万有引力定律
- 格式:ppt
- 大小:481.50 KB
- 文档页数:12
万有引力定律万有引力定律公式:F=GMm/r²万有引力定律(Law of universal gravitation)是艾萨克·牛顿在1687年于《自然哲学的数学原理》上发表的。
牛顿的普适万有引力定律表示如下:任意两个质点通过连心线方向上的力相互吸引。
该引力的大小与它们的质量乘积成正比,与它们距离的平方成反比,与两物体的化学本质或物理状态以及中介物质无关。
万有引力定律是解释物体之间的相互作用的引力的定律。
是物体(质点)间由于它们的引力质量而引起的相互吸引力所遵循的规律。
它是牛顿在前人(开普勒、胡克、雷恩、哈雷)研究的基础上,凭借他超凡的数学能力证明,在1687年于《自然哲学的数学原理》上发表的。
万有引力定律的发现,是17世纪自然科学最伟大的成果之一。
它把地面上物体运动的规律和天体运动的规律统一了起来,对以后物理学和天文学的发展具有深远的影响。
它第一次解释了(自然界中四种相互作用之一)一种基本相互作用的规律,在人类认识自然的历史上树立了一座里程碑。
万有引力定律揭示了天体运动的规律,在天文学上和宇宙航行计算方面有着广泛的应用。
它为实际的天文观测提供了一套计算方法,可以只凭少数观测资料,就能算出长周期运行的天体运动轨道,科学史上哈雷彗星、海王星、冥王星的发现,都是应用万有引力定律取得重大成就的例子。
利用万有引力公式,开普勒第三定律等还可以计算太阳、地球等无法直接测量的天体的质量。
牛顿还解释了月亮和太阳的万有引力引起的潮汐现象。
他依据万有引力定律和其他力学定律,对地球两极呈扁平形状的原因和地轴复杂的运动,也成功的做了说明,推翻了古代人类认为的神之引力。
尽管牛顿对重力的描述对于众多实践运用来说十分地精确,但它也具有几大理论问题且被证明是不完全正确的。
没有任何征兆表明重力的传送媒介可以被识别出,牛顿自己也对这种无法说明的超距作用感到不满意。
牛顿的理论需要定义重力可以瞬时传播。
因此给出了古典自然时空观的假设,这样亦能使约翰内斯·开普勒所观测到的角动量守恒成立。
万有引力定律万有引力定律是牛顿于1687年提出的一条基本物理定律,描述了任何两个物体之间相互作用的引力力量。
它在物理学中占据着重要的地位,不仅解释了地球、行星和恒星等天体的运动规律,还有助于我们理解宇宙的起源和演化。
本文将介绍万有引力定律的基本原理、应用以及相关的重要概念。
一、基本原理万有引力定律基于牛顿的第一和第二定律,描述了物体之间引力的作用和相互关系。
根据该定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
具体表达式为:F =G * (m1 * m2) / r^2其中,F表示物体之间的引力,G为万有引力常量,m1和m2分别为两个物体的质量,r为它们之间的距离。
这个定律揭示了物体之间引力的本质,无论是地球上的物体还是宇宙中的星体,都会受到引力的相互作用。
二、应用实例万有引力定律广泛应用于各个领域,包括天文学、航天工程、地理学等。
以下是一些以万有引力定律为基础的实际应用:1. 星体运动和行星轨道:万有引力定律解释了行星绕太阳的运动规律。
根据定律,行星受太阳引力的作用,沿着椭圆轨道绕太阳运动。
这也适用于其他星球和卫星等天体的运动。
2. 人造卫星轨道设计:在航天工程中,万有引力定律用于计算和预测人造卫星的轨道。
通过合理地选择轨道高度和速度,使卫星能够保持稳定轨道并完成其任务。
3. 地球重力和物体的自由落体:地球的引力场是万有引力定律在地球上的具体表现。
根据定律,物体在地球表面上自由落体时将受到地球的引力加速度作用,加速度约为9.8米/秒^2。
4. 天体测量和天文学研究:通过观测天体之间的引力相互作用,科学家可以测量它们的质量、距离和运动速度。
这对于研究宇宙的结构、演化和宇宙学参数的确定至关重要。
三、相关概念在理解万有引力定律时,还需要了解一些相关概念:1. 万有引力常量(G):它是连接引力与质量和距离的比例因子,其值为6.67430(15) × 10^-11 m^3·kg^-1·s^-2。
万有引力定律知识点万有引力定律(Universal Law of Gravitation)是牛顿在1687年发表的《自然哲学的数学原理》(Principia Mathematica Philosophiae Naturalis)中提出的重要物理定律之一、该定律描述了任何两个物体之间存在的引力。
