数据结构第5章 数组和广义表
- 格式:ppt
- 大小:558.50 KB
- 文档页数:82
《数据结构与算法》第五章数组和广义表本章介绍的数组与广义表可视为线性表的推广,其特点是数据元素仍然是一个表。
本章讨论多维数组的逻辑结构和存储结构、特殊矩阵、矩阵的压缩存储、广义表的逻辑结构和存储结构等。
5.1 多维数组5.1.1 数组的逻辑结构数组是我们很熟悉的一种数据结构,它可以看作线性表的推广。
数组作为一种数据结构其特点是结构中的元素本身可以是具有某种结构的数据,但属于同一数据类型,比如:一维数组可以看作一个线性表,二维数组可以看作“数据元素是一维数组”的一维数组,三维数组可以看作“数据元素是二维数组”的一维数组,依此类推。
图5.1是一个m行n列的二维数组。
5.1.2 数组的内存映象现在来讨论数组在计算机中的存储表示。
通常,数组在内存被映象为向量,即用向量作为数组的一种存储结构,这是因为内存的地址空间是一维的,数组的行列固定后,通过一个映象函数,则可根据数组元素的下标得到它的存储地址。
对于一维数组按下标顺序分配即可。
对多维数组分配时,要把它的元素映象存储在一维存储器中,一般有两种存储方式:一是以行为主序(或先行后列)的顺序存放,如BASIC、PASCAL、COBOL、C等程序设计语言中用的是以行为主的顺序分配,即一行分配完了接着分配下一行。
另一种是以列为主序(先列后行)的顺序存放,如FORTRAN语言中,用的是以列为主序的分配顺序,即一列一列地分配。
以行为主序的分配规律是:最右边的下标先变化,即最右下标从小到大,循环一遍后,右边第二个下标再变,…,从右向左,最后是左下标。
以列为主序分配的规律恰好相反:最左边的下标先变化,即最左下标从小到大,循环一遍后,左边第二个下标再变,…,从左向右,最后是右下标。
例如一个2×3二维数组,逻辑结构可以用图5.2表示。
以行为主序的内存映象如图5.3(a)所示。
分配顺序为:a11 ,a12 ,a13 ,a21 ,a22,a23 ; 以列为主序的分配顺序为:a11 ,a21 ,a12 ,a22,a13 ,a23 ; 它的内存映象如图5.3(b)所示。
第5章:数组和广义表 1. 了解数组的定义;填空题:1、假设有二维数组A 6×8,每个元素用相邻的6个字节存储,存储器按字节编址。
已知A 的起始存储位置(基地址)为1000,则数组A 的体积(存储量)为 288 B ;末尾元素A 57的第一个字节地址为 1282 。
2、三元素组表中的每个结点对应于稀疏矩阵的一个非零元素,它包含有三个数据项,分别表示该元素的 行下标 、 列下标 和 元素值 。
2. 理解数组的顺序表示方法会计算数组元素顺序存储的地址;填空题:1、已知A 的起始存储位置(基地址)为1000,若按行存储时,元素A 14的第一个字节地址为 (8+4)×6+1000=1072 ;若按列存储时,元素A 47的第一个字节地址为 (6×7+4)×6+1000)=1276 。
(注:数组是从0行0列还是从1行1列计算起呢?由末单元为A 57可知,是从0行0列开始!) 2、设数组a[1…60, 1…70]的基地址为2048,每个元素占2个存储单元,若以列序为主序顺序存储,则元素a[32,58]的存储地址为 8950 。
答:不考虑0行0列,利用列优先公式: LOC(a ij )=LOC(a c 1,c 2)+[(j-c 2)*(d 1-c 1+1)+i-c 1)]*L 得:LOC(a 32,58)=2048+[(58-1)*(60-1+1)+32-1]]*2=8950选择题:( A )1、假设有60行70列的二维数组a[1…60, 1…70]以列序为主序顺序存储,其基地址为10000,每个元素占2个存储单元,那么第32行第58列的元素a[32,58]的存储地址为 。
(无第0行第0列元素)A .16902B .16904C .14454D .答案A, B, C 均不对 答:此题(57列×60行+31行)×2字节+10000=16902( B )2、设矩阵A 是一个对称矩阵,为了节省存储,将其下三角部分(如下图所示)按行序存放在一维数组B[ 1, n(n-1)/2 ]中,对下三角部分中任一元素a i,j (i ≤j), 在一维数组B 中下标k 的值是:A .i(i-1)/2+j-1B .i(i-1)/2+jC .i(i+1)/2+j-1D .i(i+1)/2+j3、从供选择的答案中,选出应填入下面叙述 ? 内的最确切的解答,把相应编号写在答卷的对应栏内。
数据结构数组与广义表知识点总结数组是一种线性数据结构,可以存储多个相同类型的元素。
它的特点是元素的大小固定,并且在内存中是连续存储的。
数组的访问方式是通过下标来访问,下标从0开始。
数组可以在编程中应用于各种情况,比如存储一组数字、一组字符串等。
广义表是一种扩展的线性数据结构,可以存储不同类型的元素。
它由元素和表构成,其中表可以是空表、原子或子表。
广义表可以递归定义,即子表可以包含更多的子表。
广义表的访问方式是通过递归来访问,可以对表的元素进行遍历和操作。
在数据结构中,数组和广义表都有自己的特点和用途,下面对它们的知识点进行总结:1.数组的特点及应用:-数组是一种线性数据结构,可以存储多个相同类型的元素。
