2020年湖北省武汉市八年级(上)月考数学试卷
- 格式:doc
- 大小:457.80 KB
- 文档页数:20
八年级(上)月考数学试卷(10月份)一、选择题(共10小题,每小题3分,共30分)1.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,9cm B.8cm,7cm,15cmC.13cm,12cm,24cm D.5cm,5cm,11cm2如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.3一个多边形的内角和是外角和的8倍,则这个多边形的边数()A.17B.18C.19D.204如图将一副三角板拼成如图所示的图形(∠D=30°,∠ABC=90°,∠DCE=90°,∠A =45°),BC交DE于点F,则∠DFC的度数是()A.75°B.105°C.135°D.125°5如图,给出下列四组条件,其中,不能使△ABC≌△DEF的条件是()A.AB=DE,BC=EF,AC=DF B.AB=DE,∠B=∠E,BC=EFC.∠B=∠E,BC=EF,∠C=∠F D.AB=DE,AC=DF,∠B=∠E6下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形7如图,已知△ABC≌△DEF,CD平分∠BCA,若∠A=30°,∠CGF=88°,则∠E的度数是()A.30°B.50°C.44°D.34°8如图,在△ABC中,∠C=90°,AC=4,AD=3CD,BD平分∠ABC,则点D到AB的距离为()A.1B.2C.3D.49如图,AB∥CD,AC∥BD,AD与BC交于O,AE⊥BC于E,DF⊥BC于F,那么图中全等的三角形有()A.5对B.6对C.7对D.8对10如图,CA=CB,CD=CE,∠ACB=∠DCE=60°,AD与BE相交于点F,若点C在BD上满足BC=3CD.若F A=x,FE=y,FC=2,判断x、y之间的数量关系()A.x﹣y=2B.x﹣3y=4C.x﹣2y=4D.2x﹣3y=6二、填空题(共6小题,每小题3分,共18分)11已知三角形的三边长为连续整数,且周长为18cm,则它的最短边的为.12如图,CE平分∠ACD,交AB于点E,∠A=40°,∠B=30°,∠D=104°,则∠BEC 的度数为.13如图,A、C、N三点在同一直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△MNC≌△ABC,则∠BCM:∠BCN=.14如图,等腰△ABC中,顶角∠A=42°,点E,F是内角∠ABC与外角∠ACD三等分线的交点,连接EF,则∠BFC=°.15如图,一个大正方形中有两个小正方形.如果它们的面积分别是S1,S2,若大正方形的边长36cm,推断S1=,S2=.16在△ABC中,AD是它的角平分线,若3∠BAC=4∠C,∠ADB>∠B>∠BAD,写出∠BAC的取值范围.三、解答题(共8小题,共72分).17如图,点B,F,C,E在一条直线上,BF=CE,AB∥DE,AC∥DF.求证:AB=DE,AC=DF.18如图,在△ABC中,∠BAC=∠ACB,M,N为BC上两点,且∠BAM=∠CAN,∠MAN =∠AMN,求∠MAC的度数.19如图,OC在∠AOB内部,P是OC上的一点,点D,E分别在OA,OB上,且OD=OE,连接PD,PE,∠PDO>90°,∠PDO=∠PEO.求证:OC平分∠AOB.20如图,在5×5的方格纸中,△ABC的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形.(1)仅用无刻度的直尺画出△ABC的AB边上的高CH(保留作图痕迹);(2)若AB=5,求CH的长;(3)在5×5的方格纸中与△ABC全等的格点三角形(不含△ABC)共有个.21已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.22如图,已知长方形ABCD中,如图,在长方形ABCD中,AD=BC=8,BD=10,点E 从点D出发,以每秒2个单位长度的速度沿DA向点A匀速移动,点F从点C出发,以每秒1个单位长度的速度沿CB向点B匀速移动,点G从点B出发,沿BD向点D匀速移动,三个点同时出发,当E点到达终点时,其余两点也随之停止运动,假设移动时间为t秒,当△DEG和△BFG全等时,求t的值和此时G点对应的速度.23在Rt△ABC中,∠ACB=90°,AC=BC,∠CAB=∠CBA=45°,D为BC上一点,连接AD,过点C作CE⊥AD于点E.(1)如图1,过点B作BF⊥BC交CE的延长线于点F,求证:△ACD≌△CBF;(2)如图2,若D为BC的中点,CE的延长线交AB于点M,连接DM,求证:∠BDM =∠ADC;(3)在(2)的条件下,若AE=4,CE=2,直接写出CM的长.24如图1,在平面直角坐标系中,A点的坐标为(a,0),B点的坐标为(0,b),且a、b 满足|a﹣2b+6|+|3a﹣5b+12|=0.(1)求△OAB的面积;(2)如图2,点P为第一象限内一点,且∠OP A=∠AOP,AC⊥x轴交OP于点C,AD 平分∠P AC交OP于点D,求证:DB⊥AD.(3)如图3,在(2)的条件下,OE⊥BD,垂足为点E,点F在边BD上,BE=DF,MF⊥BD交AB于点M,连OM,试着判断线段MF、OM、BE之间的数量关系,并证明你的结论.2020-2021学年湖北省武汉市江夏区华一寄宿学校八年级(上)月考数学试卷(10月份)一、选择题(共10小题,每小题3分,共30分)1.C.2.A.3 .B.4.B.5 .D.6 .B.7 .D.8 .A.9 .C.10 .B.二、填空题(共6小题,每小题3分,共18分)11 .5cm.12 .57°.13 .1:4.14 .14.15 .324cm2.288cm2.16 .60°<∠BAC<80°.三、解答题(共8小题,共72分).17证明:∵BF=EC,∴BC=EF,∵AB∥DE,AC∥DF,∴∠B=∠E,∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE,AC=DF.18解:设∠BAM=x°,则∠MAN=∠BAC﹣2x°,∵∠MAN=∠AMN=∠B+x°=(180°﹣∠BAC﹣∠ACB)+x°=180°﹣2∠BAC+x°,∴∠BAC﹣2x°=180°﹣2∠BAC+x°,∴∠BAC=60°+x°,∴∠MAC=∠BAC﹣∠BAM=60°.19证明:连接DE,∵OD=OE,∴∠ODE=∠OED,∵∠PDO=∠PEO,∴∠PDE=∠PED,∴PD=PE,在△POD和△POE中,,∴△POD≌△POE(SSS),∴∠DOP=∠EOP,即OC平分∠AOB.20解:(1)如图,线段CH即为所求作.(2)∵S△ABC=•AB•CH=×4×4,∴CH=.(3)图中,与△ABC全等的三角形一共有:8×4﹣1=31(个),故答案为:31.21证明:(1)∵CF平分∠BCD,∴∠BCF=∠DCF.在△BFC和△DFC中,∴△BFC≌△DFC(SAS).(2)连接BD.∵△BFC≌△DFC,∴BF=DF,∴∠FBD=∠FDB.∵DF∥AB,∴∠ABD=∠FDB.∴∠ABD=∠FBD.∵AD∥BC,∴∠BDA=∠DBC.∵BC=DC,∴∠DBC=∠BDC.∴∠BDA=∠BDC.又∵BD是公共边,∴△BAD≌△BED(ASA).∴AD=DE.22解:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC,有两种情形:①DE=BF,BG=DG=5,∴2t=8﹣t,∴t=,∴点G的速度==;②当DE=BG,DG=BF时,设BG=y,则有,解得,∴点G的速度==2,综上所述:t的值为或2,点G的速度为或2.23(1)证明:∵BF⊥BC,CE⊥AD,∴∠AEC=∠CBF=∠ACB=90°,∴∠CAD+∠ACE=∠BCF+∠ACE=90°,∴∠CAD=∠BCF,又∵AC=BC,∴△ACD≌△CBF(ASA);(2)证明:过点B作BF⊥BC交CE的延长线于点F,如图2所示:由(1)得:△ACD≌△CBF,∴∠ADC=∠F,CD=BF,∵D为BC的中点,∴CD=BD,∴BD=BF,∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵∠CBF=90°,∴∠FBM=90°﹣45°=45°,∴∠DBM=∠FBM,又∵BM=BM,∴△BDM≌△BFM(SAS),∴∠BDM=∠F,∴∠BDM=∠ADC;(3)解:连接DF,如图3所示:∵CE⊥AD,AE=4,CE=2,∴BC=AC===2,由(2)得:BD=BF,CD=BD=BC=,△BDM≌△BFM,∴DM=FM,AD===5,∴DE=AD﹣AE=1,∵∠DBF=90°,∴△BDF是等腰直角三角形,∴DF=BD=,∴EF===3,设DM=FM=x,则EM=3﹣x,在Rt△DEM中,由勾股定理得:12+(3﹣x)2=x2,解得:x=,∴EM=3﹣=,∴CM=CE+EM=2+=.24(1)解:∵a、b满足|a﹣2b+6|+|3a﹣5b+12|=0,∴,解得:,∴OA=OB=6,∴S△OAB=OA•OB=×6×6=18;(2)证明:过点O作OE⊥OD交DA延长线于E,如图2所示:由(1)得:OA=OB=6,设∠POA=θ,则∠OP A=θ,∵AC⊥x轴,∴∠ACO=90°﹣∠POA=90°﹣θ,∴∠CAP=∠ACO﹣∠OP A=90°﹣θ﹣θ=90°﹣2θ,∵AD平分∠P AC,∴∠DAP=∠CAP=45°﹣θ,∴∠ODA=∠OP A+∠DAP=θ+45°﹣θ=45°,∴△DOE是等腰直角三角形,∴∠AEO=45°,OD=OE,∵OB⊥OA,∴∠BOD=90°﹣∠DOA=∠AOE,在△BOD和△AOE中,,∴△BOD≌△AOE(SAS),∴∠BDO=∠AEO=45°,∴∠BDA=∠BDO+∠ODA=45°+45°=90°,∴DB⊥AD;(3)解:线段MF、OM、BE之间的数量关系为:OM=BE+MF,理由如下:过点B作BH⊥OM于H,过点M作MN⊥AD于N,OE交AB于G,如图3所示:∵OA=OB,OB⊥OA,∴∠OAB=∠OBA=45°,∵MF⊥BD,MN⊥AD,DB⊥AD,∴四边形MNDF为矩形,∴MN=DF,MN∥DF,∵BE=DF,∴BE=MN,∵MN∥DF,∴∠GBE=∠AMN,∵OE⊥BD,MN⊥AD,∴∠BEG=∠MNA=90°,在△BEG和△MNA中,,∴△BEG≌△MNA(ASA),∴BG=MA,∵OA=OB,∴∠OAM=∠OBG,在△OAM和△OBG中,,∴△OAM≌△OBG(SAS),∴∠AOM=∠BOG,∠OMA=∠OGB,∴∠BMH=∠BGE,∵OE⊥BD,MF⊥BD,∴GE∥MF,∴∠BMF=∠BGE,∴∠BMH=∠BMF,在△BMH和△BMF中,,∴△BMH≌△BMF(AAS),∴HM=MF,∠HBM=∠FBM=90°﹣∠BMO=90°﹣(∠BAO+∠AOM)=90°﹣45°﹣∠BOG=45°﹣∠BOG,∴∠OBH=∠OBA﹣∠HBM=45°﹣45°+∠BOG=∠BOG,在△OBH和△BOE中,,∴△OBH≌△BOE(SSA),∴OH=BE,∴OM=OH+HM=BE+MF.。
2020年八年级上学期第一次月考数学试卷4分,共40分)1.如图1,在△中,点是延长线上一点,=40°,=120°,则等于()A.60°B.70°C.80°D.90°2.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A.2 B.4 C.6 D.83.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x + y =().A.7 B.8 C.10 D.114.用直尺和圆规作一个角等于已知角的示意图2如下,则说明∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.ASA D.AAS图1 图2 图3 图45.如图3,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )A.15° B.25° C.30° D.10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( )A.5 B.6 C.7 D.87.如图4,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是( )A.∠A=∠EDF B.∠B=∠E C.∠BCA=∠F D.BC∥EF8.如图5,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为( )A.1 B.2 C.3 D.49.如图6,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于()A.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰5图5 图6 图7 图810.如图7,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是( )A.4cm B.6cm C.8cm D.9cm二、填空题(每小题4分,共24分)11.