污水处理中脱氮除磷方法总结
- 格式:pdf
- 大小:92.19 KB
- 文档页数:1
《城市污水处理新型生物脱氮除磷技术研究进展》篇一一、引言随着城市化进程的加速,城市污水处理问题日益突出。
在众多的污水处理技术中,生物脱氮除磷技术因其高效、经济、环保等优点而备受关注。
本文旨在探讨城市污水处理中新型生物脱氮除磷技术的研究进展,分析其技术特点、应用现状及未来发展趋势。
二、生物脱氮除磷技术概述生物脱氮除磷技术是一种利用微生物的新陈代谢活动,通过生物膜法或活性污泥法等工艺,将污水中的氮、磷等营养物质去除的技术。
该技术具有处理效率高、运行成本低、污泥产量少等优点,是当前城市污水处理领域的研究热点。
三、新型生物脱氮技术研究进展(一)A2/O工艺及其改进型技术A2/O(厌氧-缺氧-好氧)工艺是一种典型的生物脱氮技术。
近年来,研究者们针对A2/O工艺的不足,开发了多种改进型技术,如MBBR(移动床生物膜反应器)、SBR(序批式活性污泥法)等。
这些技术通过优化反应器结构、调整运行参数等手段,提高了脱氮效率,降低了能耗。
(二)新型厌氧氨氧化技术厌氧氨氧化技术是一种利用厌氧氨氧化菌将氨氮转化为氮气的生物脱氮技术。
近年来,研究者们通过优化反应条件、提高菌种活性等手段,推动了厌氧氨氧化技术的发展。
该技术具有脱氮效率高、能耗低等优点,是未来生物脱氮技术的重要发展方向。
四、新型生物除磷技术研究进展(一)PAOs(聚磷菌)强化除磷技术PAOs强化除磷技术是一种利用聚磷菌在厌氧-好氧条件下实现高效除磷的技术。
近年来,研究者们通过优化反应条件、提高聚磷菌活性等手段,提高了PAOs强化除磷技术的除磷效率。
该技术具有除磷效果好、污泥产量少等优点。
(二)化学与生物联合除磷技术化学与生物联合除磷技术是一种结合化学沉淀与生物吸附的除磷技术。
该技术通过投加化学药剂与生物反应相结合的方式,实现高效除磷。
近年来,研究者们针对不同水质条件,优化了药剂种类和投加量,提高了除磷效果。
五、新型生物脱氮除磷技术应用及发展趋势(一)应用现状新型生物脱氮除磷技术在城市污水处理中已得到广泛应用。
污水处理方法之除磷、脱氮污水处理方法之除磷、脱氮:除磷:城市废水中磷的主要来源是粪便、洗涤剂和某些工业废水,以正磷酸盐、聚磷酸盐和有机磷的形式溶解于水中。
常用的除磷方法有化学法和生物法。
A、化学法除磷:利用磷酸盐与铁盐、石灰、铝盐等反应生成磷酸铁、磷酸钙、磷酸铝等沉淀,将磷从废水中排除。
化学法的特点是磷的去除效率较高,处理结果稳定,污泥在处理和处置过程中不会重新释放磷造成二次污染,但污泥的产量比较大。
B、生物法除磷:生物法除磷是利用微生物在好氧条件下,对废水中溶解性磷酸盐的过量吸收,沉淀分离而除磷。
整个处理过程分为厌氧放磷和好氧吸磷两个阶段。
含有过量磷的废水和含磷活性污泥进人厌氧状态后,活性污泥中的聚磷商在厌氧状态下,将体内积聚的聚磷分解为无机磷释放回废水中。
这就是“厌氧放磷”。
聚磷菌在分解聚磷时产生的能量除一部分供自己生存外,其余供聚磷菌吸收废水中的有机物,并在厌氧发酵产酸菌的作用下转化成乙酸背,再进一步转化为PHB (聚自-短基丁酸)储存于体内。
进入好氧状态后,聚磷菌将储存于体内的PHB进行好氧分解,并释放出大量能量,一部分供自己增殖,另一部分供其吸收废水中的磷酸盐,以聚磷的形式积聚于体内。
这就是“好氧吸磷”。
