初一数学第二学期期中考试卷数学(人教版)-(含答案)
- 格式:pdf
- 大小:78.23 KB
- 文档页数:5
人教版七年级数学下册期中测试卷及答案【A4打印版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.已知a, b满足方程组则a+b的值为()A. ﹣4B. 4C. ﹣2D. 22.如下图, 下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5, 能判定AB∥CD的条件为()A. ①②③④B. ①②④C. ①③④D. ①②③3.已知: 是整数, 则满足条件的最小正整数为( )A. 2B. 3C. 4D. 54.某气象台发现: 在某段时间里, 如果早晨下雨, 那么晚上是晴天;如果晚上下雨, 那么早晨是晴天, 已知这段时间有9天下了雨, 并且有6天晚上是晴天, 7天早晨是晴天, 则这一段时间有()A. 9天B. 11天C. 13天D. 22天5.若x取整数, 则使分式的值为整数的x值有()A. 3个B. 4个C. 6个D. 8个6.如图, ∠1=70°, 直线a平移后得到直线b, 则∠2-∠3()A. 70°B. 180°C. 110°D. 80°7.如图, 数轴上两点A,B表示的数互为相反数, 则点B表示的()A. -6B. 6C. 0D. 无法确定8.比较2, , 的大小, 正确的是()A. B.C. D.9.图中由“○”和“□”组成轴对称图形, 该图形的对称轴是直线()A. l1B. l2C. l3D. l410.如图, 已知直线a∥b, 则∠1、∠2、∠3的关系是()A. ∠1+∠2+∠3=360°B. ∠1+∠2﹣∠3=180°C. ∠1﹣∠2+∠3=180°D. ∠1+∠2+∠3=180°二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的平方根是 .2.如图所示, 把半径为2个单位长度的圆形纸片放在数轴上, 圆形纸片上的A 点对应原点, 将圆形纸片沿着数轴无滑动地逆时针滚动一周, 点A到达点A′的位置, 则点A′表示的数是_______.3. 如图, 五边形是正五边形, 若, 则__________.4. 如图, 已知直线AB.CD.EF相交于点O, ∠1=95°, ∠2=32°, 则∠BOE=________.5. 如图, AD∥BC, ∠D=100°, CA平分∠BCD, 则∠DAC=________度.6. 如图, 已知, 添加下列条件中的一个: ①, ②, ③, 其中不能确定≌△的是________(只填序号).三、解答题(本大题共6小题, 共72分)1. 解方程组:2. 已知, x无论取什么值, 式子必为同一定值, 求的值.3. 如图, 正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m, 2), 一次函数图象经过点B(﹣2, ﹣1), 与y轴的交点为C, 与x轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积.4. 如图①, 在△ABC中, ∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°, 求∠BPC的度数;(2)如图②, 作△ABC外角∠MBC, ∠NCB的角平分线交于点Q, 试探索∠Q、∠A 之间的数量关系.(3)如图③, 延长线段BP、QC交于点E, △BQE中, 存在一个内角等于另一个内角的2倍, 求∠A的度数.5. 为弘扬中华传统文化, 我市某中学决定根据学生的兴趣爱好组建课外兴趣小组, 因此学校随机抽取了部分同学的兴趣爱好进行调查, 将收集的数据整理并绘制成下列两幅统计图, 请根据图中的信息, 完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中, “戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名, 请你估计该校有多少名学生喜欢书法?6. 某天小明骑自行车上学, 途中因自行车发生故障, 修车耽误了一段时间后继续骑行, 按时赶到了学校, 如图所示是小明从家到学校这一过程中所走的路程s(米)与时间 t(分)之间的关系.(1)小明从家到学校的路程共米, 从家出发到学校, 小明共用了分钟;(2)小明修车用了多长时间?(3)小明修车以前和修车后的平均速度分别是多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.B2.C3.D4.B5.B6.C7、B8、C9、C10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、±2.2.-43.724.53°5.40°6.②.三、解答题(本大题共6小题, 共72分)1.2.3.(1)y=x+1;(2)C(0, 1);(3)14.(1)130°. (2)∠Q==90°﹣∠A;(3)∠A的度数是90°或60°或120°.5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)2000米, 20分钟;(2)5;(3) 100(m/min), 200(m/min)。