1.引力的定义2.引力公式根据万有引力定律,两个物体之间的引力可以用以下的公式来表示:F=G*(m1*m2)/r^2其中,F是两个物体之间的引力,G是一个常量,被称为万有引力常量,m1和m2分别表示两个物体的质量,r表示两个物体之间的距离。
3.万有引力常量4.引力的力学效应根据牛顿的第三定律,两个物体之间的引力大小相等,方向相反。
这意味着,一个物体对另一个物体施加的引力与另一个物体对第一个物体施加的引力大小相等。
根据万有引力定律,如果其中一个物体的质量增加,或者两个物体之间的距离缩小,引力将增大。
相反,如果其中一个物体的质量减小,或者两个物体之间的距离增加,引力将减小。
5.引力的运动效应根据万有引力定律,任何两个物体之间的引力不仅存在于静止状态下,还会影响它们的运动。
根据万有引力定律,如果两个物体之间存在引力,它们将相互吸引并朝向彼此移动。
这就是为什么我们在地球上可以感受到重力,因为地球对我们施加引力,将我们拉向地面。
6.引力的应用万有引力定律在多个领域都有广泛的应用。
在天文学和宇宙物理学中,它被用来解释天体之间的运动和行星、卫星轨道的形成。
在生物学和运动力学中,它被用来研究运动物体之间的相互作用和力的平衡。
在工程学中,它被用来计算和设计建筑物结构的稳定性和地震活动的影响。
7.万有引力定律的限制万有引力定律是牛顿提出的近似定律,适用于中等大小的物体和相对较小的距离。
当涉及到极端条件,如黑洞或超大质量天体时,它的适用性会受到限制。
在这些极端条件下,需要使用更复杂的理论,如爱因斯坦的广义相对论来描述引力。
高中物理——万有引力定律1.开普勒第三定律:行星轨道半长轴的三次方与公转周期的二次方的比值是一个常量。
32r k T = (K 值只与中心天体的质量有关)2.万有引力定律: 122m r F G m =⋅万(1)赤道上万有引力:F mg F mg ma =+=+引向向 (g a 向和是两个不同的物理量,) (2)两极上的万有引力:F mg =引3.忽略地球自转,地球上的物体受到的重力等于万有引力。
22GMm mg GM gR R =⇒=(黄金代换)4.距离地球表面高为h 的重力加速度:()()()222GMmGM mg GM g R h g R h R h '''=⇒=+⇒=++ 5.卫星绕地球做匀速圆周运动:万有引力提供向心力 2GMm F F r ==万向22GMm GM ma a r r =⇒= (轨道处的向心加速度a 等于轨道处的重力加速度g 轨)22GMm v m v r r =⇒=22GMm m r r ωω=⇒=222GMm m r T r T π⎛⎫=⇒= ⎪⎝⎭6.中心天体质量的计算:方法1:22gR GM gR M G =⇒= (已知R 和g ) 方法2:2v r v M G =⇒= (已知卫星的V 与r ) 方法3:23r M G ωω=⇒= (已知卫星的ω与r ) 方法4:2324r T M GT π=⇒= (已知卫星的周期T 与r )方法5:已知32v v T M G T π⎧=⎪⎪⇒=⎨⎪=⎪⎩ (已知卫星的V 与T )方法6:已知3v v M G ωω⎧=⎪⎪⇒=⎨⎪=⎪⎩ (已知卫星的V 与ω,相当于已知V 与T )7.地球密度计算: 球的体积公式:343V R π=2233232322()3434r M M r R V mM G m GT R r r GT T M ππρππ=⎧⎪⎪=⇒⎨===⎪⎪⎩近地卫星23GTπρ=(r=R)8. 发射速度:采用多级火箭发射卫星时,卫星脱离最后一级火箭时的速度。
万有引力定律及其应用万有引力定律是物理学中最基本的定律之一,描述了物体之间相互作用的力,被广泛应用于天体运动、地球运行、航天探索等领域。
本文将介绍万有引力定律的定义与公式,并探讨其在宇宙学、卫星运行和导航系统中的应用。
一、万有引力定律的定义和公式万有引力定律是由艾萨克·牛顿于1687年提出的,它描述了两个物体之间的引力大小与它们的质量及距离的关系。
牛顿的万有引力定律可以用以下公式表示:F =G * (m1 * m2) / r^2其中,F表示两个物体之间的引力,G是万有引力常数,m1和m2分别是两个物体的质量,r是它们之间的距离。
