,题目内容往往与生活实际相贴近,与社会关系的热点问题相联系,请平时注意搜集、观察与分析。
【能力训练】一、填空题:1、用加减消元法解方程组⎩⎨⎧=+-=+12413y x y x ,由①×2—②得 。
2、在方程yx 413-=5中,用含x 的代数式表示y 为:y = ,当x =3时,y = 。
3、在代数式k n m -+53中,当m =-2,n =1时,它的值为1,则k = ;当m =2,n =-3时代数式的值是 。
4、已知方程组⎩⎨⎧-=-=+2513n ny x ny mx 与⎩⎨⎧=+=-82463y x y x 有相同的解,则m = ,n = 。
5、若02)532(2=-+++-y x y x ,则x = ,y = 。
6、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x ,十位数字为y ,则用代数式表示原两位数为 ,根据题意得方程组⎩⎨⎧_________________________________。
7、如果x =3,y =2是方程326=+by x 的解,则b = 。
8、若⎩⎨⎧-==21y x 是关于x 、y 的方程1=-by ax 的一个解,且3-=+b a ,则b a 25-= 。
9、已知212=+-a a ,那么12+-a a 的值是 。
二、选择题:10、在方程组⎩⎨⎧+==-1312z y y x 、⎩⎨⎧=-=132x y x 、⎩⎨⎧=-=+530y x y x 、⎩⎨⎧=+=321y x xy 、 ⎪⎩⎪⎨⎧=+=+1111y x y x 、⎩⎨⎧==11y x 中,是二元一次方程组的有( )A 、2个B 、3个C 、4个D 、5个 11、如果x y y x b a b a 2427773-+-和是同类项,则x 、y 的值是( )A 、x =-3,y =2B 、x =2,y =-3C 、x =-2,y =3D 、x =3,y =-2 12、已知⎩⎨⎧-=-=23y x 是方程组⎩⎨⎧=-=+21by cx cy ax 的解,则a 、b 间的关系是( )A 、194=-a bB 、123=+b aC 、194-=-a bD 、149=+b a 13、若二元一次方程73=-y x ,132=+y x ,9-=kx y 有公共解,则k 的取值为( )A 、3B 、-3C 、-4D 、4 14、若二元一次方程123=-y x 有正整数解,则x 的取值应为( )A 、正奇数B 、正偶数C 、正奇数或正偶数D 、015、若方程组⎩⎨⎧-=++=+ay x ay x 13313的解满足y x +>0,则a 的取值范围是( )A 、a <-1B 、a <1C 、a >-1D 、a >1 16、方程14-=-x y ax 是二元一次方程,则a 的取值为( )A 、a ≠0B 、a ≠-1C 、a ≠1D 、a ≠2 17、解方程组⎩⎨⎧=-=+872y cx by ax 时,一学生把c 看错而得⎩⎨⎧=-=22y x ,而正确的解是⎩⎨⎧-==23y x 那么a 、b 、c 的值是( )A 、不能确定B 、a =4,b =5,c =-2C 、a 、b 不能确定,c =-2D 、a =4,b =7,c =218、当2=x 时,代数式13++bx ax 的值为6,那么当2-=x 时这个式子的值为( ) A 、6 B 、-4 C 、5 D 、119、设A 、B 两镇相距x 千米,甲从A 镇、乙从B 镇同时出发,相向而行,甲、乙行驶的速度分别为u 千米/小时、v 千米/小时,①出发后30分钟相遇;②甲到B 镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A 镇还有4千米。
求x 、u 、v 。
根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是( ) A 、4+=u x B 、4+=v x C 、42=-u x D 、4=-v x三、解方程组:20、⎩⎨⎧=-=+1392x y y x 21、⎪⎩⎪⎨⎧=---=+1213343144y x y x四、列方程(组)解应用题:22、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元。
其中种茄子每亩用了1700元,获纯利2400元;种西红柿每亩用了1800元,获纯利2600元。
问王大伯一共获纯利多少元?23、在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆”;乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”;请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?五、综合题:24、已知关于x 、y 的二元一次方程组⎩⎨⎧=-=+my x my x 22362的解满足二元一次方程453=-yx ,求m 的值。
25、某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱? 答案: 一、填空题:1、32-=x ;2、2012-x ,16;3、k =-2,-7;4、m =21,n =12;5、x =51,y =59;6、x y +10,⎩⎨⎧=+-+=+63)10()10(11x y y x y x ;7、b =7; 8、-43;9、0 二、选择题:20、⎩⎨⎧==41y x 21、⎪⎩⎪⎨⎧==4113y x四、列方程解应用题:22、解:设王大伯种了x 亩茄子,y 亩西红柿,根据题意得: ⎩⎨⎧=+=+440001800170025y x y x解得:⎩⎨⎧==1510y x∴王大伯共获纯利:2400×10+2600×15=6300(元) 答:王大伯共获纯利6300元。
23、解法一:设高峰时段三环路的车流量为每小时x 辆,则高峰时段四环路的车流量为每小时)2000(+x 辆,根据题意得:100002)2000(3⨯=+-x x解这个方程得x =11000 ∴2000+x =13000答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆。
解法二:设高峰时段三环路的车流量为每小时x 辆,四环路的车流量为每小时y 辆,根据题意得:⎩⎨⎧+=⨯=-20001000023x y y x 解得⎩⎨⎧==1300011000y x 答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆。
五、结合题:24、解:由题意得三元一次方程组:⎪⎪⎩⎪⎪⎨⎧=-=-=+45322362yx m y x m y x 化简得⎪⎩⎪⎨⎧=-=-=+603522362y x m y x m y x①+②-③得:6082-=m y 304-=m y ④ ②×2-①×3得:m y 147= m y 2= ⑤ 由④⑤得:m m 2304=- 302=m ∴ 15=m25、解:(1)解法一:设书包的单价为x 元,则随身听的单价为()48x -元根据题意,得48452x x -+= 解这个方程,得x =92484928360x -=⨯-=答:该同学看中的随身听单价为360元,书包单价为92元。
解法二:设书包的单价为x 元,随身听的单价为y 元 根据题意,得x y y x +==-⎧⎨⎩45248解这个方程组,得x y ==⎧⎨⎩92360答:该同学看中的随身听单价为360元,书包单价为92元。
(2)在超市A 购买随身听与书包各一件需花费现金:45280%3616⨯=.(元)因为361.6<400,所以可以选择超市A 购买。
在超市B 可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共需花费现金:360+2=362(元)因为362<400,所以也可以选择在超市B购买。
因为362>361.6,所以在超市A购买更省钱。