在此阶段,活性污泥不断增殖。
除了一部分含磷活性活泥回流到厌氧池外,其余的作为剩余污泥排出系统,达到除磷的目的。
脱氮:生活废水中各种形式的氮占的比例比较恒定:有机氮50%~60%,氨氮40%~50%,亚硝酸盐与硝酸盐中的氮占 0~5%。
它们均来源于人们食物中的蛋白质。
脱氮的方法有化学法和生物法两大类。
A、化学法脱氮:包括氨吸收法和加氯法。
a、氨吸收法:先把废水的pH值调整到10以上,然后在解吸塔内解吸氨b、加氯法:在含氨氮的废水中加氯。
通过适当控制加氯量,可以完全除去水中的氨氮。
为了减少氯的投加量,此法常与生物硝化联用,先硝化再除去微量的残余氨氮。
B、生物法脱氮:生物脱氮是在微生物作用下,将有机氮和氨态氮转化为氮气的过程,其中包括硝化和反硝化两个反应过程。
工艺方法——生物脱氮除磷技术工艺简介一、传统生物脱氮除磷技术1、传统生物脱氮原理污水经二级生化处理,在好氧条件下去除以BOD5为主的碳源污染物的同时,在氨化细菌的参与下完成脱氨基作用,并在硝化和亚硝化细菌的参与下完成硝化作用;在厌氧或缺氧条件下经反硝化细菌的参与完成反硝化作用。
2、传统生物除磷原理在厌氧条件下,聚磷菌体内的ATP进行水解,放出H3PO4和能量形成ADP;在好氧条件下,聚磷菌有氧呼吸,不断地放出能量,聚磷菌在透膜酶的催化作用下利用能量、通过主动运输从外部摄取H3PO4,其中一部分与ADP结合形成ATP,另一部分合成聚磷酸盐(PHB)储存在细胞内,实现过量吸磷。
通过排除剩余污泥或侧流富集厌氧上清液将磷从系统内排除,在生物除磷过程中,碳源微生物也得到分解。
3、常用工艺及升级改造具有代表性的常用工艺有A/O工艺、A2/O工艺、UCT工艺、SBR 工艺、Bardenpho工艺、生物转盘工艺等,这些工艺都是通过调节工况,利用各阶段的优势菌群,尽可能的消除各影响因素间的干扰,以达到适应各阶段菌群生长条件,实现水处理效果。
近年来随着研究的深入,对常用工艺有了一些改进,目前应用最广泛、水厂升级改造难度较低的是分段进水工艺。
与传统A/O工艺、A2/O工艺、UCT工艺等相比,分段进水工艺可以充分利用碳源并能较好的维持好氧、厌氧(或缺氧)环境,具有脱氮除磷效率高、无需内循环、污泥浓度高、污泥龄长等优点。
分段进水工艺适用于对A/O工艺、A2/O工艺、UCT工艺等的升级改造,通过将生化反应池分隔并使进水按一定比例分段进入各段反应池,以充分利用碳源,解决目前污水处理厂普遍存在的碳源不足和剩余污泥量过大的问题。
分段进水工艺虽然对提高出水水质有较好的效果,但该工艺并不能提高处理能力,当水厂处于超负荷运行时,分段进水改造也不能达到良好的处理效果。
二、新型生物脱氮除磷技术近年来,科学研究发现,生物脱氮除磷过程中出现了超出传统生物脱氮除磷理论的现象,据此提出了一些新的脱氮除磷工艺,如:短程硝化反硝化工艺、同步硝化反硝化工艺、厌氧氨氧化工艺、反硝化除磷工艺。
污水处理工艺中如何进行脱氮除磷?氮、磷的主要危害:一是受纳水体富营养化;二是影响水源水质,增加给水处理成本;三是对人和生物有一定的毒害。
生物脱氮分为三步:1、氨化作用,即水中的有机氮在氨化细菌的作用下转化成氨氮。
在普通活性污泥法中,氨化作用进行得很快,无需采取特殊的措施。
2、硝化作用,即在供氧充足的条件下,水中的氨氮首先在亚硝酸钠的作用下被氧化成亚硝酸盐,然再在硝酸菌的作用下进一步氧化成硝酸盐。