二、万有引力定律在宇宙学中的应用万有引力定律在宇宙学中起着重要作用。
根据该定律,行星围绕太阳运行,卫星绕地球运行,这是因为太阳和地球对它们产生了引力。
通过牛顿的定律,科学家们能够计算出天体之间的引力,从而预测它们的运动轨迹和相互作用。
世界各个国家的航天探索也依赖于万有引力定律。
比如,计算出行星和卫星的运动轨迹,对航天器进行准确的发射和着陆,都需要准确地应用万有引力定律。
此外,万有引力定律还促进了科学家对宇宙的进一步研究,帮助他们了解天体的形成和宇宙演化的规律。
三、万有引力定律在卫星运行中的应用卫星是应用万有引力定律的典型实例。
通过牛顿定律计算引力,可确定卫星轨道的稳定性和运行所需的速度。
在卫星发射前,科学家需要根据卫星要达到的轨道高度和地球质量计算出所需的发射速度,确保卫星能够稳定地绕地球运行。
此外,卫星之间也需要遵循万有引力定律的规律。
卫星在轨道上的相对位置和轨道调整都受到引力的影响。
科学家利用牛顿定律的公式,预测卫星之间的相对运动,确保卫星不会相互碰撞,从而保证卫星系统的正常运行。
四、万有引力定律在导航系统中的应用导航系统是现代社会不可或缺的一部分,而万有引力定律在导航系统中也发挥着关键作用。
通过利用地球的引力场,导航系统能够计算出接收器的位置和速度。
卫星导航系统如GPS(全球定位系统)就是基于万有引力定律工作的。
万有引力定律公式大全
万有引力定律公式大全
1. 引力公式
万有引力定律公式:F = G(m1m2/r²)
其中,
F:两个物体之间的引力;
G:万有引力常量,约等于6.67×10^-11 N·m²/kg²;
m1、m2:分别为两个物体的质量;
r:为两个物体之间的距离。
2. 圆周运动公式
万有引力定律公式也可以用来描述行星绕太阳的圆周运动,其公式为:
F = m*v²/r = G(m1m2/r²)
其中,
m:为行星的质量;
v:为行星绕太阳的线速度;
r:为行星到太阳的距离;
m1、m2:分别为行星和太阳的质量。
3. 行星运动周期公式
行星绕太阳的运动周期公式为:
T² = (4π²r³)/(GM)
其中,
T:为行星绕太阳一周的时间;
r:为行星到太阳的距离;
M:为太阳的质量;
G:万有引力常量。
4. 轨道速度公式
行星绕太阳的轨道速度公式为:v = (GM/r)¹/²
其中,
v:为行星绕太阳的速度;
r:为行星到太阳的距离;
M:为太阳的质量;
G:万有引力常量。
5. 天体自转周期公式
天体自转周期公式为:
T = 2π(r/v)
其中,
T:为天体的自转周期;
r:为天体的半径;
v:为天体表面的线速度。
以上就是万有引力定律公式大全,每一项公式都有其具体的物理含义和数学表达式,对于物理学或天文学研究者或爱好者都有着极高的参考价值。
万有引力定律万有引力定律(Universal Law of Gravitation)是由英国物理学家艾萨克·牛顿(Isaac Newton)在17世纪末提出的一套基本理论。
该定律描述了质点间相互作用的引力,并成为了经典物理表达引力的基础,直到爱因斯坦在20世纪提出了相对论,引力被重新解释为时空弯曲的结果。
万有引力定律是牛顿力学的基石之一,对于理解宇宙和物理现象起到了重要作用。
根据万有引力定律,任何两个物体之间都存在着相互吸引的力,这种力的大小与两个物体的质量成正比,与距离的平方成反比。
具体来说,如果两个物体的质量分别为m1和m2,它们之间的距离为r,那么它们之间的引力F可以用下式表示:F =G * (m1 * m2) / r^2其中,G是一个常数,被称为万有引力常数。
万有引力常数的值约为6.67430 × 10^(-11) N·(m/kg)^2。
通过万有引力定律,我们可以解释许多自然界中的现象。
例如,地球对物体的吸引力就可以用该定律来描述。
在我们日常生活中,我们经常可以观察到物体受重力作用的例子,比如当我们将一颗苹果从树上摘下来时,它会受到地球的引力作用而落到地上。
除了解释地球上的现象外,万有引力定律还能帮助我们了解宇宙的结构和运动。
根据这一定律,行星之间的引力决定了它们的轨道形状和运动方式。
例如,地球绕太阳运动的轨道是椭圆形,而不是圆形。
这是因为太阳对地球的引力是向心力,使得地球绕着它进行椭圆轨道运动。
万有引力定律还可以解释天体运动中的其他现象,如月球绕地球运动和天体潮汐现象等。