如图8,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理_________________.12.如果一个等腰三角形有两边长分别为4和9,那么这个等腰三角形的周长为__________.13.小明不慎将一块三角形的玻璃摔碎成如图9所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带_____.图9 图10 图11 图1214.如图10为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=________.15.如图11,已知∠B=46°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_______.16.如图12,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到______________位置时,才能使△ABC≌△QPA.年八年级上学期数学第一次月考答题卡二、填空题(本题共24分,每小题4分)11._________________ , 12._______________ , 13.________________ ,14.__________________ , 15._______________ , 16.________________ .三、解答题(共86分)17.(8分)一个多边形的外角和是内角和的,求这个多边形的边数.18.(8分)张峰同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下.如图,AB∥OH∥CD,OB=OD,AC,BD相交于点O,OD⊥CD,垂足为D,已知AB=20米请根据上述信息求标语CD的长度.19.(8分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).20.(10分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF; (2)指出图中所有平行的线段,并说明理由.21.(10分)如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数.(2)求CE的长.22.(10分)如图,△ABC中,∠ACB=90°,DC=AE,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D.(1)求证:AC=CB; (2)若AC=12 cm,求BD的长.23.(10分)如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于点E,点F在AC上,BD=DF.求证:(1)CF=EB; (2)AB=AF+2EB.24.(10分)两个大小不同的等腰直角三角形三角板,如图①所示放置,图②是由它抽象出的几何图像,点B,C,E在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明.(说明:结论中不得含有未标识的字母)(2)证明:DC⊥BE. 25.(12分)已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.2020年八年级上学期第一次月考数学试卷(答案)4分,共40分)1.如图,在△中,点是延长线上一点,=40°,=120°,则等于(C)A.60°B.70°C.80°D.90°2.如果一个三角形的两边长分别为2和4,则第三边长可能是( B )A.2 B.4 C.6 D.83.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x + y =( D).A.7 B.8 C.10 D.114.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是(A)A.SSS B.SAS C.ASA D.AAS图1 图2 图3 图45.如图3,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( A )A.15° B.25° C.30° D.10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( D )A.5 B.6 C.7 D.87.如图4,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是( B )A.∠A=∠EDF B.∠B=∠E C.∠BCA=∠F D.BC∥EF8.如图5,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为( B )A.1 B.2 C.3 D.49.如图5,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于(C)A.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰5图5 图6 图7 图810.如图6,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是( C )A.4cm B.6cm C.8cm D.9cm二、填空题(每小题4分,共24分)11.如图7,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是___三角形的稳定性_______.12.如果一个等腰三角形有两边长分别为4和9,那么这个等腰三角形的周长为____22______.13.小明不慎将一块三角形的玻璃摔碎成如图8所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带__②___.图8 图9 图10 图1114.如图10为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=___135°_____.15.如图11,已知∠B=46°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=____67°___.16.如图,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到__AC的中点_位置时,才能使△ABC≌△QPA.三、解答题(共86分)17.(8分)一个多边形的外角和是内角和的,求这个多边形的边数.解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9.18.(8分)张峰同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下.如图,AB∥OH∥CD,OB=OD,AC,BD相交于点O,OD⊥CD,垂足为D,已知AB=20米请根据上述信息求标语CD的长度.解:∵ AB∥CD,∴∠ABO=∠CDO.(1分)又∵ OD⊥CD,∴∠CDO=90°.∴∠ABO=90°,即OB⊥AB.(3分)在△ABO与△CDO中,∴△ABO≌△CDO.(6分)∴ CD=AB=20米.(8分)(也可利用“AAS”证△ABO≌△CDO,其他过程相同).解析:根据AB∥OH∥CD,利用平行线的性质可知∠ABO=∠CDO(或者∠BAO=∠DCO).由题意可证明OD,OB分别是平行线AB与OH以及OH与CD之间的距离,故OD=OB,根据“ASA”或者“AAS”证明△ABO ≌△CDO,所以CD=AB,进而求出CD的长.19.(8分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.20.(10分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.(1)证明:∵ BF=EC,∴ BF+FC=EC+CF,即BC=EF.(3分)又AB=DE,AC=DF,∴△ABC≌△DEF.(5分)(2)AB∥DE,AC∥DF.(7分)理由:∵△ABC≌△DEF,∴∠ABC=∠DEF,∠ACB=∠DFE,∴ AB∥DE,AC∥DF. (10分)21.(10分)如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数.(2)求CE的长.解:(1)∆ABE≅∆ACD∴∠EBA=∠C=42°(3分)∠EBG=0180—∠EBA=138°.(5分)(2) ∆ABE≅∆ACD∴AC=AB=9 AE=AD=6 .(8分)∴EC=AC-AE=9-6=3 . (10分)22.(10分)如图,△ABC中,∠ACB=90°,DC=AE,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D.(1)求证:AC=CB;(2)若AC=12 cm,求BD的长.(1)证明:∵AF⊥DC,∴∠ACF+∠FAC=90°,∵∠ACF+∠FCB=90°,∴∠EAC=∠FCB,在△DBC和△ECA,⎩⎪⎨⎪⎧∠DBC=∠ACB=90°∠DCB=∠CAEDC=AE,∴△DBC≌△ECA(AAS),∴BC=AC(2)解:∵E是AC的中点,∴EC =12BC =12AC=12×12 cm=6 cm,又∵△DBC≌△ECA,∴BD=CE,∴BD=6 cm23.(10分)如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于点E,点F在AC上,BD=DF.求证:(1)CF=EB; (2)AB=AF+2EB.证明:(1)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴ DE=DC.又∵ BD=DF,∴ Rt△CDF≌Rt△EDB(HL),∴ CF=EB.(2)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴△ADC≌△ADE,∴ AC=AE,∴ AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.24.(10分)两个大小不同的等腰直角三角形三角板,如图①所示放置,图②是由它抽象出的几何图像,点B,C,E在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明.(说明:结论中不得含有未标识的字母)(2)证明:DC⊥BE.解:(1)△ABE≌△ACD,证明:∵AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,∴△ABE≌△ACD(2)由△ABE≌△ACD得∠ACD=∠ABE=45°,又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE 25.(12分)已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.证明:(1)如图①,连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠ACB=∠AEF=90°,AF=AF,∴Rt△ACF≌Rt△AEF, (4分)∴CF=EF,∴BF+EF=BF+CF=BC,∴BF+EF=DE; (6分)(2)如图②,(1)中的结论不成立,有DE=BF﹣EF,(8分)理由是:连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠E=∠ACF=90°,AF=AF,∴Rt△ACF≌Rt△AEF, (12分)∴CF=EF,∴DE=BC=BF﹣FC=BF﹣EF,即DE=BF﹣EF. (14分)。
八年级上学期数学第一次月考试卷(满分150分时间:120分钟)一.单选题。
(每小题4分,共40分)1.在下列实数中,无理数有().A.﹣1B.3.14C.√2D.152.在平面直角坐标系中,点P(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.﹣8的立方根是()A.﹣2B.﹣12C.12D.24.用式子表示16的平方根,正确的是()A.±√16=±4B.√16=4C.√16=±4D.±√16=45.根据下列描述,能确定准确位置的是()A.某影城3号厅2排B.经十路中段C.南偏东40°D.东经117°,北纬36°6.点P在第二象限内,P到x轴的距离是5,到y轴的距离是3,则点P的坐标为()A.(﹣5,3)B.(﹣3,﹣5)C.(﹣3,5)D.(3,﹣5)7.与点P(2,b)和点Q(a,﹣3)关于y轴对称,则a+b的值是()A.﹣1B.﹣5C.1D.58.下列运算正确的是()A.√2+√3=√5B.2×√3=√6C.3√2-√2=3D.√12÷√3=29.如图,已知小华的坐标为(﹣2,﹣1),小亮的坐标为(﹣1,0),则小东的坐标应该是()A.(﹣3,﹣2)B.(1,1)C.(1,2)D.(3,2)10.已知直线MN∥x轴,M点的坐标为(1,3),且线段MN=4,则点N的坐标为()A.(5,3)B.(3,5)C.(5,3)或(﹣3,3)D.(3,5)或(3,﹣3)二.填空题。