七年级数学题号 一二三总分19 2021222324得分一、选择题 本大题共12小题,每小题3分,共36分. 每小题有且仅有一个是正确的,请将正确结论的代号填在下表中. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.在如图所示的四个汽车标志的图案中,能用平移变换来分析其形成过程的图案有( )A . 1个 B. 2个 C. 3个 D. 4个 2.若a<-2<b,且a,b 是两个连续整数,则a+b 的值是( ) A . 1 B. 2 C. 3 D. 4 3.点(x,x-1)不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.如右图所示,点E 在AC 的延长线上,下列条件中能判断CD AB //的是( )A. 43∠=∠B. 21∠=∠C. DCE D ∠=∠D.180=∠+∠ACD D得 分 评卷人 EDC B4321第4题5.下列结论中正确的有①零是绝对值最小的实数;②π-3的相反数是3-π;③无理数就是带根号的数;④一个实数的平方根有两个,它们互为相反数;⑤所有的实数都有倒数( )A. 5个B. 4个C. 3 个D. 2个 6. 下列各式中计算正确的是( ) A . B .C .D .7.将某图形的各顶点的横坐标减去2,纵坐标保持不变,可将该图形( )A .横向向右平移2个单位 B.横向向左平移2个单位 C .纵向向上平移2个单位 D.纵向向下平移2个单位8.下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③两条直线被第三条直线所截,内错角相等,则它们的角平分线互相垂直;④两条直线被第三条直线所截,同旁内角互补,则它们的角平分线互相垂直,其中正确的个数为 ( )A . 4 B. 3 C. 2 D. 1 9.如图,直线AB ,CD 相交于点O ,射线OM 平分∠AOC ,ON ⊥OM , 若∠AOM=35°,则∠CON 的度数为( ) A.35° B.45°C.55°D.65°10.已知点P 位于y 轴的右侧,距y 轴5个单位长度,位于x 轴的上方,距x 轴6个单位长度,则点P 的坐标是( )A. (-5,6)B. (6,5)C. (-6,5)D. (5,6) 11.在实数﹣,0.32,π,0.2,,0.101001…,23)( 中,无理数的个数是( ) A . 3 B . 4 C . 5 D . 6第9题12. 如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为( )A .(2,3)B .(3,2)C .(﹣2,﹣3)D .(﹣3,2)二、填空题 本大题共6小题,每小题3分,共18分.请将答案直接填在题中的横线上.13.比较下列各组数大小: (1)12;(2)0.5;(3)π 3.14;14.﹣64的立方根与的平方根之和是 .15.若点a (3,a+1)在x 轴上,点b (2b ﹣1,1)在y 轴上,则a 2+b 2= . 16.如图,把一块三角板的60°角的顶点放在直尺的一边上, 若∠1=2∠2,则∠1= °.17.如图把一张长方形纸条ABCD 沿OG 折叠后,点B 、C 分别落在B ′、C ′的位置上,已知∠AOB′= 70º,则∠OGC = °.18.如图,下列结论:①若AB//CD,则∠3=∠4;②若∠1=∠BEG ,则EF//GH ; ③若∠FGH+∠3=180°,则EF//GH ;④若AB//CD ,∠4=62°,EG 平分∠BEF ,则∠1=59°其中正确的序号是 .得 分 评卷人第16题第17题第12题E 123 4 HF A BCDG 第18题三、解答题 本大题共6小题,共46分.解答应写出必要的过程. 19.(本小题12分)计算:(1)25161204.0-+ (2))142(241083++-+(3)362126---+- (4) ()32332327)21()4()4(2--⨯-+-⨯-20.(本小题5分)已知,0423)13(2=-+-+-z y x 求18xyz 的平方根.得 分 评卷人得 分 评卷人如图,BD 是∠ABC 的平分线,ED ∥BC ,∠3=∠4,则EF 也是∠AED 的平分线.完成下列推理过程:证明:∵BD 是∠ABC 的平分线(已知)∴∠1=∠2 ( ) ∵ED ∥BC(已知)∴∠4=∠2 ( ) ∴___ ( 等量代换 ) 又∵∠3=∠4(已知)∴_____∥_____ ( ) ∴∠5=∠1 ( ) ∴∠5=∠3 ( ) ∴EF 是∠AED 的平分线22. (本小题7分)在平面直角坐标系中,A 、B 、C 三点的坐标分别为(-6,7)、(-3,0)、(0,3).(1) 在图中画出△ABC ; (2) 求△ABC 的面积;(3) 在△ABC 中,点C 经过平移后的对应点为C′(5,2),将△ABC 作同样的平移得到△A′B′C′,画出平移后的△A′B′C′,并写出点A′、B′的坐标.得 分 评卷人1 23 45如图所示,已知∠1+∠2=180°,∠DEF=∠A,∠DEB=60°,求∠ACB的度数.如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)当动点P落在第①部分时,试说明∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?若不成立,请写出这三个角的关系(不用证明);(3)当动点P在第③部分时(点P不在直线BA上),全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以说明.七年级数学试卷答案一、选择题(每小题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BABBDCBCCDAB二、填空题(每小题3分,共18分)13.<,>, > 14.-2或-6 15.4516.80 17.125 18.①③④三、解答题(本大题共6小题,共46分) 19.