为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。
3、反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。
这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。
生物除磷原理所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。
而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。
可分为三个阶段,,即细菌的压抑放磷、过渡积累和奢量吸收。
首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。
然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。
脱氮除磷工艺1、传统A²/O 法即厌氧→缺氧→好氧活性污泥法。
污水在流经三个不同功能分区的过程中,在不同微生物菌群作用下,使污水中的有机物、氮和磷得到去除。
原污水的碳源物质(BOD)首先进入厌氧池聚磷菌优先利用污水中易生物降解有机物成为优势菌种,为除磷创造了条件,然后污水进入缺氧池,反硝化菌利用其它可利用的碳源将回流到缺氧池的硝态氮还原成氮气排入到大气中, 达到脱氮的目的。
污水处理脱氮除磷工艺介绍及对比分析2020年9月6日星期日目录一、生物脱氮 (3)1、硝化过程 (3)2、反硝化过程 (4)3、生物脱氮的基本条件 (5)4、废水生物脱氮处理方法 (6)二、化学脱氮 (7)1、吹脱法 (7)2、化学沉淀法(磷酸铵镁沉淀法) (8)3、低浓度氨氮工业废水处理技术 (9)4、不同浓度工业含氨氮废水的处理方法比较 (11)三、化学法除磷 (11)1、石灰除磷 (12)2、铝盐除磷 (12)3、铁盐除磷 (13)四、生物除磷 (13)1、生物除磷的原理 (13)2、生物除磷的影响因素: (14)3、废水生物除磷的方法有哪些 (15)4、除磷设施运行管理的注意事项 (15)一、生物脱氮脱氮技术包括化学法和生物法,由于化学法会产生二次污染,而且成本高,所以一般使用生物脱氮技术。
污水生物处理脱氮主要是靠一些专性细菌实现氮形式的转化。
含氮有机化合物在微生物的作用下首先分解转化为氨态氮NH4+或NH3,这一过程称为“氨化反应”。
硝化菌把氨氮转化为硝酸盐,这一过程称为“硝化反应”;反硝化菌把硝酸盐转化为氮气,这一反应称为“反硝化反应”。
含氮有机化合物最终转化为氮气,从污水中去除。
1、硝化过程硝化菌把氨氮转化为硝酸盐的过程称为硝化过程,硝化是一个两步过程,分别利用了两类微生物——亚硝酸盐菌和硝酸盐菌。
这两类细菌统称为硝化菌,这些细菌所利用的碳源是CO32-、HCO3-和CO2等无机碳。
第一步由亚硝酸盐菌把氨氮转化为亚硝酸盐,第二步由硝酸盐菌把亚硝酸盐转化为硝酸盐。
这两个过程释放能量,硝化菌就是利用这些能量合成新细胞和维持正常的生命活动,氨氮转化为硝态氮并不是去除氮而是减少了它的需氧量。
氧化1g氨氮大约需要消耗4.3gO2和8.64gHCO3-(相当于7.14gCaCO3碱度)。
硝化过程的影响因素:1)温度:硝化反应最适宜的温度范围是30~35℃,温度不但影响硝化菌的比增长速率,而且会影响硝化菌的活性。