(每小题4分,共24分)11.如果用有序数对(1,4)表示第一单元4号的住户,则第二单元6号住户用有序数对表示为 .12.36的算式平方根是 .13.在平面直角坐标系中,点(﹣3,1)关于x 轴对称的点的坐标是 . 14.在平面直角坐标系中,点M (a+1,a -1)在x 轴上,则a= . 15.对于任意不相等的两个数a ,b ,定义一种运算如下:a ×b=√a+b a -b,如3×2=√3+23-2,那么6×3= .16.已知a ,b 都是实数,若|a -2|+√b -4=0,则√ab a= . 三.解答题。
2019-2020学年八年级(上)月考数学试卷(四)一.选择题(共10小题)1.如下字体的四个汉字“立”“德”“树”“人”中,是轴对称图形的是()A.B.C.D.2.△ABC中,如果∠A+∠B=∠C,那么△ABC形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定3.下列图形具有稳定性的是()A.三角形B.四边形C.五边形D.六边形4.一定能确定△ABC≌△DEF的条件是()A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F5.已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形6.如图是两个全等三角形,则∠1=()A.62°B.72°C.76°D.66°7.用直尺和圆规作两个全等三角形,如图,能得到△COD≌△C'O'D'的依据是()A.SAA B.SSS C.ASA D.AAS8.如图,已知△ABC,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED周长为()A.5cm B.6cm C.7cm D.8cm9.如图四边形ABCD中,∠ABC=3∠CBD,∠ADC=3∠CDB,∠C=128°,则∠A的度数是()A.60°B.76°C.77°D.78°10.在平面直角坐标系中,已知A(1,2)、B(3,0),AB=2.在坐标轴上找点P,使A、B、P三点构成等腰三角形,这样的点P有()个.A.5 B.6 C.7 D.8二.填空题(共6小题)11.在平面直角坐标系中,点A,点B关于x轴对称,点A的坐标是(2,﹣8),则点B的坐标是.12.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为.13.六边形的对角线有条.14.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.15.△ABC中,∠A是最小角,∠B是最大角,且2∠B=5∠A,若∠B的最大值m°,最小值n°,则m+n=.16.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN=度.三.解答题(共8小题)17.若∠1=∠2,∠A=∠D,求证:AB=DC.18.已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.(要求:写作法,用尺规作图,保留作图痕迹).19.如图,AE是△BAC的角平分线,AD是△ABC的高,∠C=40°,∠B=80°,求∠DAE 的度数.20.如图,△ABC中,AB=AC,BD⊥AC于点D,∠CBD=15°,BD=3,求△ABC的面积.21.(1)请画出△ABC关于直线m(直线m上各点的横坐标都为1)对称的图形.(其中A′、B′、C′分别是A、B、C的对应点,不写画法)(2)直接写出A′、B′、C′三点的坐标.(3)平面内任一点P(x,y)关于直线m对称点的坐标为.22.如图,等边△ABC中,点D、E分别在边BC、AC上,AE=CD,连接AD、BE交于点P.(1)求证:∠BPD=60°.(2)连接PC,若CP⊥PB.当AP=3,求BP的长.23.如图,AN∥CB,B、N在AC同侧,BM、CN交于点D,AC=BC,且∠A+∠MDN=180°.(1)如图1,当∠NAC=90°,求证:BM=CN;(2)如图2,当∠NAC为锐角时,试判断BM与CN关系并证明;(3)如图3,在(1)的条件下,且∠MBC=30°,一动点E在线段BM上运动过程中,连CE,将线段CE绕点C顺时针旋转90°至CF,取BE中点P,连AP、FP.设四边形APFC 面积为S,若AM=﹣1,MC=1,在E点运动过程中,请写出S的取值范围.24.如图,在平面直角坐标系中,A(a,0)、B(0,b)、D(﹣d,d),连BD交x轴于E.(1)如图1,若a、b、d满足(a﹣4)2+(a﹣b)2+=0,求△ADE的面积.(2)如图2,在(1)的条件下,点P在x轴上A点右侧,连BP过点P作PQ⊥PB交直线AD于Q,求证:PQ=PB.(3)如图3,设AB=c,且d=﹣2.当BD平分∠ABO时,试求a﹣b+c的值.参考答案与试题解析一.选择题(共10小题)1.如下字体的四个汉字“立”“德”“树”“人”中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项符合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项不合题意.故选:A.2.△ABC中,如果∠A+∠B=∠C,那么△ABC形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【分析】据在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°可求出∠C的度数,进而得出结论.【解答】解:∵在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,解得∠C=90°,∴△ABC是直角三角形.故选:B.3.下列图形具有稳定性的是()A.三角形B.四边形C.五边形D.六边形【分析】根据三角形具有稳定性解答.【解答】解:具有稳定性的图形是三角形.故选:A.4.一定能确定△ABC≌△DEF的条件是()A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看每个选项是否符合定理即可.【解答】解:A、根据ASA即可推出△ABC≌△DEF,故本选项正确;B、根据∠A=∠E,∠B=∠D,AB=DE才能推出△ABC≌△DEF,故本选项错误;C、根据AB=DE,BC=EF,∠B=∠E才能推出△ABC≌△DEF,故本选项错误;D、根据AAA不能推出△ABC≌△DEF,故本选项错误;故选:A.5.已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【分析】设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故选:C.6.如图是两个全等三角形,则∠1=()A.62°B.72°C.76°D.66°【分析】根据全等三角形的对应角相等解答.【解答】解:第一个图中,∠1=180°﹣42°﹣62°=76°,∵两个三角形全等,∴∠1=76°,7.用直尺和圆规作两个全等三角形,如图,能得到△COD≌△C'O'D'的依据是()A.SAA B.SSS C.ASA D.AAS【分析】利用作法课文确定OD=OD′=OC=OC′,CD=C′D′,然后根据全等三角形的判定方法可判断△COD≌△C'O'D'.【解答】解:由作法得OD=OD′=OC=OC′,CD=C′D′,所以可根据“SSS”证明△COD≌△C'O'D'.故选:B.8.如图,已知△ABC,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED周长为()A.5cm B.6cm C.7cm D.8cm【分析】根据翻折变换的性质可得DE=CD,BE=BC,然后求出AE,再根据三角形的周长列式求解即可.【解答】解:∵BC沿BD折叠点C落在AB边上的点E处,∴DE=CD,BE=BC,∵AB=8cm,BC=6cm,∴AE=AB﹣BE=AB﹣BC=8﹣6=2cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.9.如图四边形ABCD中,∠ABC=3∠CBD,∠ADC=3∠CDB,∠C=128°,则∠A的度数是()A.60°B.76°C.77°D.78°【分析】先设∠CBD=x°,∠CDB=y°,根据三角形的内角和整体得:x+y=52,则3x+3y =156,利用四边形的内角和可以求出∠A的度数.【解答】解:设∠CBD=x°,∠CDB=y°,则∠ABC=3x°,∠ADC=3y°,∵∠C=128°,∴∠CBD+∠CDB=180°﹣∠C=180°﹣128°=52°,即x+y=52,∴3x+3y=3×52=156,∴∠ABC+∠ADC=156°,∵∠A+∠ABC+∠ADC+∠C=360°,∴∠A=360°﹣156°﹣128°=76°,故选:B.10.在平面直角坐标系中,已知A(1,2)、B(3,0),AB=2.在坐标轴上找点P,使A、B、P三点构成等腰三角形,这样的点P有()个.A.5 B.6 C.7 D.8【分析】根据A、B、P三点构成等腰三角形,分别以A、B为圆心,AB长为半径画弧,作AB的垂直平分线,与坐标轴的交点即为所求.【解答】解:如图所示,分别以A、B为圆心,AB长为半径画弧,与坐标轴的交点P1,P2,P3,P4,P5符合题意;作AB的垂直平分线,与坐标轴的交点P6,P7符合题意,故选:C.二.填空题(共6小题)11.在平面直角坐标系中,点A,点B关于x轴对称,点A的坐标是(2,﹣8),则点B的坐标是(2,8).【分析】根据关于x轴的对称点的坐标特点:纵坐标互为相反数,横坐标不变可得答案.【解答】解:∵点A,点B关于x轴对称,点A的坐标是(2,﹣8),∴点B的坐标是(2,8),故答案为:(2,8).12.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为40°或100°.【分析】首先知有两种情况(顶角是40°和底角是40°时),由等边对等角求出底角的度数,用三角形的内角和定理即可求出顶角的度数.【解答】解:△ABC,AB=AC.有两种情况:(1)顶角∠A=40°,(2)当底角是40°时,∵AB=AC,∴∠B=∠C=40°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣40°﹣40°=100°,∴这个等腰三角形的顶角为40°和100°.故答案为:40°或100°.13.六边形的对角线有9 条.【分析】直接运用多边形的边数与对角线的条数的关系式求解.【解答】解:六边形的对角线的条数==9.故答案为9.14.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是a+b=0 .【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.15.△ABC中,∠A是最小角,∠B是最大角,且2∠B=5∠A,若∠B的最大值m°,最小值n°,则m+n=175 .【分析】由2∠B=5∠A,得∠B=∠A,根据三角形内角和定理得∠C=180°﹣∠A﹣∠B=180°﹣∠A;根据题意有∠A≤∠C≤∠B,则∠A≤180°﹣∠A,和180°﹣∠A≤∠A,解两个不等式得30°≤∠A≤40°,而∠A=∠B,得到∠B的范围,从而确定m,n.【解答】解:∵2∠B=5∠A,即∠B=∠A,∴∠C=180°﹣∠A﹣∠B=180°﹣∠A,又∵∠A≤∠C≤∠B,∴∠A≤180°﹣∠A,解得∠A≤40°;又∵180°﹣∠A≤∠A,解得∠A≥30°,∴30°≤∠A≤40°,即30°≤∠B≤40°,∴75°≤∠B≤100°∴m+n=175.故答案为:175.16.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN=30 度.【分析】如图1中,作CH⊥BC,使得CH=BC,连接NH,BH.证明△ABM≌△CHN(SAS),推出BM=HN,由BN+HN≥BH,可知B,N,H共线时,BM+BN=NH+BN的值最小,求出此时∠MBN即可解决问题.【解答】解:如图1中,作CH⊥BC,使得CH=BC,连接NH,BH.∵△ABC是等边三角形,AD⊥BC,CH⊥BC,∴∠DAC=∠DAB=30°,AD∥CH,∴∠HCN=∠CAD=∠BAM=30°,∵AM=CN,AB=BC=CH,∴△ABM≌△CHN(SAS),∴BM=HN,∵BN+HN≥BH,∴B,N,H共线时,BM+BN=NH+BN的值最小,如图2中,当B,N,H共线时,∵△ABM≌△CHN,∴∠ABM=∠CHB=∠CBH=45°,∵∠ABD=60°,∴∠DBM=15°,∴∠MBN=45°﹣15°=30°,∴当BM+BN的值最小时,∠MBN=30°,故答案为30.三.解答题(共8小题)17.若∠1=∠2,∠A=∠D,求证:AB=DC.【分析】由AAS证明△ABC≌△DCB,即可得出结论.【解答】证明:在△ABC和△DCB中,∴△ABC≌△DCB(AAS).∴AB=DC.18.已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.(要求:写作法,用尺规作图,保留作图痕迹).【分析】根据题目要求画出线段a、h,再画△ABC,使AB=a,△ABC的高为h;首先画一条直线,再画垂线,然后截取高,再画腰即可.【解答】解:作图:①画射线AE,在射线上截取AB=a,②作AB的垂直平分线,垂足为O,再截取CO=h,③再连接AC、CB,△ABC即为所求.19.