数据的表示与编码
- 格式:ppt
- 大小:1.41 MB
- 文档页数:74
第3章信息编码与数据表示• 3.4 浮点机器数表示方法– 3.4.1 浮点数的格式•浮点数的典型格式N=M*RE –阶符,数符。
阶码一般采用移码和补码表示。
尾数一般采用原码和补码表示。
–E :定点整数。
E 决定了浮点数N 的绝对值;E S 不是N 的符号–M :定点小数。
M S 决定了浮点数N 的符号;M S =0,则N 为正数,M S =1,则N 为负数 E 1E 2……E m .阶码数值尾数数值. M 1M 2……M nE S M S 阶符数符IEEE 754 国际标准常用的浮点数格式有3种,阶码的底隐含为2短实数又称为单精度浮点数,长实数又称为双精度浮点数,临时实数主要用于进行浮点数运算,保存临时的计算结果。
单精度浮点数和双精度浮点数的阶码采用移码,但不同的是:它的偏移量不是27和210,而是27-1=127和210-1=1023;尾数使用原码表示,且采用隐藏位,也就是将规格化浮点数尾数的最高位的“1”省略,不予保存,认为它隐藏在尾数小数点的左边。
由此,推导出它们的真值计算公式如上表,其中E为阶码ESE1……Em的加权求和的值。
Ms Es E1…E8M1M2…M23Ms Es E1…E11M1M2…M52IEEE754单精度格式IEEE754双精度格式例 3.10:若X 和Y 均是IEEE 754 标准的单精度浮点数,若X 浮点数的存储形式为41360000H ,求X 的真值。
若Y=-135.625,求Y 的浮点数表示。
解:(1)[X]浮= 0100 0001 0011 0110 0000 0000 0000 0000 B按照表3-3中的真值计算公式及IEEE 754 标准的单精度浮点数格式,可以知道:M S =0 ,E=E S E 1……E m = 10000010 B = 130 D ,1. M 1M 2…… M n = 1.011 0110 0000 0000 0000 0000 ,所以,X =(-1)MS ×(1.M 1M 2…… M n )×2E -127= (-1)0×(1. 011 011)×2130-127;X=(+1011.011)2= (+11.375 )10(2)Y=(-10000111.101)2;Y =-1. 0000111101×27=(-1)1×(1.0000111101)×2134-127;因此:M S =1 ,E=E S E 1……E m = 134 D = 10000110 B ,1.M1 M2…… Mn = 1. 000 0111 1010 0000 0000 0000 ,求出:[Y]浮= 1 10000110 000 0111 1010 0000 0000 0000 B = C307A000 H–3.4.2 规格化定义:采用规格化形式表示浮点数可以提高精度。
计算机中数据的表示与信息编码计算机最主要的功能是处理信息,如处理文字、声音、图形和图像等信息。
在计算机内部,各种信息都必须经过数字化编码后才能被传送、存储和处理。
因此要了解计算机工作的原理,还必须了解计算机中信息的表现形式。
1.2.1 计算机使用的数制1.计算机内部是一个二进制数字世界计算机内部采用二进制来保存数据和信息.无论是指令还是数据,若想存入计算机中,都必须采用二进制数编码形式,即使是图形、图像、声音等信息,也必须转换成二进制,才能存入计算机中。
为什么在计算机中必须使用二进制数,而不使用人们习惯的十进制数?原因在于:⑴易于物理实现:因为具有两种稳定状态的物理器件很多,例如,电路的导通与截止、电压的高与低、磁性材料的正向极化与反向极化等。
它们恰好对应表示1和0两个符号。
⑵机器可靠性高:由于电压的高低、电流的有无等都是一种跃变,两种状态分明,所以0和1两个数的传输和处理抗干扰性强,不易出错,鉴别信息的可靠性好。
⑶运算规则简单:二进制数的运算法则比较简单,例如,二进制数的四则运算法则分别只有三条。
由于二进制数运算法则少,使计算机运算器的硬件结构大大简化,控制也就简单多了。
虽然在计算机内部都使用二进制数来表示各种信息,但计算机仍采用人们熟悉和便于阅读的形式与外部联系,如十进制、八进制、十六进制数据,文字和图形信息等,由计算机系统将各种形式的信息转化为二进制的形式并储存在计算机的内部.2.进位计数制数制,也称计数制,是指用一组固定的符号和统一的规则来表示数值的方法。
数制可分为非进位计数制和进位计数制两种.非进位计数制的数码表示的数值大小与它在数中的位置无关;而进位计数制的数码所表示的数值大小则与它在数中所处的位置有关。