污水处理运行-提高脱氮除磷效率方式脱氮除磷是污水处理系统的一项重要功能,要保障脱氮除磷处理达标,很重要的一点就是要保证给微生物提供充足的有机物。
又想马儿跑得快,又想马儿不吃草是不行的。
例如,有效的反硝化需要易生物降解的碳源,生物除磷需要短链挥发性脂肪酸,在一些天然水质较软的地区,需要补充碱度以维持整个曝气池硝化过程所需的pH条件;另外,如果使用化学除磷,无论是作为生物除磷过程的补充还是作为主要的除磷手段,都需要添加金属盐和聚合物。
01 反硝化的碳源投加1、什么时候需要加药剂?生物脱氮需要完成硝化和反硝化两个过程。
废水中的氨氮首先必须被硝化或转化成亚硝酸盐和硝酸盐,然后在反硝化过程中,硝酸盐将被作为细胞呼吸过程中氧化简单碳化合物的供氧体被还原成氮气。
因此,以去除硝酸盐为目标的反硝化过程必须要有易生物降解的碳源存在。
其来源包括进水中溶解性BOD、内源反硝化过程中细胞的腐烂物和各类上清液回流等。
当进水溶解性有机物不足而脱氮要求很高时,则需要通过补充化学物质以提供反硝化过程所需要的碳源。
2、有哪些碳源?投加在哪个位置?反硝化所用的人工碳源有甲醇、乙醇、变性乙醇、醋酸及醋酸钠等纯化学药剂,或者是工业生产过程中的废糖、糖蜜和废醋酸溶液等。
其中甲醇的使用最普遍,且被证明是最合适的碳源。
对于常规的生物脱氮工艺,甲醇应直接投加在缺氧段,并通过缺氧段内的搅拌器与进水及混合液充分混合,需防止水流剧烈紊流导致甲醇从液相中挥发至空气,也应防止因多余的氧气存在造成部分甲醇被细菌好氧呼吸消耗。
如果污水厂采用四阶段或五阶段活性污泥工艺,在后续的缺氧段(第二缺氧段)投加碳源可以获得比内源呼吸更高的反硝化速率,能进一步去除硝酸盐;对于三级反硝化系统,如反硝化滤池、反硝化好氧生物滤池等,则补充碳源对于系统的运行非常重要。
因为反硝化过程在主体曝气工艺的下游,进水中的所有溶解性BOD都已经被去除,所以甲醇通常投加于反硝化进水中。
3、投加量怎么计算?甲醇的投加量受硝酸盐(NO3-N)、亚硝酸盐(NO2-N)以及溶解氧影响。
污水处理中的脱氮除磷工艺
通常污水处理设备的外壳都是金属材质(碳钢、不锈钢)或者玻璃钢材质制作。
不同的污水处理设备对污染水的敏感度处理工艺和处理后的排放标准都不相同。
污水中95%以上的氨氮(HN3-N)以NH4的形式存在。
通过鼓风曝气,亚硝酸菌首先将氨氮转化为亚硝酸盐:
(亚硝酸菌)NH4+1.5O2NO2-+2H+H2O。
然后将亚硝酸盐转化为硝酸盐:硝酸菌No2总体反应为:NH4+2O2NO3+2H+H2O。
污水处理设备
以上反应在好氧部分进行。
在厌氧部分,硝酸盐和亚硝酸盐通过兼氧微生物或厌氧微生物(如碱生产菌、假单胞菌、无色杆菌等)进行反硝化和脱氮。
反消化菌利用NO3中的氧(又称化合态氧或硝化氧)继续分解代谢有机污染物,去除BOD5,同时将NO3中的氮转化为氮N2这个过程可以用以下方式表示:
反消化菌NO3-+有机物N2+N2O+OH。
除磷原理:
厌氧段优势的非丝状储磷菌分解储存的聚磷酸盐,提供能量,吸收水中大量的BOD5,释放正磷酸盐,降低厌氧段的BOD5,提高磷含量。
公厕污水进入好氧段后,好氧微生物利用氧化分解获得的能量,吸收原水中释放的大量正磷和磷,完成磷的过渡积累,达到去除BOD5和除磷的目的。
污水处理脱氮除磷工艺原理。