如图,AE是△BAC的角平分线,AD是△ABC的高,∠C=40°,∠B=80°,求∠DAE 的度数.【分析】首先计算出∠BAC的度数,然后再根据角平分线定义可得∠BAE的度数,再根据直角三角形两锐角互余计算出∠BAD的度数,进而可得∠DAE的度数;【解答】解:∵∠BAC+∠B+∠C=180°,∠B=80°,∠C=40°,∴∠BAC=180°﹣(∠B+∠C)=180﹣(80°+40°)=60°,∵AE平分∠BAC,∴∠BAE=∠BAC=×60°=30°,∵AD⊥BC,∴∠B+∠BAD=90°,∴∠BAD=90°﹣∠B=90°﹣80°=10°,∴∠DAE=∠BAE﹣∠BAD=30°﹣10°=20°;20.如图,△ABC中,AB=AC,BD⊥AC于点D,∠CBD=15°,BD=3,求△ABC的面积.【分析】先根据等腰三角形的性质及三角形内角和定理求出∠A=30°,再根据30°角所对的直角边等于斜边的一半得出AB=2BD=6,则AC=6,然后根据△ABC的面积=AC •BD即可求解.【解答】解:∵BD⊥AC于点D,∠CBD=15°,∴∠C=75°,∵AB=AC,∴∠ABC=∠C=75°,∴∠A=180°﹣∠ABC﹣∠C=30°.在Rt△ABD中,∵∠ADB=90°,∠A=30°,∴AB=2BD=6,∴AC=AB=6,∴△ABC的面积=AC•BD=×6×3=9.21.(1)请画出△ABC关于直线m(直线m上各点的横坐标都为1)对称的图形.(其中A′、B′、C′分别是A、B、C的对应点,不写画法)(2)直接写出A′、B′、C′三点的坐标.(3)平面内任一点P(x,y)关于直线m对称点的坐标为(﹣x+2,y).【分析】(1)利用网格特点和对称性的性质,把A点右平移4格得到点A′,同理画出B′、C′点;(2)利用(1)中所画图形写出A′、B′、C′三点的坐标.(3)写出点P(x,y)关于y轴的对称点的坐标(﹣x,y),然后把点(﹣x,y)向右平移2个单位可得到点P(x,y)关于直线m对称点的坐标.【解答】解:(1)如图,△A′B′C′为所作;(2)A′、B′、C′三点的坐标分别为(3,3),(6,5),(6,1);(3)点P(x,y)关于直线m对称点的坐标为(﹣x+2,y).故答案为(﹣x+2,y).22.如图,等边△ABC中,点D、E分别在边BC、AC上,AE=CD,连接AD、BE交于点P.(1)求证:∠BPD=60°.(2)连接PC,若CP⊥PB.当AP=3,求BP的长.【分析】(1)证明△ADC≌△BEA即可说明AD=BE;证明∠BPQ=∠EBA+∠BAP=60°即可求解∠PBQ的度数;(2)延长PD至H,使PH=BP,连接BH、CH,证明△BPH是等边三角形,得出BP=BH=PH,∠HBP=∠ABD=60°,推出∠ABP=∠CBH,由SAS证得△ABP≌△CBH得出CH=AP =3,∠BCH=∠BAP,证明CH∥BE,推出CH⊥CP,∠HPC=30°,得出PH=2CH=6,即可得出结果.【解答】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴∠ABE=∠CAD,∵∠CAD+∠BAD=60°,∴∠ABE+∠BAD=60°,∴∠BPD=∠ABE+∠BAD=60°;(2)解:延长PD至H,使PH=BP,连接BH、CH,如图所示:∵△ABC是等边三角形,∴AB=BC,∠BAC=∠ABC=60°,由(1)知:∠BPD=60°,∴△BPH是等边三角形,∴BP=BH=PH,∠HBP=∠ABD=60°,∴∠ABP+∠PBD=∠CBH+∠PBD,∴∠ABP=∠CBH,在△ABP和△CBH中,,∴△ABP≌△CBH(SAS),∴CH=AP=3,∠BCH=∠BAP,∵∠ABE=∠CAD,∠BAC=∠ABC=60°,∴∠EBC=∠BAP,∴∠BCH=∠EBC,∴CH∥BE,∵CP⊥PB,∠BPD=60°,∴CH⊥CP,∠HPC=90°﹣60°=30°,∴PH=2CH=2×3=6,∴BP=6.23.如图,AN∥CB,B、N在AC同侧,BM、CN交于点D,AC=BC,且∠A+∠MDN=180°.(1)如图1,当∠NAC=90°,求证:BM=CN;(2)如图2,当∠NAC为锐角时,试判断BM与CN关系并证明;(3)如图3,在(1)的条件下,且∠MBC=30°,一动点E在线段BM上运动过程中,连CE,将线段CE绕点C顺时针旋转90°至CF,取BE中点P,连AP、FP.设四边形APFC 面积为S,若AM=﹣1,MC=1,在E点运动过程中,请写出S的取值范围1≤S≤3 .【分析】(1)先证∠N=∠CMB,再证∠ACB=∠A,可推出△ACN≌△CBM,即可得出结论;(2)如图2,延长NA至G,使AG=CM,证△GAC≌△MCB,得到GC=MB,再证GC=CN,即可推出结论;(3)如图3﹣1,当点E在线段BM上运动至与点M重合时,四边形APFC的面积最小,过点P分别作AC,BC的垂线,垂足分别为H,Q,求出此时四边形APFC的面积;当图3﹣2,当点E在线段BM上运动至与点B重合时,点P也与B,E重合,四边形APFC的面积最大,此时A,C,F在同一条直线上,即△ABF的面积,求出其面积,即可写出S的取值范围.【解答】(1)证明:∵∠NAC=90°,∠A+∠MDN=180°,∴∠NDM=90°,∴∠N+∠ACN=∠ACN+∠CMD=90°,∴∠N=∠CMB,∵AN∥CB,∴∠A+∠ACB=180°,∴∠ACB=∠A=90°,∵AC=BC,∴△ACN≌△CBM(AAS),∴BM=CN;(2)解:BM=CN,理由如下,如图2,延长NA至G,使AG=CM,∵AN∥BC,∴∠GAC=∠MCB,又∵AC=BC,∴△GAC≌△MCB(SAS),∴GC=MB,∠G=∠BMC,在四边形AMDN中,∠NAC+∠MDN=180°,∴∠N+∠AMD=180°,又∵∠AMD+∠BMC=180°,∴∠N=∠BMC,∴∠N=∠G,∴GC=CN,∴BM=CN;(3)∵AM=﹣1,MC=1,∴AC=AM+MC=,∴BC=,由(1)知,∠ACB=90°,又∵在Rt△MCB中,∠MBC=30°,∴MC=BC=1,如图3﹣1,当点E在线段BM上运动至与点M重合时,四边形APFC的面积最小,过点P分别作AC,BC的垂线,垂足分别为H,Q,∵点P是BE的中点,∴PH=BC=,PQ=MC=,∴S四边形APFC=S△APC+S△PCF=AC•PH+CF•PQ=××+×1×=1;当图3﹣2,当点E在线段BM上运动至与点B重合时,点P也与B,E重合,四边形APFC 的面积最大,此时A,C,F在同一条直线上,即△ABF的面积,∵AC=BC=CF=,∠ACB=∠BCF=90°,∴△ABF是等腰直角三角形,∴S四边形APFC=S△ABF=×2×=3,故答案为:1≤S≤3.24.如图,在平面直角坐标系中,A(a,0)、B(0,b)、D(﹣d,d),连BD交x轴于E.(1)如图1,若a、b、d满足(a﹣4)2+(a﹣b)2+=0,求△ADE的面积.(2)如图2,在(1)的条件下,点P在x轴上A点右侧,连BP过点P作PQ⊥PB交直线AD于Q,求证:PQ=PB.(3)如图3,设AB=c,且d=﹣2.当BD平分∠ABO时,试求a﹣b+c的值.【分析】(1)作DC∥OA交y轴于C,根据非负数的性质分别求出a、b、d,根据相似三角形的性质求出OE,得到AE的长,根据三角形的面积公式计算即可;(2)作DG⊥OA于G,连接BQ,根据圆周角定理得到∠QBP=∠QAP=45°,根据等腰三角形的判定定理证明;(3)作DF⊥y轴于H,DH⊥x轴于H,DK⊥BA交BA的延长线于K,根据坐标与图形性质得到DF=DH=2,根据角平分线的性质得到DF=DK=2,得到DH=DK,证明Rt△DAH≌Rt △DAK,根据全等三角形的性质得到AK=AH=a﹣2,根据BK=BF列式计算,得到答案.【解答】解:(1)∵(a﹣4)2+(a﹣b)2+=0,∴(a﹣4)2=0,(a﹣b)2=0,=0,∴a﹣4=0,a﹣b=0,d+2=0,解得,a=b=4,d=﹣2,如图1,作DC∥OA交y轴于C,则△BOE∽△BCD,∴=,即=,解得,OE=,则AE=OA﹣OE=,∴△ADE的面积=××2=;(2)如图2,作DG⊥OA于G,连接BQ,∵OA=OB,∠AOB=90°,∴∠BAO=45°,∵AG=OA﹣OG=2,∴AG=DG,∴∠DAG=45°,∴∠BAQ=∠BAD=90°,∠QAP=∠DAG=45°,∵∠BAQ=∠BPQ=90°,∴点A、B、Q、P四点共圆,∴∠QBP=∠QAP=45°,又∠BPQ=90°,∴PQ=PB;(3)作DF⊥y轴于H,DH⊥x轴于H,DK⊥BA交BA的延长线于K,则DF=DH=2,∵BD平分∠ABO,DF⊥y轴,DK⊥BA,∴DF=DK=2,∴DH=DK,BK=BF=b+2,在Rt△DAH和Rt△DAK中,,∴Rt△DAH≌Rt△DAK(HL)∴AK=AH=a﹣2,∴BK=c+a﹣2,∴c+a﹣2=b+2,∴a﹣b+c=4.。
八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个2.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形3.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)5.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm6.六边形共有几条对角线()A.6B.7C.8D.97.下列图形具有稳定性的是()A.B.C.D.8.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°9.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度10.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°二、填空题(本大题共6小题,每小题4分,共24分)11.要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加根木条才能固定.12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是.13.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.14.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.15.一个多边形的内角和是1800°,这个多边形是边形.16.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A =.三、画图题17.(7分)作BC边上的中线AD,作∠B的角平分线线BE.四、解答题18.(7分)如果直角三角形的一个锐角是另一个锐角的4倍,求这个直角三角形中这两个锐角的度数.19.(7分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.20.(7分)如图,AC=AD,BC=BD,AB是∠CAD的平分线吗?请说明理由.21.(7分)如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.22.(7分)如图所示,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABC的面积为10,求△ADC的面积;23.(8分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD =10°,∠B=50°,求∠C的度数.24.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.25.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.2.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形【分析】根据全等三角形的性质得出AB=DE,AC=DF,BC=EF,即可判断A;根据全等三角形的性质得出△ABC和△DEF放在一起,能够完全重合,即可判断B、C;根据图形即可判断D.【解答】解:A、∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴AB+AC+BC=DE+DF+EF,故本选项错误;B、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,即两三角形的面积相等,故本选项错误;C、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,故本选项错误;D、如图△ABC和DEF不是等边三角形,但两三角形全等,故本选项正确;故选:D.【点评】本题考查了全等三角形的定义和性质的应用,能运用全等三角形的有关性质进行说理是解此题的关键,题目较好,但是一道比较容易出错的题目.3.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线【分析】根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.【解答】解:根据等底等高可得,能将三角形面积平分的是三角形的中线.故选C.