(本小题12分) (1)原式=53251⨯+ (2)原式=2212102++-+ =57-----3分 = 22+ ------6分 (3)原式=631226+--+- (4)原式=341448-⨯-⨯-=462- ----9分 = -36 ----12分20.(本小题5分)解:由题意得⎪⎩⎪⎨⎧=-=-=-04023013z y x .解得⎪⎪⎪⎩⎪⎪⎪⎨⎧===42331z y x -------3分所以618±=±xyz --------5分 21.(本小题8分)(该题每空1分)角平分线的定义; 两直线平行,内错角相等; ∠4=∠1; EF ; BD ; 内错角相等,两直线平行; 两直线平行,同位角相等; 等量代换22. (本小题7分) (1)画图 ------2分 (2)1546213321732176=⨯⨯-⨯⨯-⨯⨯-⨯=S -----4分(3)A′(-1,6) ------5分B′(2,-1) ------6分 画图 -------7分23.(本小题6分)证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义)∴∠2=∠DFE (同角的补角相等) ----1分 ∴AB ∥EF (内错角相等两直线平行) ----2分 ∴∠BDE=∠DEF (两直线平行,内错角相等) ----3分 ∵∠DEF=∠A (已知)∴∠BDE=∠A (等量代换) ----4分 ∴DE ∥AC (同位角相等两直线平行), ----5分 ∴∠ACB=∠DEB (两直线平行,同位角相等) ∵∠BED=60°∴∠ACB=60° ----6分24.(本小题8分)解法:如图过点P 作FP ∥AC , ∴∠PAC=∠APF .∵AC ∥BD ,∴FP ∥BD . ∴∠FPB=∠PBD . ∴∠APB=∠APF+∠FPB=∠PAC+∠PBD ; -----3分(2)∠APB=∠PAC+∠PBD 不成立,∠APB+∠PAC+∠PBD=360°,ABC A 'B ''APFE D ABC12F七年级数学第 11 页 共 11页 -----4分(3)①当动点P 在射线BA 的右侧时,如图3,结论是∠PBD=∠PAC+∠APB ,---5分过P 作EF ∥AC , ∵AC ∥BD ,∴AC ∥EF ∥BD ,∴∠EPB=∠PBD ,∠EPA=∠PAC ,∵∠EPB=∠EPA+∠APB∴∠PBD=∠PAC+∠APB②当动点P 在射线BA 的左侧时,如图5,结论是:∠PAC=∠APB+∠PBD ,---6分过P 作EF ∥AC ,∵AC ∥BD , ∴AC ∥EF ∥BD ,∴∠EPB=∠PBD ,∠EPA=∠PAC ,∵∠EPA=∠EPB+∠APB∴∠PAC=∠PBD+∠APB任选一种证明2分共8分E FE F。
人教版七年级数学下册期中考试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( ) A .65a -≤<- B .65a -<≤- C .65a -<<- D .65a -≤≤-2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.实数a 、b 、c 在数轴上的位置如图所示,化简:||||+||a b c a b c a -----的结果是( )A .a –2cB .–aC .aD .2b –a4.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b ( )A .∠2=∠4B .∠1+∠4=180°C .∠5=∠4D .∠1=∠35.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10116.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .87.下列各组线段不能组成三角形的是 ( )A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm8.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-69.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA10.如图,已知直线a∥b,则∠1、∠2、∠3的关系是()A.∠1+∠2+∠3=360°B.∠1+∠2﹣∠3=180°C.∠1﹣∠2+∠3=180°D.∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD 上,分别以EF、EG为折痕进行折叠并压平,点A、D的对应点分别是点A′和点D′,若ED′平分∠FEG,且'ED在A EF∠'内部,如图2,设∠A′ED'=n°,则∠FE D′的度数为___________(用含n的代数式表示).3.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________.4.如果一个数的平方根是a +6和2a ﹣15,则这个数为________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)(1)2(1)13x x x +--=-;(2)30564x x --=; (3)3 1.4570.50.46x x x --=.2.已知关于x 的不等式组523(1)138222x x x x a +>-⎧⎪⎨≤-+⎪⎩有四个整数解,求实数a 的取值范围.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数. 6.杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014-2019年,杭州工程地铁队负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、C6、C7、B8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、1804n ︒-︒3、2或2-34、815、两6、48三、解答题(本大题共6小题,共72分)1、(1)1x =-;(2)30x =;(3)0.7x =-.2、-3≤a <-23、(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2;4、60°5、(1)90人,补全条形统计图见解析;.(2)48︒;(3)560人.6、(1)甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)少用262.2天完成任务.。
七年级数学下学期期中测试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1、两条直线的位置关系有()A、相交、垂直B、相交、平行C、垂直、平行D、相交、垂直、平行2、如图所示,是一个“七”字形,与∠1是同位角的是()A、∠2B、∠3C、∠4D、∠53、经过一点A画已知直线a的平行线,能画()A、0条B、1条C、2条D、不能确定4、如图4,下列条件中,不能判断直线a//b的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°5、下列图形中有稳定性的是()A.正方形 B.长方形 C.直角三角形 D.平行四边形6、一个正数x的平方根是2a-3与5-a,则x的值是()。
A.64B.36C.81D.497、如图,已知:∠1=∠2,∠3=∠4,∠A=80°,则∠BOC等于()A、95°B、120°C、130°D、无法确定8、若a*=1.1062,b*=0.947是经过舍入后作为的近似值,问a*+b*有几位有效数字?()A、4B、5C、6D、79、下列说法正确的是()A、符号相反的数互为相反数B、符号相反绝对值相等的数互为相反数C、绝对值相等的数互为相反数D、符号相反的数互为倒数10、在平面直角坐标系中,已知点A(-4,0)、B(0,2),现将线段AB向右平移,使A 与坐标原点0重合,则B平移后的坐标是()。
A.(0,-2)B.(4,2)C.(4,4)D.(2,4)二、填空题(本大题共7小题,每小题4分,共28分)11、用科学记数法表示9349000(保留2个有效数字)为________________.12、如图1直线AB,CD,EF相交与点O,图中∠AOE的对顶角是_________,∠COF的补角是__________。
13、如图2,要把池中的水引到D处,可过C点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,试说明设计的依据:______________________________14、多项式4x²+4mx+36是一个完全平方式,则m=_____________.15、如图,AC平分∠BAD,∠DAC=∠DCA,填空:因为AC平分∠BAD,所以∠DAC= _______,又因为∠DAC=∠DCA,所以∠DCA= _______,所以AB∥_______。
人教版七年级下册数学期中测试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°3.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,5)B .10,(3,﹣5)C .1,(3,4)D .3,(3,2)4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+=100 C .()31001003x x --= D .10031003x x --= 5.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10116.实数a ,b 在数轴上对应点的位置如图所示,化简2()a b +( )A .﹣2a-bB .2a ﹣bC .﹣bD .b7.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒8.1221()()n n x x +-=( )A .4n xB .43n x +C .41n x +D .41n x -9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:2ab a -=________.2.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE,则∠GFH 的度数是________.3.在关于x 、y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值范围是_________________.4.多项式112m x -﹣3x+7是关于x 的四次三项式,则m 的值是________. 5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解方程组:20346x y x y +=⎧⎨+=⎩2.已知关于x 、y 的二元一次方程组21222x y m x y m +=+⎧⎨+=-⎩的解满足不等式组81x y x y -<⎧⎨+>⎩则m 的取值范围是什么?3.如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.4.