通过对质点的引力相互作用的研究,科学家们不仅能够解释这些现象,还能够对它们进行精确的预测和推断。
尽管牛顿的万有引力定律在描述常见物体之间的引力时非常准确,但它在描述高速运动和极强引力场下的引力时有一些局限性。
在这些情况下,爱因斯坦的广义相对论理论会更加适用。
广义相对论认为引力是由物体在时空中弯曲而产生的,可以更准确地描述引力的行为。
万有引力定律万有引力定律是牛顿在17世纪提出的一项重要物理定律,它揭示了物体之间的引力相互作用规律。
本文将从定律的内容、应用及历史背景等方面进行探讨,以便更好地理解和应用这一定律。
一、定律内容万有引力定律可以简述为:两个物体之间的引力大小与它们的质量成正比,与它们之间的距离的平方成反比。
具体表达为:F =G * (m1 * m2) / r^2其中F表示物体之间的引力大小,G为一个恒定值,m1和m2分别是两个物体的质量,r为它们之间的距离。
该定律揭示了物体间引力的本质,即所有物体之间都存在一种相互吸引的力。
不论是天体间的引力,还是地球上物体的引力,都可以用这个定律来描述和计算。
二、应用1. 行星运动万有引力定律为解释行星运动提供了基础。
根据该定律,行星绕太阳运动的轨道是椭圆形,太阳位于椭圆焦点的一个焦点上。
同时,行星离太阳的距离越近,引力越大,行星运动的速度就越快。
2. 飞行物体轨迹万有引力定律也可用于描述飞行物体的轨迹。
例如,火箭发射后离地球越远,引力越小,轨迹就会变成抛物线或者双曲线。
同时,不同行星对飞船的引力大小也会影响其轨迹,这在宇宙探索中具有重要意义。
3. 重力加速度万有引力定律也可用于计算地球上物体的重力加速度。
地球的质量和半径已知的情况下,可以根据定律计算物体在地球表面上的重力加速度。
这对于研究物体在不同引力环境下的运动具有重要意义。
三、历史背景万有引力定律的提出是在牛顿看到苹果从树上落下的时候。
他开始思考为什么苹果会落下,而不是飘浮在空中。
通过对地球上物体运动的观察和测量,牛顿总结出了万有引力定律,并将其公式化。
万有引力定律的提出对于现代物理学的发展起到了重要作用。
它不仅解释了行星运动和地球上物体的重力现象,还为后来的科学家提供了探索宇宙的基本法则。
同时,该定律也激发了更多关于引力和宇宙起源的研究。
结论万有引力定律是牛顿物理学的重要组成部分,它揭示了物体间引力相互作用的规律。
通过应用该定律,我们可以解释和预测宇宙中各种物体间的相互作用。
万有引力定律编辑本词条由“科普中国”百科科学词条编写与应用工作项目审核。
[1] 万有引力定律是艾萨克·牛顿在1687年于《自然哲学的数学原理》上发表的。
牛顿的普适的万有引力定律表示如下:任意两个质点有通过连心线方向上的力相互吸引。
该引力大小与它们质量的乘积成正比与它们距离的平方成反比,与两物体的化学组成和其间介质种类无关。
中文名万有引力定律外文名Law of universal gravitation 表达式F=(G×M₁×M₂)/R²提出者艾萨克·牛顿提出时间1687年应用学科数学、自然哲学、物理学、自然学等适用领域范围物理学、自然学等推理依据编辑伽利略在1632年实际上已经提出离心力和向心力的初步想法。
布里阿德在1645年提出了引力平方比关系的思想.牛顿在1665~1666年的手稿中,用自己的方式证明了离心力定律,但向心力这个词可能首先出现在《论运动》的第一个手稿中。
一般人认为离心力定律是惠更斯在1673年发表的《摆钟》一书中提出来的。
根据1684年8月~10月的《论回转物体的运动》一文手稿中,牛顿很可能在这个手稿中第一次提出向心力及其定义。
万有引力与相作用的物体的质量乘积成正比,是发现引力平方反比定律过渡到发现万有引力定律的必要阶段.·牛顿从1665年至1685年,花了整整20年的时间,才沿着离心力—向心力—重力—万有引力概念的演化顺序,终于提出“万有引力”这个概念和词汇。
·牛顿在《自然哲学的数学原理》第三卷中写道:“最后,如果由实验和天文学观测,普遍显示出地球周围的一切天体被地球重力所吸引,并且其重力与它们各自含有的物质之量成比例,则月球同样按照物质之量被地球重力所吸引。
另一方面,它显示出,我们的海洋被月球重力所吸引;并且一切行星相互被重力所吸引,彗星同样被太阳的重力所吸引。
由于这个规则,我们必须普遍承认,一切物体,不论是什么,都被赋与了相互的引力(gravitation)的原理。