【点评】注意:三角形的中线能将三角形的面积分成相等的两部分.4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)【分析】可根据n边形从一个顶点引出的对角线与边的关系:n﹣3,可分成(n﹣2)个三角形直接判断.【解答】解:从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是(n﹣2).故选:C.【点评】多边形有n条边,则经过多边形的一个顶点的所有对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.5.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<7,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.6.六边形共有几条对角线()A.6B.7C.8D.9【分析】根据对角线公式计算即可得到结果.【解答】解:根据题意得:=9,则六边形共有9条对角线,故选:D.【点评】此题考查了多边形的对角线,n边形对角线公式为.7.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【解答】解:三角形具有稳定性.故选:A.【点评】此题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键.8.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【分析】先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B.【点评】此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.9.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度【分析】根据多边形的外角和等于360°即可得到结论.【解答】解:∵∠1+∠2+∠3+∠4=360°,∠2+∠3+∠4=320°,∴∠1=40°.故选:B.【点评】本题考查了多边形的内角和外角,熟记多边形的外角和等于360°是解题的关键.10.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD 中,AB =AD ,∠B =80°,∴∠B =∠ADB =80°,∴∠ADC =180°﹣∠ADB =100°,∵AD =CD ,∴∠C ===40°.故选:B .【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.二、填空题(本大题共6小题,每小题4分,共24分)11.要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加 3 根木条才能固定.【分析】首先根据三角形的稳定性,把六边形活动支架ABCDEF 分成三角形,然后根据从同一个顶点出发可以作出的对角线的条数解答即可.【解答】解:如图,,要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加3根木条才能固定.故答案为:3.【点评】此题主要考查了三角形的稳定性,要熟练掌握,解答此题的关键是熟记三角形具有稳定性.12.若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 19cm .【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【解答】解:当3cm 是腰时,3+3<8,不符合三角形三边关系,故舍去;当8cm 是腰时,周长=8+8+3=19cm .故它的周长为19cm .故答案为:19cm .【点评】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.三角形三边长分别为3,2a﹣1,4.则a的取值范围是1<a<4.【分析】根据三角形的三边关系为两边之和大于第三边,两边之差小于第三边,列出不等式即可求出a的取值范围.【解答】解:∵三角形的三边长分别为3,2a﹣1,4,∴4﹣3<2a﹣1<4+3,即1<a<4.故答案为:1<a<4.【点评】考查了三角形的三边关系,解题的关键是熟练掌握三角形三边关系的性质.14.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是6.【分析】根据正多边形的每一个外角都相等,多边形的边数=360°÷60°,计算即可求解.【解答】解:这个正多边形的边数:360°÷60°=6.故答案为:6.【点评】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.15.一个多边形的内角和是1800°,这个多边形是12边形.【分析】首先设这个多边形是n边形,然后根据题意得:(n﹣2)×180=1800,解此方程即可求得答案.【解答】解:设这个多边形是n边形,根据题意得:(n﹣2)×180=1800,解得:n=12.∴这个多边形是12边形.故答案为:12.【点评】此题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.16.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A =40°.【分析】先根据角平分线的定义得到∠OBC =∠ABC ,∠OCB =∠ACB ,再根据三角形内角和定理得∠BOC +∠OBC +∠OCB =180°,则∠BOC =180°﹣(∠ABC +∠ACB ),由于∠ABC +∠ACB =180°﹣∠A ,所以∠BOC =90°+∠A ,然后把∠BOC =110°代入计算可得到∠A 的度数.【解答】解:∵BO 、CO 分别平分∠ABC 、∠ACB ,∴∠OBC =∠ABC ,∠OCB =∠ACB ,而∠BOC +∠OBC +∠OCB =180°,∴∠BOC =180°﹣(∠OBC +∠OCB )=180°﹣(∠ABC +∠ACB ),∵∠A +∠ABC +∠ACB =180°,∴∠ABC +∠ACB =180°﹣∠A ,∴∠BOC =180°﹣(180°﹣∠A )=90°+∠A ,而∠BOC =110°,∴90°+∠A =110°∴∠A =40°.故答案为40°.【点评】本题考查了三角形内角和定理:三角形内角和是180°.三、画图题17.(7分)作BC 边上的中线AD ,作∠B 的角平分线线BE .【分析】根据尺规作图的要求作出中线AD ,角平分线BE 即可.【解答】解:如图,△ABC 的中线AD ,角平分线BE 即为所求.【点评】本题考查作图﹣复杂作图,三角形的中线,角平分线等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.四、解答题18.(7分)如果直角三角形的一个锐角是另一个锐角的4倍,求这个直角三角形中这两个锐角的度数.【分析】根据直角三角形的两个角互余构建方程即可解决问题.【解答】解:设较小的锐角是x度,则另一角是4x度.则x+4x=90,解得:x=18°.答:这个直角三角形中这两个锐角的度数分别为18°和72°.【点评】本题主要考查了直角三角形的性质,两锐角互余,解题的关键是学会利用参数构建方程解决问题.19.(7分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.【分析】多边形的外角和是360度,根据多边形的内角和比它的外角和的3倍少180°,即可得到多边形的内角和的度数.根据多边形的内角和定理即可求得多边形的边数.【解答】解:设这个多边形的边数是n,依题意得(n﹣2)×180°=3×360°﹣180°,n﹣2=6﹣1,n=7.∴这个多边形的边数是7.【点评】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.20.(7分)如图,AC=AD,BC=BD,AB是∠CAD的平分线吗?请说明理由.【分析】根据全等三角形的判定定理SSS证得△ACB≌△ADB,则其对应角相等:∠CAB =∠DAB,即AB是∠CAD的平分线.【解答】解:AB是∠CAD的平分线.理由如下:在△ACB与△ADB中,,∴△ACB≌△ADB(SSS),∴∠CAB=∠DAB,即AB是∠CAD的平分线.【点评】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.21.(7分)如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.【分析】由角平分线的定义,结合平行线的性质,易求∠EDC的度数.【解答】解:∵DE∥BC,∴∠ACB=∠AED=70°.∵CD平分∠ACB,∴∠BCD=∠ACB=35°.又∵DE ∥BC ,∴∠EDC =∠BCD =35°.【点评】本题考查了平行线的性质和角平分线定义的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.22.(7分)如图所示,已知AD 是△ABC 的边BC 上的中线.(1)作出△ABD 的边BD 上的高;(2)若△ABC 的面积为10,求△ADC 的面积;【分析】(1)利用尺规作AE ⊥BC ,垂足为E ,线段AE 即为所求;(2)利用三角形的中线把三角形分成两个面积相等的三角形即可;【解答】解:(1)如图线段AE 即为所求;(2)∵AD 是△ABC 的中线,∵S △ABD =S △ADC ,∵S △ABC =10,∴S △ADC =•S △ABC =5.【点评】本题考查作图﹣复杂作图,三角形的面积等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.23.(8分)如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠EAD =10°,∠B =50°,求∠C 的度数.【分析】根据直角三角形两锐角互余求出∠AED,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BAE,然后根据角平分线的定义求出∠BAC,再利用三角形的内角和定理列式计算即可得解.【解答】解:∵AD是BC边上的高,∠EAD=10°,∴∠AED=80°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.【点评】本题考查了三角形的角平分线、中线和高,主要利用了直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图是解题的关键.24.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.【分析】连接AD并延长AD至点E,根据三角形的外角性质求出∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C,即可求出答案.【解答】解:如图,连接AD并延长AD至点E,∵∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C∴∠BDC=∠BDE+∠CDE=∠CAD+∠C+∠BAD+∠B=∠BAC+∠B+∠C∵∠A=90°,∠B=21°,∠C=32°,∴∠BDC=90°+21°+32°=143°.【点评】本题考查了三角形的外角性质的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.25.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?【分析】(1)第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形,求得边数,即可求解;(2)根据多边形的内角和公式即可得到结论.【解答】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.【点评】本题考查了正多边形的外角的计算以及多边形的内角和,第一次回到出发点A 时,所经过的路线正好构成一个外角是20度的正多边形是关键.。