如图,已知直线AB ∥CD ,直线EF 分别与AB ,CD 相交于点O ,M ,射线OP 在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)求扇形统计图扇形D的圆心角的度数;(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、B5、C6、A7、B8、A9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a(b+1)(b﹣1).2、90°3、-2≤m<34、55、16、7三、解答题(本大题共6小题,共72分)1、原方程组的解为=63 xy⎧⎨=-⎩2、0<m<3.3、(1)证明见解析;(2)75.4、60°5、(1)补图见解析;(2)27°;(3)1800名6、(1)120件;(2)150元.。
2024年最新人教版初一数学(下册)期中考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.333D. 14. 下列哪个数是无理数?A. 3B. 2/3C. √2D. 0.255. 下列哪个数是整数?A. 1/2B. 0.5C. 3D. 0.3336. 下列哪个数是正整数?A. 0B. 1C. 1D. 1/27. 下列哪个数是负整数?A. 0B. 1C. 1D. 1/28. 下列哪个数是奇数?A. 0B. 2C. 3D. 49. 下列哪个数是偶数?A. 1B. 2C. 3D. 410. 下列哪个数是质数?A. 0B. 1C. 2D. 4二、填空题(每题4分,共20分)1. 5的绝对值是______。
2. 2的相反数是______。
3. 3/4的倒数是______。
4. 5的平方是______。
5. 2的立方根是______。
三、解答题(每题10分,共50分)1. 解方程:2x 3 = 7。
2. 解不等式:3x + 4 > 11。
3. 解方程组:x + y = 5, x y = 1。
4. 解不等式组:x > 2, x < 5。
5. 计算下列表达式的值:(3 + 4) × (5 2) ÷ 2。
四、应用题(每题15分,共30分)1. 小明买了5本书,每本书的价格是8元。
他付了50元,应该找回多少元?2. 一个长方形的长是6厘米,宽是4厘米。
求这个长方形的面积。
五、附加题(每题10分,共20分)1. 证明:对于任意实数a,a的平方总是非负的。
2. 解析几何:在平面直角坐标系中,点A(2, 3),点B(5, 1)。
求线段AB的长度。
选择题答案:1. C2. D3. B4. C5. C6. C7. C8. C9. B10. C填空题答案:1. 52. 23. 4/34. 255. 1.2599210498948732(约等于1.26)解答题答案:1. x = 52. x > 33. x = 3, y = 24. 2 < x < 55. 13应用题答案:1. 找回的金额为10元。
人教版七年级下册数学期中考试试卷一、单选题1.下列图形中,1∠与2∠互为邻补角的是()A .B .C .D .2.下列各数中22,,0.27π,有理数有()A .2个B .3个C .4个D .5个3.如图所示,因为AB ⊥l ,BC ⊥l ,B 为垂足,所以AB 和BC 重合,其理由是()A .两点确定一条直线B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .过一点能作一条垂线D .垂线段最短4.在平面坐标系中,线段CF 是由线段AB 平移得到的;点(1,4)A -的对应点为(4,1)C ,则点(,)B a b 的对应点F 的坐标为()A .()3,3a b +-B .()5,3a b +-C .()5,3a b --D .()3,5a b ++5.已知点P 的坐标为()2,32a a ++,且点P 在y 轴上,则点P 坐标为()A .(0,4)P -B .(0,4)P C .(0,2)P -D .(0,6)P -6.已知下列命题:①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两个角的角平分线互相垂直.其中,是真命题的有()A .0个B .1个C .2个D .3个7.若平面直角坐标系内的点M 在第二象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-8)A .3±B .3C .3-D .9.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A .45°B .60°C .75°D .82.5°10.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为()A .120°B .135°C .150°D .不能确定11.实数,a b||a b +)A .2a -B .2b -C .2a b +D .2a b-12.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为()A .()2019,0B .()2019,1C .()2019,2D .()2020,0二、填空题13.将命题“两直线平行,同位角相等”写成“如果…,那么…”的形式是________14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是()()--,那么“帅”的坐标是__________3,1,3,115.若一个数的立方根就是它本身,则这个数是________.16.若a ba b的值为____________<,且,a b17.