而我们在这里讨论的数制指的都是进位计数制。
进制是进位计数制的简称,是目前世界上使用最广泛的一种计数方法,它有基数和位权两个要素.➢➢基数:在采用进位计数制的系统中,如果只用r个基本符号(例如0,1,2,…,r—1)表示数值,则称其为r数制(Radix—r Number System),r称为该数制的基数(Radix).如日常生活中常用的十进制,就是r=10,即基本符号为0,1,2,…,9。
第一章习题一、复习题1、试述数制的概念。
位置化数字系统中,在数字中符号所占据的位置决定了其表示的值。
大多数人使用的数字系统是以10为底的,也就是十进制。
二进制数字系统是最简单的数字系统。
(P21-23)2、列举出你所知道的数字系统。
提示:根据本章内容和自己接触过的情况,也可以上网搜索有关资料。
3、谈谈二进制、八进制和十六进制等数字表示方法各有什么有点和缺点。
八进制就是逢8进位,十六进制就是逢16进位,2、8、16,分别是2的1次方,3次方,4次方。
这三种进制之间可以非常直接地互相转换。
八进制数或十六进制数实际上是缩短了的二进制数,但保持了二进制数的表达特点。
(P23-P25)4、为什么使用二进制计算的时候会出现溢出?因为存储空间大小(即存储单元的位的数量)的限制,可以表达的整数范围是有限的。
二进制补码中两个整数相加的法则是,2个位相加,将进位加到下一列。
如果最左边的列相加后还有进位,则舍弃它。
如果在最高位有进位,那就会产生溢出。
(P29-32)5、反码和补码相对于原码有什么优点?计算机中的数是用原码表示的还是用反码、补码表示的?数值的反码表示法是用最高位存放符号,并将原码的其余各位逐位取反。
反码的取值空间和原码相同且一一对应。
在补码表示法中,正数的补码表示与原码相同,即最高符号位用0表示正,其余位为数值位。
而负数的补码则为它的反码、并在最低有效位(即D0位)加1所形成。
处理器内部默认采用补码表示有符号数。
(P29)6、汉字编码有哪几种?各自的特点是什么?汉字的编码有国际码、机内码等。
在国标码的字符集中共收录了6763个常用汉字和682个非汉字字符,汉字机内码是与ASCII对应的,用二进制对汉字进行的编码。
由于汉字数量多,一般用2个字节来存放汉字的内码,即双字节字符集(double-byte character set,简称DBCS)。
(P36-37)7、图像是如何压缩存储的?哪一种图像占用空间最小,为什么?图形压缩编码的考虑主要由于位图文件体积太大,人们研究通过编码的形式,在保证图像具备一定质量的前提下,缩小图像文件的大小。
计算机中数据的表示方法在计算机中,数据是以二进制的形式存储和表示的。
二进制由0和1两个数字组成,这是计算机中最基本的单位。
为了能够有效地处理各种类型的数据,计算机采用了不同的数据表示方法。
下面将介绍一些常见的数据表示方法。
1. 无符号整数表示法无符号整数表示法是最简单的数据表示方法之一。
它将整数表示为二进制数,其中最高位表示权值最大的位。
例如,8位的无符号整数可以表示范围从0到255的整数。
2. 补码表示法补码表示法是计算机中最常用的整数表示方法。
它使用最高位作为符号位,0表示正数,1表示负数。
正数的补码与其二进制表示相同,而负数的补码是其绝对值的反码加1。
使用补码表示法可以简化整数的加减运算。
3. 浮点数表示法浮点数表示法用于表示实数(包括小数和科学计数法表示的数)。
它将实数分为三部分:符号位、指数位和尾数位。
符号位表示正负,指数位表示小数点的位置,尾数位表示有效数字。
计算机中使用IEEE 754标准定义的浮点数表示法。
4. 字符编码字符编码是将字符映射为二进制数的方法。
最常用的字符编码是ASCII码,它将每个字符映射为一个7位或8位的二进制数。
随着计算机的发展,出现了更多的字符编码标准,如Unicode和UTF-8,它们可以表示更多的字符。
5. 图像表示法图像表示法是将图像转换为计算机可以处理的数据的方法。
最简单的图像表示法是位图,它将图像分割为像素,并将每个像素表示为二进制数。
此外,还有矢量图形表示法和压缩图像表示法等。
6. 音频表示法音频表示法是将声音转换为计算机可以处理的数据的方法。
最常用的音频表示法是脉冲编码调制(PCM),它将声音按时间分割为一系列离散的采样点,并将每个采样点的振幅值表示为二进制数。
此外,还有压缩音频表示法如MP3等。
7. 视频表示法视频表示法是将视频转换为计算机可以处理的数据的方法。
最常用的视频表示法是基于帧的表示法,将视频分割为一系列连续的图像帧,并将每个图像帧表示为一组二进制数。