湖北省武汉市武汉六中上智中学2020-2021学年八年级上学期数学9月月考试卷一、单选题(共10题;共20分)1.在下列长度的三条线段中,不能组成三角形的是()A. 2cm,3cm,4cmB. 3cm,6cm,7cmC. 2cm,2cm,6cmD. 5cm,6cm,7cm2.如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()A. 35°B. 45°C. 55°D. 65°3.下列命题中,是真命题的是( )A. 内错角相等B. 对顶角相等C. 若x2=4,则x=2D. 若 a b,则a2b24.如图,B处在A的南偏西38°方向,C处在A处的南偏东22°方向,C处在B处的北偏东78°方向,则∠ACB的度数是( )A. 80°B. 75°C. 70°D. 65°5.如图,已知一个五边形ABCDE纸片,一条直线将该纸片分割成两个多边形.若这两个多边形内角和分别为m和n,则m+n不可能是( )A. 540°B. 720°C. 900°D. 1080°6.如图,已知△ABC中,CN=3BN,AM=CM,AN交BM于O.若S△ABC=40,则下列结论:① S△ABO=2;② BO∶MO=2∶3;③ AO∶NO=4;④ S△AMO=12;⑤ ,正确的是( )A. ①②④B. ②③④C. ②③④⑤D. ①②③④7.在△ABC中,AB=5,AC=3,AD为BC边的中线,则AD的长的取值范围( )A. B. C. D.8.如图,△ABC、△CDE都是等腰直角三角形,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠AEB=130°,则∠EBD的度数是( )A. 50°B. 40°C. 45°D. 60°9.如图,方格中△ABC的三个顶点分别在正方形的顶点(格点上),这样的三角形叫格点三角形,图中可以画出与△ABC全等的格点三角形共有( )个(不含△ABC)A. 28B. 29C. 30D. 3110.如图,△ABC中,AD是中线,BE是角平分线,AD、BE交于点F.若,则的值为( )A. B. C. D.二、填空题(共6题;共6分)11.等腰三角形的两边长分别为6cm、11cm,则这个等腰三角形的周长为________cm.12.一个多边形的每个内角都等于140°,则这个多边形的对角线有________条.13.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=________°.14.如图,AC与BD交于O点,若AB=DC,请补充一个条件:________,使△ABC≌△DCB.15.如图,直线a、b、c分别表示相互交叉的马路,要建一个停车场要求到三条马路的距离相等,那么符合条件的修建点有________处.16.在直角坐标系中,A(2,8)绕y轴上一点旋转90°后对应点A'正好在x轴上,那么对应点A'的坐标为________.三、解答题(共8题;共75分)17.已知:如图,△ABC的两条高线BD、CE相交于H点,∠A=56°,求∠BHC的度数.18.若等腰三角形一腰上的中线把三角形分为两个周长为15cm和18cm的三角形,且该中线长6cm,请画出示意图,并结合图形,求这个等腰三角形的底边长.19.用尺规作图法作∠AOB的角平分线.(请填空,图上保留作图痕迹即可)已知:∠AOB,求作:∠AOB的角平分线.作法:( 1 )以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.( 2 )分别以点_▲__为圆心,_▲__为半径画弧,两弧在∠AOB的内部交于点C.( 3 )画射线OC即为所求.20.如图,∠B=30°,AE、DE分别平分∠BAC和∠BDC,∠C=10°.(1)如图1,求∠E的度数;(2)如图2,求∠E的度数.21.如图1,AE、AD分别是△ABC的高和角平分线.(1)若∠B=40°,∠C=80°,求∠DAE的度数;(2)如图2,AD平分∠BAC,P是AD延长线上一点,过P作PE⊥BC,求证:.22.在△ABC 中,∠C=90°.(1)如图1,AD、BE分别平分∠CAB、∠CBA,交于点I,求∠AIB的度数;(2)如图2,AD平分∠CAB,CF⊥AB于F,交AD于点P,求证:∠CPD=∠CDP;(3)如图3,AG⊥HG,BI GH,求证:∠CAG=∠CBI.23.如图,AE=AD,AC=AB,∠EAD=∠CAB=α.(1)证明:BD=CE;(2)如图,BD、AC交于点F,BD、CE交于点P,若α=90°,求∠APB的度数.24.已知:平面直角坐标系中,点,AB⊥x轴于点B,并且满足,(1)试判断△AOB的形状并说明理由;(2)如图,若点C为线段AB的中点,连OC并作OD⊥OC,且OD=OC,连AD交x轴于点E,试求点E 的坐标;(3)如图,若点M为点B的左边x轴负半轴上一动点,以AM为一边作∠MAN=45°交y轴负半轴于点N,连MN,在点M运动过程中,试猜想式子OM+MN-ON的值是否发生变化?若不变,求这个不变的值;若发生变化,试求它变化的范围.答案解析部分一、单选题1.【答案】C2.【答案】C3.【答案】B4.【答案】A5.【答案】D6.【答案】B7.【答案】C8.【答案】B9.【答案】D10.【答案】C二、填空题11.【答案】23或2812.【答案】2713.【答案】720°14.【答案】AC=BD(或∠ABC=∠DCB等)15.【答案】416.【答案】(6,0)或(-10,0)三、解答题17.【答案】∵BD⊥AC,CE⊥AB,∴∠AEH=∠ADH=90°,在四边形AEHD中,∠AEH=∠ADH=90°,∠A=56°,∴∠EHD=360°-∠AEH-∠ADH-∠A=360°-90°-90°-56°=124°,∵∠BHC与∠EHD是对顶角,∴∠BHC=∠EHD=124°.18.【答案】解:如图:设,当的周长为15cm时:即时,,则;当的周长为18cm时:当时,,则;综上可知,这个等腰三角形的底边长为或.19.【答案】解:(1)(3)作图如下,则射线OC是∠AOB的角平分线.( 2 )M、N;大于MN20.【答案】(1)如图,连接AD,AE、DE分别平分BAC和BDC,CAE= EAB,CDE= EDB,由圆周角360°可得:CDE+ EDB+ ADC+ ADB=360°,2 EDB+ ADC+ ADB=360°①,由ADC与ADB内角和共360°可得:C+ CAD+ ADC+ ADB+ BAD+ B =360°,CAD+ ADC+ ADB+ BAD=320°,2 EAB+ ADC+ ADB=320°②,①-②可得:2 EDB-2 EAB=40°,EDB-EAB=20°,EFB= E+ EDB= B+ EAB,E= B-( EDB-EAB) =30°-20°=10°.(2)AE、DE分别平分BAC和BDC,CAE= EAB,CDE= EDB,CGB= C+ CDB,CGB= B+ CAB,C+ CDB = B+ CAB,CDB-CAB=20°,2 EDB-2 EAB=20°,EDB-EAB=10°,EFB= E+ EDB,EFB= B+ EAB,E+ EDB = B+ EAB,E= B+ EAB-EDB= B-( EDB-EAB)=30°-10°=20°.21.【答案】(1)∵∠B=40°,∠C=80°,∴∠BAC=180°-∠B-∠C=60°.∵AD是△ABC的角平分线,∴∠BAD=∠DAC= ∠BAC=30°,∴∠ADE=∠B+∠BAD=70°,∵AE⊥BC,∴∠AED=90°,∴∠DAE=90°-∠ADE=90°-70°=20°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°-∠B-∠C,∵AD平分∠BAC,∴∠CAD= ∠BAC=90°- ∠B- ∠C,∴∠ADC=180°-∠C-∠CAD=90°+ ∠B- ∠C,∴∠PDE=∠ADC=90°+ ∠B- ∠C,∵PE⊥BC,∴∠PED=90°,∴∠P=90°-∠PDE= ∠C- ∠B,即.22.【答案】(1)解:图1,∵∠C=90°,∴∠CAB+∠CBA=180°-∠C=90°,∵AD、BE分别平分∠CAB、∠CBA,交于点I,∴∠IAB= ∠CAB,∠IBA= ∠CBA,∴∠IAB+∠IBA= (∠CAB+∠CBA)= ×90°=45°,∴∠AIB=180°-(∠IAB+∠IBA)=180°-45°=135°;(2)证明:图2,∵CF⊥AB,∴∠CFA=90°,∵∠ACB=90°,∴∠CAB+∠ACF=90°,∠B+∠CAB=90°,∴∠B=∠ACF,∵AD平分∠CAB,∴∠CAD=∠BAD,∵∠CPD=∠CAD+∠ACF,∠CDP=∠BAD+∠B,∴∠CPD=∠CDP;(3)证明:延长GA和IB,两线交于K,∵AG⊥GH,∴∠AGH=90°,∵BI∥GH,∴∠K=90°,∵∠C=90°,∠CAG=∠C+∠COA,∠CBI=∠K+∠KOB,∠COA=∠KOB,∴∠CAG=∠CBI.23.【答案】(1)∵∠EAD=∠CAB,∴,即,在和中,,∴≌,∴;(2)连接BC,∵,,∴,∵≌,∴,∴A、B、C、P四点共圆,∴.24.【答案】(1),解得,点,AB⊥x轴于点B,OB=AB=6,△AOB是等腰直角三角形;(2)过点D作DF⊥y轴交于点F,如图所示:由(1)得△AOB是等腰直角三角形,OB=AB=6,点C为线段AB的中点,CB=3,OC⊥OD,OC=OD,∠COB+∠BOD=90°,∠DOF+∠BOD=90°,∠COB=∠DOF,∠CBO=∠DFO=90°,△CBO≌△DFO,CB=DF=3,OB=OF=6,,设直线AD的解析式为,则有:,解得,直线AD的解析式为,当y=0时,则有,解得,点E坐标为;(3)过点A分别作AB⊥x轴交于点B,AP⊥y轴交于点P,AH⊥AM,交y轴于点H,如图所示:由(1)得:∠ABO=∠BOP=∠APH=90°,AB=BO,AB=OB=6,四边形ABOP是正方形,AB=AP,∠MAB+∠BAH=90°,∠HAP+∠BAH=90°,∠MAB=∠HAP,△ABM≌△APH,AM=AH,BM=PH,∠MAN=45°,∠MAN=∠HAN=45°,AN=AN,△AMN≌△AHN,MN=HN,,,即.。
2019-2020学年八年级(上)月考数学试卷一.选择题(共10小题)1.下列长度的三条线段,其中能组成三角形的是()A.4,5,6 B.3,3,6 C.1,3,5 D.2,4,82.六边形的内角和等于()A.180°B.360°C.540°D.720°3.△ABC中,如果∠A+∠B=∠C,那么△ABC形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定4.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.5.如图所示,AB=AC,AD=AE,图中全等三角形有()对.A.1对B.2对C.3对D.4对6.如图,已知AB∥FE且AB=FE,要证明△ABC≌△EFD,需补充条件()A.BC=FD B.AD=CE C.CD=DO D.AE=EA7.如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是BC的中点,则BE+CF与EF的大小关系是()A.BE+CF>EF B.BE+CF=EF C.BE+CF<EF D.无法确定8.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF的面积为()A.4 B.6 C.8 D.109.将点P(2,3)向右平移3个单位长至点Q,点Q沿y轴折至点M,则()A.M(﹣5,﹣3)B.M(5,3)C.M(0,3)D.M(﹣5,3)10.Rt△ABC中,AB=AC,D点为Rt△ABC外一点,且BD⊥CD,DF为∠BDA的平分线,当∠ACD=15°,下列结论:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2DE.其中正确的是()A.①③B.①②④C.①③④D.①②③④二.填空题(共6小题)11.五边形的对角线一共有条.12.若等腰三角形两边长分别为3和5,则它的周长是.13.一个汽车牌在水中的倒影为,则该车牌照号码.14.在△ABC中,AC=5,中线AD=4,则边AB的取值范围是.15.如图,∠ACB=90°,AC=BC,点C(2,4)、A(﹣4,0),则点B的坐标是.16.如图,在等腰△ABC中,AB=AC,∠BAC的平分线与AB的中垂线交于点O,点C沿EF 折叠后与点O重合.若∠CEF=50°,则∠AOF的度数是.三.解答题(共8小题)17.如图,AB=AC,AD=AE.求证:∠B=∠C.18.在△ABC中,∠B=∠A+20°,∠C=30,求△ABC各内角的度数.19.如图,∠ACB=90°,AC=BC,AD⊥CE于D,BE⊥CE于E,AD=25m,DE=17m.求BE 的长.20.(1)请画出△ABC关于y轴对称的△A'B'C'(其中A',B',C'分别是A,B,C的对应点,不写画法).(2)直接写出A′,B′,C'三点的坐标:A' ,B' ,C' ;(3)△ABC的面积为.21.如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PO的垂直平分线PQ相交于点P,过点P分别作PN⊥AB于N,PM⊥AC于点M.求证:BN=CM.22.已知R△ABDC中,∠C=90°,AD、BE是角平分线,它们相交于P,PF⊥AD于P交BC 的延长线于F,交AC于H.(1)求证:AH+BD=AB;(2)求证:PF=PA.23.如图,在△ABC内一点D,点C是AE上一点,AD交BE于点P,射线DC交BE的延长线于点F,且∠ABD=∠ACD,∠PDB=∠PDC(1)求证:AB=AC;(2)若AB=3,AE=5,求的值;(3)若=,=m,则=.24.(1)已知:点P(a,b),P点坐标满足+|3a﹣2b﹣4|=0将45°角的三角板,直角顶点放在P处,两边与坐标轴交于A、B两点,如图1,求a、b的值.(2)将三角板绕P点,顺时针旋转,两边与x轴交于B点,与y轴交于A点,求|OA﹣OB|的值.(3)如图3,若Q是线段AB上一动点,C为AQ中点,PR⊥PQ且PR=PQ,连BR,请同学们判断线段BR与PC之间的关系,并加以证明.参考答案与试题解析一.选择题(共10小题)1.