如图,把一张平行四边形纸片ABCD沿BD对折,使点C落在点E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______________.==,现对72进行如下操18.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]3作:72第一次8]=;第二次[8]2=;第三次[2]1=;这样对72只需进行3次操作后变为1,在进行这样3次操作后变为1的所有正整数中,最大的是___19.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a b成立三、解答题20.(1-2|x-=-(2)解方程:()3112521.(1)如图这是某市部分简图,为了确定各建筑物的位置:①请你以火车站为原点建立平面直角坐标系②写出体育场、宾馆的坐标;③图书馆的坐标为()-4,-3,请在图中标出图书馆的位置;(2)已知M=是3m +的算术平方根,N=n-2的立方根,试求M-N 的值;22.如图在平面直角坐标系中,已知(1,1)P ,过点P 分别向,x y 轴作垂线,垂足分别是,A B ;(1)点Q 在直线AP 上且与点P 的距离为2,则点Q 的坐标为__________(2)平移三角形ABP ,若顶点P 平移后的对应点(4,3)P ',画出平移后的三角形'''A B P .23.如图,//,AB CD EFG ∆的顶点,F G 分别落在直线,AB CD 上,CE 交AB 于点,H GE 平分FGD ∠,若90,20EFG EFH ︒︒∠=∠=,求EHB ∠的度数.24.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ;(2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.25.学着说理由:如图∠B =∠C ,AB ∥EF ,试说明:∠BGF =∠C证明:∵∠B =∠C ()∴AB ∥CD ()又∵AB ∥EF ()∴EF ∥CD ()∴∠BGF =∠C ()26.如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?参考答案1.D2.C3.B4.B5.A6.C7.B8.D9.C10.B11.A【详解】解:0,,a b a b <<>0,a b ∴+<||a b a a b b+=+++()a a b b=--++a a b b=---+2.a =-故选A .12.C【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .13.如果两条直线是平行线,那么同位角相等.【解析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,∴写成“如果…,那么…”的形式为:“如果两条直线是平行线,那么同位角相等”,故答案为如果两条直线是平行线,那么同位角相等.14.()1,3--【解析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“帅”的坐标.【详解】解:建立平面直角坐标系,如图,“帅”的坐标为(-1,-3),故答案为:(-1,-3).15.±1,0【详解】∵13=1,(-1)3=-1,03=0,∴1的立方根是1,-1的立方根是-1,0的立方根是0,∴一个数的立方根就是它本身,则这个数是±1,0.故答案为±1,0.16.-1【详解】解:364049,<<67,∴6,7,a b ∴==1,a b ∴-=-故答案为: 1.-17.150︒【详解】如图,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ODB=∠DBC=15°.又由折叠的性质知,∠EBD=∠CBD=15°,即∠OBD=15°,∴在△OBD 中,∠BOD=180°−∠OBD−∠ODB=150°,18.255【详解】解:9,3,1,⎡===⎣13,3,1,⎡===⎣15,3,1,===16,4,2,1,⎡⎡====⎣⎣需要进行4次操作后变为1,即只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.19.70°【分析】根据平行的判定,要使直线a b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.20.(1)10(2)4x =-【详解】(1)原式=9(3)22+-++-10=(2)解:15x -=-4x =-21.(1)①见解析;②体育馆()4,3-;宾馆()2,2;③见解析;(2)2【详解】(1)①平面直角坐标系如图;②体育馆()4,3-;宾馆()2,2,③图书馆的位置见上图.(2)422433m m n -=⎧⎨-+=⎩ 63m n =⎧∴⎨=⎩3,1M N ∴==2M N ∴-=22.(1)12(1,1),(1,3)Q Q -;(2)见解析【详解】解:(1)∵点Q 在直线AP 上且与点P 的距离为2,AP ⊥x 轴,P (1,1),∴点Q 的坐标为(1,-1)或(1,3),故答案为:(1,-1)或(1,3);(2)如图所示,'(1,1),(4,3).P P ∴平移方式为先向右平移3个单位长度,再向上平移2个单位长度,按相同方式把,A B 作同样的平移得到''.A B ,顺次连接''',,A B P 得到三角形A′B′P′即为所求.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.55︒【详解】解:90,20EFG EFH ︒︒∠=∠= 70BFG ︒∴∠=//AB CD ,70FGC BFG ︒∴∠=∠=,110FGD ︒∴∠=因为GE 平分FGD ∠,55FGH ︒∴∠=,180705555FHG ︒︒︒∴∠=--=︒55EHB FHG ︒∴∠=∠=24.