-数组的内存分配是连续的,可以通过下标来访问元素。
-数组的大小固定,一旦定义后不能改变。
-数组的访问速度快,可以通过下标直接访问元素。
-数组适合用于存储一组相同类型的数据,比如一组数字、一组字符串等。
-数组的应用场景包括但不限于:排序算法、查找算法、图像处理、矩阵运算等。
2.数组的操作和常用算法:-初始化:可以直接赋值或使用循环初始化数组。
-访问元素:通过下标访问元素,下标从0开始。
-修改元素:直接通过下标修改元素的值。
-插入元素:需要移动插入位置之后的元素。
-删除元素:需要移动删除位置之后的元素。
-查找元素:可以使用线性查找或二分查找等算法。
-排序算法:比如冒泡排序、选择排序、插入排序等。
-数组还有一些常用的属性和方法,比如长度、最大值、最小值等。
3.广义表的特点及应用:-广义表是一种扩展的线性数据结构,可以存储不同类型的元素。
-广义表由元素和表构成,表可以是空表、原子或子表。
-广义表可以递归定义,即子表可以包含更多的子表。
-广义表的访问方式是通过递归遍历和操作。
-广义表适合存储一组不同类型的数据,比如存储学生信息、函数调用栈等。
-广义表的应用场景包括但不限于:函数式编程、树的表示、图的表示等。
第5章数组与广义表习题练习答案5.1请按行及按列优先顺序列出四维数组A2*3*2*3的所有元素在内存中的存储次序,开始结点为a0000。
解:按行优先的顺序排列时,先变化右边的下标,也就是右到左依次变化,这个四维数组的排列是这样的:(将这个排列分行写出以便与阅读,只要按从左到右的顺序存放就是在内存中的排列位置) a0000a0001a0002a0010a0011a0012a0100a0101a0102a0110a0111a0112a0200a0201a0202a0210a0211a0212a1000a1001a1002a1010a1011a1012a1100a1101a1102a1110a1111a1112a1200a1201a1202a1210a1211a1212按列优先的顺序排列恰恰相反,变化最快的是左边的下标,然后向右变化,所以这个四维数组的排列将是这样的,(这里为了便于阅读,也将其书写为分行形式):a0000a1000a0100a1100a0200a1200a0010a1010a0110a1110a0210a1210a0001a1001a0101a1101a0201a1201a0011a1011a0111a1111a0211a1211a0002a1002a0102a1102a0202a1202a0012a1012a0112a1112a0212a02125.2 给出C语言的三维数组地址计算公式。
解:因为C语言的数组下标下界是0,所以Loc(A mnp)=Loc(A000)+((i*n*p)+k)*d其中Amnp表示三维数组。
Loc(A000)表示数组起始位置。
i、j、k表示当前元素的下标,d表示每个元素所占单元数。
5.3设有三对角矩阵A n*n,将其三条对角线上的元素逐行地存储到向量B[0...3n-3]中,使得B[k]=a ij,求:(1)用i , j 表示k的下标变换公式。
(2)用k 表示i,j 的下标变换公式。
数据结构第五章数组和广义表(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第五章数组和广义表:习题习题一、选择题1.假设以行序为主序存储二维数组A[1..100,1..100],设每个数据元素占两个存储单元,基地址为10,则LOC(A[5,5])=( )。
A. 808B. 818C. 1010D. 10202.同一数组中的元素( )。
A. 长度可以不同 B.不限 C.类型相同 D. 长度不限3.二维数组A的元素都是6个字符组成的串,行下标i的范围从0到8,列下标j的范圈从1到10。
从供选择的答案中选出应填入下列关于数组存储叙述中( )内的正确答案。
(1)存放A至少需要( )个字节。
(2)A的第8列和第5行共占( )个字节。
(3)若A按行存放,元素A[8]【5]的起始地址与A按列存放时的元素( )的起始地址一致。
供选择的答案:(1)A. 90 B. 180 C. 240 D. 270(2) A. 108 B. 114 C. 54 D. 60(3)[8][5] B. A[3][10] [5][8] [O][9]4.数组与一般线性表的区别主要是( )。
A.存储方面B.元素类型方面C.逻辑结构方面D.不能进行插入和删除运算5.设二维数组A[1..m,1..n]按行存储在数组B[1..m×n]中,则二维数组元素A[i,j]在一维数组B中的下标为( )。
A. (i-l)×n+jB. (i-l)×n+j-lC.i×(j-l) D. j×m+i-l6.所谓稀疏矩阵指的是( )。
A.零元素个数较多的矩阵B.零元素个数占矩阵元素中总个数一半的矩阵C.零元素个数远远多于非零元素个数且分布没有规律的矩阵D.包含有零元素的矩阵7.对稀疏矩阵进行压缩存储的目的是( )。
A.便于进行矩阵运算B.便于输入和输出C.节省存储空间D. 降低运算的时间复杂度8.稀疏矩阵一般的压缩存储方法有两种,即( )。