下列长度的三条线段,其中能组成三角形的是()A.4,5,6 B.3,3,6 C.1,3,5 D.2,4,8【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【解答】解:根据三角形的三边关系,得A、4+5>6,能够组成三角形,符合题意B、3+3=6,不能够组成三角形,不符合题意;C、1+3<5,不能够组成三角形,不符合题意;D、2+4<8,不能组成三角形,不符合题意;故选:A.2.六边形的内角和等于()A.180°B.360°C.540°D.720°【分析】根据n边形的内角和可以表示成(n﹣2)•180°,即可求得六边形的内角和.【解答】解:六边形的内角和是(6﹣2)×180°=720度.故选:D.3.△ABC中,如果∠A+∠B=∠C,那么△ABC形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【分析】据在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°可求出∠C的度数,进而得出结论.【解答】解:∵在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,解得∠C=90°,∴△ABC是直角三角形.故选:B.4.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.5.如图所示,AB=AC,AD=AE,图中全等三角形有()对.A.1对B.2对C.3对D.4对【分析】首选根据SAS证明△ABD≌△ACE,进而得到∠B=∠C,再证明EB=DC,再根据AAS证明△EBF≌△DCF.【解答】解:∵在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠C,∵AB=AC,AD=AE,∴AB﹣AE=AC﹣AD,即EB=DC,在△EBF和△DCF中,,∴△EBF≌△DCF(AAS),故选:B.6.如图,已知AB∥FE且AB=FE,要证明△ABC≌△EFD,需补充条件()A.BC=FD B.AD=CE C.CD=DO D.AE=EA【分析】根据全等三角形的判定解决问题即可.【解答】解:∵AB∥EF,∴∠A=∠E,∵AB=EF,∴添加AD=CE,可得AC=DE,∴△ABC≌△EFD(SAS),故选:B.7.如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是BC的中点,则BE+CF与EF的大小关系是()A.BE+CF>EF B.BE+CF=EF C.BE+CF<EF D.无法确定【分析】可延长ED至P,使DP=DE,连接FP,连接CP,将BE转化为PC,EF转化为FP,进而在△PCF中即可得出结论.【解答】解:延长ED至P,使DP=DE,连接FP,CP,∵D是BC的中点,∴BD=CD,在△BDE和△CDP中,∴△BDE≌△CDP(SAS),∴BE=CP,∵DE⊥DF,DE=DP,∴EF=FP,在△CFP中,CP+CF=BE+CF>FP=EF.故选:A.8.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF的面积为()A.4 B.6 C.8 D.10【分析】显然,关键是求CF的长.根据两次折叠后的图形中△ABF∽△ECF得比例线段求解.【解答】解:由图可知经过两次折叠后(最右边的图形中),AB=AD﹣BD=AD﹣(10﹣AD)=2,BD=EC=10﹣AD=4.∵AD∥EC,∴△AFB∽△EFC.∴.∵AB=2,EC=4,∴FC=2BF.∵BC=BF+CF=6,∴CF=4.S△EFC=EC×CF÷2=8.故选:C.9.将点P(2,3)向右平移3个单位长至点Q,点Q沿y轴折至点M,则()A.M(﹣5,﹣3)B.M(5,3)C.M(0,3)D.M(﹣5,3)【分析】根据点P(2,3)向右平移3个单位长可得点Q坐标,再根据关于y轴对称的点横坐标互为相反数,纵坐标不变即可得点M坐标.【解答】解:∵点P(2,3)向右平移3个单位长至点Q,∴点Q坐标为(5,3),∵点Q沿y轴折至点M,∴点M坐标为(﹣5,3).故选:D.10.Rt△ABC中,AB=AC,D点为Rt△ABC外一点,且BD⊥CD,DF为∠BDA的平分线,当∠ACD=15°,下列结论:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2DE.其中正确的是()A.①③B.①②④C.①③④D.①②③④【分析】由题意可证点A,点C,点B,点D四点共圆,可得∠ADC=∠ABC=45°;由角平分线的性质和外角性质可得∠AFD=∠BDF+∠DBF>∠ADF,可得AD≠AF;如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,由“SAS”可证△ADF≌△HDF,可得∠DHF=∠DAF=30°,AF=HF,由等腰三角形的性质可得BH=AF,可证BD=BH+DH=AF+AD;由“SAS”可证△BDG≌△BDE,可得∠BGD=∠BED=75°,由三角形内角和定理和等腰三角形的性质可得BC=BG=2DE+EC.【解答】解:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,且∠ACD=15°,∵∠BCD=30°,∵∠BAC=∠BDC=90°,∴点A,点C,点B,点D四点共圆,∴∠ADC=∠ABC=45°,故①符合题意,∠ACD=∠ABD=15°,∠DAB=∠DCB=30°,∵DF为∠BDA的平分线,∴∠ADF=∠BDF,∵∠AFD=∠BDF+∠DBF>∠ADF,∴AD≠AF,故②不合题意,如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,∵DH=AD,∠HDF=∠ADF,DF=DF,∴△ADF≌△HDF(SAS)∴∠DHF=∠DAF=30°,AF=HF,∵∠DHF=∠HBF+∠HFB=30°,∴∠HBF=∠BFH=15°,∴BH=HF,∴BH=AF,∴BD=BH+DH=AF+AD,故③符合题意,∵∠ADC=45°,∠DAB=30°=∠BCD,∴∠BED=∠ADC+∠DAB=75°,∵GD=DE,∠BDG=∠BDE=90°,BD=BD,∴△BDG≌△BDE(SAS)∴∠BGD=∠BED=75°,∴∠GBC=180°﹣∠BCD﹣∠BGD=75°,∴∠GBC=∠BGC=75°,∴BC=BG,∴BC=BG=2DE+EC,∴BC﹣EC=2DE,故④符合题意,故选:C.二.填空题(共6小题)11.五边形的对角线一共有 5 条.【分析】利用n边形从一个顶点出发可引出(n﹣3)条对角线.从n个顶点出发引出(n ﹣3)条,而每条重复一次,所以n边形对角线的总条数为:n(n﹣3)(n≥3,且n为整数)计算.【解答】解:五边形的对角线共有=5;故答案为:512.若等腰三角形两边长分别为3和5,则它的周长是11或13 .【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:有两种情况:①腰长为3,底边长为5,三边为:3,3,5可构成三角形,周长=3+3+5=11;②腰长为5,底边长为3,三边为:5,5,3可构成三角形,周长=5+5+3=13.故答案为:11或13.13.一个汽车牌在水中的倒影为,则该车牌照号码M17936 .【分析】易得所求的牌照与看到的牌照关于水平的一条直线成轴对称,作出相应图形即可求解.【解答】解:﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣M 1 7 9 3 6∴该车的牌照号码是M17936.故答案为:M17936.14.在△ABC中,AC=5,中线AD=4,则边AB的取值范围是3<AB<13 .【分析】作出图形,延长AD至E,使DE=AD,然后利用“边角边”证明△ABD和△ECD 全等,根据全等三角形对应边相等可得AB=CE,再利用三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出CE的取值范围,即为AB的取值范围.【解答】解:如图,延长AD至E,使DE=AD,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴AB=CE,∵AD=4,∴AE=4+4=8,∵8+5=13,8﹣5=3,∴3<CE<13,即3<AB<13.故答案为:3<AB<13.15.如图,∠ACB=90°,AC=BC,点C(2,4)、A(﹣4,0),则点B的坐标是(6,﹣2).【分析】如图,过点C作CF⊥AO,过点B作BE⊥CF,通过证明△ACF≌△CBE,可得BE =CF=4,CE=AF=6,即可求解.【解答】解:如图,过点C作CF⊥AO,过点B作BE⊥CF,∵点C(2,4)、A(﹣4,0),∴CF=4,OF=2,AO=4,AF=6,∵∠ACB=90°,∴∠ACF+∠BCF=90°,且∠ACF+∠CAF=90°,∴∠BCF=∠CAF,且AC=BC,∠AFC=∠CEB=90°,∴△ACF≌△CBE(AAS)∴BE=CF=4,CE=AF=6,∴EF=2,∴点B(6,﹣2),故答案为:(6,﹣2).16.如图,在等腰△ABC中,AB=AC,∠BAC的平分线与AB的中垂线交于点O,点C沿EF 折叠后与点O重合.若∠CEF=50°,则∠AOF的度数是105°.【分析】由折叠的性质可得OE=CE,∠CEF=∠OEF=50°,OF=FC,可求∠OCE=∠COE=40°,由等腰三角形的性质和线段垂直平分线的性质可求OAB=∠OBA=∠OAC=∠OCA =25°,由三角形内角和定理可求∠AOC=130°,即可求∠AOF的度数.【解答】解:如图,连接OB,∵点C与点O恰好重合,∴OE=CE,∠CEF=∠OEF=50°,OF=FC,∴∠OCE=∠COE=40°∵AB=AC,AO平分∠BAC,∴AO是BC的垂直平分线,∠OAB=∠OAC,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴AO=BO=CO,∴∠OBC=∠OCB=40°,∠OAB=∠OBA=∠OAC=∠OCA,∵∠OAB+∠OAC+∠ABO+∠ACO+∠OBC+∠OCB=180°∴∠OAB=∠OBA=∠OAC=∠OCA=25°,∵OF=FC∴∠FOC=∠ACO=25°在△AOC中,∠AOC=180°﹣∠OAC﹣∠OCA=130°∴∠AOF=∠AOC﹣∠FOC=130°﹣25°=105°故答案为:105°三.解答题(共8小题)17.如图,AB=AC,AD=AE.求证:∠B=∠C.【分析】欲证明∠B=∠C,只要证明△AEB≌△ADC.【解答】证明:在△AEB和△ADC中,,∴△AEB≌△ADC(SAS)∴∠B=∠C.18.在△ABC中,∠B=∠A+20°,∠C=30,求△ABC各内角的度数.【分析】利用三角形的内角和定理构建方程组即可解决问题.【解答】解:由题意:,∴.19.如图,∠ACB=90°,AC=BC,AD⊥CE于D,BE⊥CE于E,AD=25m,DE=17m.求BE 的长.【分析】先证明△ACD≌△CBE,再求出EC的长,解决问题.【解答】解:∵BE⊥CE于E,AD⊥CE于D,∴∠E=∠ADC=90°,∵∠BCE+∠ACE=∠DAC+∠ACE=90°,∴∠BCE=∠DAC,∵AC=BC,∴△ACD≌△CBE(AAS)∴CE=AD=25m,BE=CD∴BE=CE﹣DE=25﹣17=8(m).20.(1)请画出△ABC关于y轴对称的△A'B'C'(其中A',B',C'分别是A,B,C的对应点,不写画法).(2)直接写出A′,B′,C'三点的坐标:A' (2,3),B' (3,1),C' (﹣1,﹣2);(3)△ABC的面积为 5.5 .【分析】(1)依据轴对称的性质,即可得到△ABC关于y轴对称的△A'B'C';(2)依据A',B',C'的位置,即可得到其坐标;(3)依据割补法进行计算,即可得到△ABC的面积.【解答】解:(1)如图所示,△A'B'C'即为所求;(2)由题可得,A'(2,3),B'(3,1),C'(﹣1,﹣2);故答案为:(2,3),(3,1),(﹣1,﹣2);(3)△ABC的面积为:4×5﹣×1×2﹣×3×4﹣×3×5=20﹣1﹣6﹣7.5=5.5.故答案为:5.5.21.如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PO的垂直平分线PQ相交于点P,过点P分别作PN⊥AB于N,PM⊥AC于点M.求证:BN=CM.【分析】证明Rt△PNB≌Rt△PMC(HL)即可解决问题.【解答】证明:∵PA平分∠BAC,PM⊥AC,PN⊥AB,∴PM=PN,∠N=∠PMC=90°,∵PQ垂直平分线段BC,∴PB=PC,∴Rt△PNB≌Rt△PMC(HL),∴BN=MC.22.已知R△ABDC中,∠C=90°,AD、BE是角平分线,它们相交于P,PF⊥AD于P交BC 的延长线于F,交AC于H.(1)求证:AH+BD=AB;(2)求证:PF=PA.【分析】(1)首先计算出∠APB=135°,进而得到∠BPD=45°,然后再计算出∠FPB=135°,然后证明△ABP≌△FBP,得∠F=∠CAD,然后证明△APH≌△FPD,进而得到AH =FD,再利用等量代换可得结论.(2)由△ABP≌△FBP可得PA=PF.