(1)(1,0),(4,0),C D -15.ACDB S =(2)在y 轴上存在点(0,2)M ,或(0,2)M -使13MCD ABDC S S ∆=【详解】解:(1)依题意得:3050a b -=⎧⎨-=⎩解得:35a b =⎧⎨=⎩(0,3),(5,3)A B ∴,将点,A B 分别向下平移3个单位,再向左平移1个单位,(1,0),(4,0),C D ∴-5315.ACDB S CD OA =∙=⨯=(2)假设在y 轴上存在点(0,)M y ,使13MCD ABDCS S ∆=11553MCD S ∆∴==,1552y ∴⨯⨯=,2y ∴=±,(0,2)M ∴或(0,2)-所以在y 轴上存在点(0,)M y ,使13MCD ABDC S S ∆=.25.【详解】证明:∵∠B =∠C (已知),∴AB ∥CD (内错角相等,两直线平行),又∵AB ∥EF (已知),∴EF ∥CD (平行于同一直线的两直线平行),∴∠BGF =∠C (两直线平行,同位角相等).26.130°【详解】解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.。
20232024学年全国初中七年级下数学人教版期中考试试卷一、选择题(每题2分,共20分)1.下列各数中,是整数的是()A. 0.5B. 2C. 3/4D. 1.52.下列各数中,是负数的是()A. 0B. 3C. 2D. 1/23.下列各数中,是正数的是()A. 3B. 0C. 1/2D. 1.54.下列各数中,是正分数的是()A. 3/4B. 0C. 1/2D. 1.55.下列各数中,是负分数的是()A. 3/4B. 0C. 1/2D. 1.56.下列各数中,是正整数的是()A. 2B. 0C. 1/2D. 37.下列各数中,是负整数的是()A. 2B. 0C. 1/2D. 38.下列各数中,是正无理数的是()A. √2B. 0C. √3D. 1.59.下列各数中,是负无理数的是()A. √2B. 0C. √3D. 1.510.下列各数中,是分数的是()A. √2B. 0C. 3/4D. 1.5二、填空题(每题2分,共20分)1.若a是正数,b是负数,则a+b的值()2.若a是正数,b是负数,则ab的值()3.若a是正数,b是负数,则ab的值()4.若a是正数,b是负数,则a/b的值()5.若a是正数,b是负数,则a+b的绝对值()6.若a是正数,b是负数,则ab的绝对值()7.若a是正数,b是负数,则ab的绝对值()8.若a是正数,b是负数,则a/b的绝对值()9.若a是正数,b是负数,则a+b的平方()10.若a是正数,b是负数,则ab的平方()三、解答题(每题5分,共30分)1.解方程:3x5=2x+72.解方程:2x+3=5x43.解方程:4x3=2x+94.解方程:5x+4=3x85.解方程:6x5=4x+76.解方程:7x+6=5x9四、应用题(每题10分,共20分)1.某水果店有苹果和香蕉两种水果,苹果每斤5元,香蕉每斤3元。
小明想买3斤苹果和2斤香蕉,一共需要多少钱?2.某学校组织了一次运动会,参加跑步的学生有男生和女生两种,男生有20人,女生有15人。
人教版数学七年级下册期中测试题一、填空题(每题3分,共30分)l、已知∠a的对顶角是81°,则∠a=______.2、把“等角的补角相等”写成“如果…,那么…”的形式_________________________________.3、在平面直角坐标系中,点P(-4,5)到x轴的距离为______,到y轴的距离为________.4、若等腰三角形的边长分别为3和6,则它的周长为________.5、如果P(m+3,2m+4)在y轴上,那么点P的坐标是________.6、如果一个等腰三角形的外角为100°,则它的底角为________..7、一个长方形的三个顶点坐标为(―1,―1),(―1,2)(3,―1),则第四个顶点的坐标是______________.8、将点P(-3,4)先向下平移3个单位,再向左平移2个单位后得到点Q,则点Q的坐标是_____________.9、武夷中学运动场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是.10、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2010个球止,共有实心球_____________个。
”二、选择题(每题3分,共30分)11、在同一平面内,两直线可能的位置关系是()A.相交B.平行C.相交或平行D.相交、平行或垂直12、如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是().(A)120°(B)130°(C)140°(D)150°13、在△ABC中,已知∠A:∠B:∠C=1:2:3则△ABC是().A、锐角三角形B、直角三角形C、钝角三角形D以上都不对54D3E21CBA14、如果∠A 和∠B 的两边分别平行,那么∠A 和∠B 的关系是().A.相等B.互余或互补C.互补D.相等或互补15、如右图,下列能判定AB ∥CD 的条件有()个.(1)︒=∠+∠180BCD B ;(2)21∠=∠;(3)43∠=∠;(4)5∠=∠B .A.1B.2C.3D.4第15题图16、下列说法:①三角形的高、中线、角平分线都是线段;②内错角相等;③坐标平面内的点与有序数对是一一对应;④因为∠1=∠2,∠2=∠3,所以∠1=∠3。