【解答】(1)证明:∵∠ACB=90°,∴∠CAB+∠CBA=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠CAB+∠CBA)=45°,∴∠APB=135°,∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,在△ABP和△FBP中,,∴△ABP≌△FBP(ASA),∴∠BAP=∠F,∵∠BAP=∠CAD,∴∠F=∠CAD,在△APH和△FPD中,,∴△APH≌△FPD(ASA),∴AH=FD,又∵AB=FB,∴AB=FD+BD=AH+BD.(2)证明:由(1)可知△ABP≌△FBP,∴PA=PF,23.如图,在△ABC内一点D,点C是AE上一点,AD交BE于点P,射线DC交BE的延长线于点F,且∠ABD=∠ACD,∠PDB=∠PDC(1)求证:AB=AC;(2)若AB=3,AE=5,求的值;(3)若=,=m,则=.【分析】(1)由∠PDB=∠PDC,根据邻补角的定义得到∠ADB=∠ADC,推出△ABD≌△ACD,由全等三角形的性质即可得到结论;(2)先证明AP为∠BAE的平分线,然后,利用面积法可得到===;(3)先求得的值,然后再依据条件求得=,设BP=3,PE=4,则EF=3m﹣4,PF=3m,从而可求得问题答案.【解答】证明:(1)∵∠PDB=∠PDC∴∠ADB=∠ADC在△ADB和△ADC中,∴△ADB≌△ADC.∴AB=AC(2)由△ADB≌△ADC可知,∠BAP=∠EAP,即AP平分∠BAE∴P点到AB、AE的距离相等∴===.(3)∵=,且AB=AC∴=.∴=.∵=m,且BD=CD∴=∴=.设BP=3,PE=4,则EF=3m﹣4,PF=3m,∴=.故答案为:.24.(1)已知:点P(a,b),P点坐标满足+|3a﹣2b﹣4|=0将45°角的三角板,直角顶点放在P处,两边与坐标轴交于A、B两点,如图1,求a、b的值.(2)将三角板绕P点,顺时针旋转,两边与x轴交于B点,与y轴交于A点,求|OA﹣OB|的值.(3)如图3,若Q是线段AB上一动点,C为AQ中点,PR⊥PQ且PR=PQ,连BR,请同学们判断线段BR与PC之间的关系,并加以证明.【分析】(1)利用非负数的性质解决问题即可.(2)如图2中,作PE⊥OB于E,PF⊥OA于F.证明△AFP≌△BEP(ASA),推出AF=BE 即可解决问题.(3)结论:BR=2PC,PC⊥BR.如图3中,延长PC到G,使得CG=PC,连接AG,GQ,设PG交BR于J.证明△GAP≌△RPB(SAS)即可解决问题.【解答】解:(1)∵+|3a﹣2b﹣4|=0,∴,解得::;(2)如图2中,作PE⊥OB于E,PF⊥OA于F.∵P(4,4),∴PE=PF=4,四边形OEPF是正方形,∴∠EPF=∠QPB=90°,OF=OE=PE=PF=4,∴∠APF=∠BPE,在△AFP和△BEP中,,∴△AFP≌△BEP(ASA),∴AF=BE,∴|AO﹣OB=|OF+AF﹣(BE﹣OE)|=OF+OE=8.(3)结论:BR=2PC,PC⊥BR.理由如下:如图3中,延长PC到G,使得CG=PC,连接AG,GQ,设PG交BR于J.∵AC=CQ,PC=CG,∴四边形AGQP是平行四边形,∴AG=PQ=PR,AG∥PQ,∴∠GAP+∠APQ=180°,∵∠APB=∠RPQ=90°,∴∠APR+∠APQ+∠APQ+∠BPQ=180°,∴∠RPB+∠APQ=180°,∴∠GAP=∠BPQ,在△GAP和△RPB中,,∴△GAP≌△RPB(SAS),∴PG=BR,∠APG=∠PBR,∵∠APG+∠JPB=90°,∴∠JPB+∠PBR=90°,∴∠PJB=90°,∴PC⊥BR,BR=2PC.。
八年级(上)第二次月考数学试卷一、选择题1.(3分)的平方根是()A.9B.±9C.3D.±32.(3分)以下列各组数据中是勾股数的是()A.1,1,B.12,16,20C.1,D.1,2,3.(3分)下列各式中,正确的是()A.=±4B.±=4C.=﹣3D.=﹣4 4.(3分)已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.5.(3分)点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1>y2>0C.y1<y2D.y1=y26.(3分)下列说法中:(1)无理数就是开方开不尽的数;(2)无理数是无限小数;(3)无理数包括正无理数、零、负无理数;(4)无理数可以用数轴上的点来表示.共有()个是正确的.A.1B.2C.3D.47.(3分)无论m为何实数,直线y=x+2m与y=﹣x+4的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)直角三角形的一条直角边是另一条直角边的,斜边长为10,则它的面积为()A.10B.15C.20D.309.(3分)方程组的解互为相反数,则a的值是()A.6B.7C.8D.910.(3分)在平面直角坐标系中,点P(n,1﹣n)一定不在第()象限.A.一B.二C.三D.四二、填空题11.(3分)若x=()3,则=.12.(3分)已知y﹣2与x成正比例,当x=3时,y=1,则y与x的函数表达式是.13.(3分)函数y=2x向右平移2个单位,得到的表达式为.14.(3分)如图,AB⊥BC,且AB=,BC=2,CD=5,AD=4,则∠ACD=度,图形ABCD的面积为.三、解答题15.(1)用代入法求解(2)用加减消元法求解(3).16.如图,在平面直角坐标系中,已知A(﹣1,5),B(﹣1,0),C(﹣4,3).①在图中作出△ABC关于y轴的对称图形△A1B1C1;②写出点A1和C1的坐标.17.如图:有一个圆柱,底面圆的直径AB=,高BC=12cm,P为BC的中点,求蚂蚁从A点爬到P点的最短距离.18.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:利润=售价﹣进价)甲乙进价(元/件)1535售价(元/件)2045若商店计划销售完这批商品后能使利润达到1100元,问甲、乙两种商品应分别购进多少件?19.已知函数y=(2m+1)x+m﹣3(1)若函数图象经过原点,求m的值;(2)若函数的图象平行直线y=3x﹣3,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.20.已知一次函数y=﹣2x+4(1)画出函数的图象.(2)求图象与x轴、y轴的交点A、B的坐标.(3)求A、B两点间的距离.(4)利用图象写出当x为何值时,y≥0.21.一位农民带上若干千克自产的土豆进城出售.为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)求出降价前每千克的土豆价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?22.有甲、乙两个两位数,若把甲数放在乙数的左边,组成的四位数是乙数的201倍;若把乙数放在甲数的左边,组成的四位数比上面的四位数小1188,求甲、乙这两个数.23.如图,l A,l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)走了一段路后,自行车因故障,进行修理,所用的时间是小时.(2)B出发后小时与A相遇(3)修理后的自行车速度是多少?A步行速度是多少?(4)若B的自行车不发生故障,保持出发时的速度前进,几小时与A相遇?相遇点离B的出发点几千米?(5)求出A行走的路程S与时间t的函数关系式.24.如图,直线y=2x+b经过点A(1,0),与y轴交于点B,直线y=ax+经过点C(4,0),且与直线AB交于点D.(1)求B、D两点的坐标;(2)求△ADC 的面积;(3)在直线BD 上是否存在一点P ,使S △ACP =2S △ACD ?若存在,请求出符合条件的点P 坐标;若不存在,请说明理由.参考答案与试题解析一、选择题1.【解答】解:∵=9,∴的平方根是±3,故选:D.2.【解答】解:A、∵不是正整数,∴此选项不符合题意;B、∵122+162=202,∴此选项符合题意;C、∵不是正整数,∴此选项不符合题意;D、∵不是正整数,∴此选项不符合题意.故选:B.3.【解答】解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣3=,所以C选项正确;D、原式=|﹣4|=4,所以D选项错误.故选:C.4.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:B.5.【解答】解:根据题意,k=﹣4<0,y随x的增大而减小,因为x1<x2,所以y1>y2.故选:A.6.【解答】解:(1)无理数就是开方开不尽的数,故(1)错误;(2)无理数是无限不循环小数,故(2)错误;(3)无理数包括正无理数、负无理数,故(3)错误;(4)无理数可以用数轴上的点来表示,故(4)正确;7.【解答】解:由于直线y=﹣x+4的图象不经过第三象限.因此无论m取何值,直线y=x+2m与y=﹣x+4的交点不可能在第三象限.故选:C.8.【解答】解:直角三角形的一条直角边是另一条直角边的,设一边是a,另一直角边是3a,根据勾股定理得到方程a2+(3a)2=100,解得:a=,则另一直角边是3,则面积是:××3=15.故选:B.9.【解答】解:由方程组的解互为相反数,得到x+y=0,即y=﹣x,代入方程组得:,把①代入②得:4x﹣18=﹣5x,解得:x=2,把x=2代入①得:a=8,故选:C.10.【解答】解:n>0时,1﹣n可以是负数也可以是正数,∴点P可以在第一象限也可以在第四象限,n<0时,1﹣n>0,∴点P在第二象限,不在第三象限.故选:C.二、填空题11.【解答】解:x=()3=﹣5,则==2.故答案是2.12.【解答】解:∵y﹣2与x成正比例,∴设y﹣2=kx,∵当x=3时,y=1,∴k=﹣∴y ﹣2=﹣x ,∴y 与x 的函数关系式是:y=﹣x +2.故答案为y=﹣x +2.13.【解答】解:由“左加右减”的原则可知:直线y=2x 向右平移2个单位, 得到直线的解析式为:y=2(x ﹣2),即y=2x ﹣4.故答案为:y=2x ﹣4.14.【解答】解:在RT △ABC 中,∵AB=,BC=2,∴AC==.又∵CD=5,AD=4, ∴在△ACD 中,AC 2+CD 2=AD 2,即∠ACD=90°.∴S 四边形ABCD =S △ABC +S △ACD ==+.三、解答题15.【解答】解:(1), 由②得x=3﹣4y ③,将③代入①得2(13﹣4y )+3y=16,解得:y=2,将y=2代入②得:x=5, ∴原方程的解为;(2)用加减消元法求解:,①×2得:10x ﹣12y=﹣6 ③②×3得:21x ﹣12y=27④④﹣③得:21x ﹣12y ﹣10x +12y=33,解得:x=3,将x=3代入①得:y=3,∴原方程组的解为;(3),②﹣①得:x﹣2y=﹣1 ④①×3得,3x+3y+3z=12 ⑤⑤+③得6x+y=7 ⑥⑥×2,得:12x+2y=14 ⑦⑦+④得13x=13,解得:x=1,将x=1代入④得y=1,将x=1、y=1代入①得z=2,∴原方程组的解为.16.【解答】解:(1)所作图形如图所示:;(2)点A1的坐标为(1,5),点C1的坐标为(4,3).17.【解答】解:已知如图:∵圆柱底面直径AB=cm、母线BC=12cm,P为BC的中点,∴圆柱底面圆的半径是cm,BP=6cm,∴AB=×2×=8cm,在Rt△ABP中,AP==10cm,∴蚂蚁从A点爬到P点的最短距离为10cm.18.【解答】解:设甲种商品应购进x件,乙种商品应购进y件,依题意得:,解得:,答:甲种商品应购进100件,乙种商品应购进60件.19.【解答】解:(1)∵函数y=(2m+1)x+m﹣3的图象经过原点,∴当x=0时y=0,即m﹣3=0,解得m=3;(2)∵函数y=(2m+1)x+m﹣3的图象与直线y=3x﹣3平行,∴2m+1=3,解得m=1;(3)∵这个函数是一次函数,且y随着x的增大而减小,∴2m+1<0,解得m<﹣.20.【解答】解:(1)列表如下:x…01…y…42…描点、连线画出函数图象,如图所示.(2)当x=0时,y=﹣2x+4=4,∴点B的坐标为(0,4);当y=﹣2x+4=0时,x=2,∴点A的坐标为(2,0).(3)∵A(2,0),B(0,4),∴OA=2,OB=4.在Rt△AOB中,∠AOB=90°,OA=2,OB=4,∴AB==2.∴A、B两点间的距离为2.(4)观察函数图象可知:当x<2时,一次函数y=﹣2x+4的图象在x轴上方;当x=2时,y=﹣2x+4=0.∴当x≤2时,y≥0.21.【解答】解:(1)由图象可知,当x=0时,y=5.答:农民自带的零钱是5元.(2)设降价前每千克土豆价格为k元,则农民手中钱y与所售土豆千克数x之间的函数关系式为:y=kx+5,∵当x=30时,y=20,∴20=30k+5,解得k=0.5.答:降价前每千克土豆价格为0.5元.(3)设降价后农民手中钱y与所售土豆千克数x之间的函数关系式为y=0.4x+b.∵当x=30时,y=20,∴b=8,当x=a时,y=26,即0.4a+8=26,解得:a=45.答:农民一共带了45千克土豆.22.【解答】解:设甲数为x,乙数为y,根据题意得:,解得:.答:甲是24,乙是12.23.【解答】解:(1)由图象可得,走了一段路后,自行车因故障,进行修理,所用的时间是:1.5﹣0.5=1(小时),故答案为:1;(2)由图象可得,B出发3小时与A相遇,故答案为:3;(3)由图象可得,修理后的自相车的速度为:(22.5﹣7.5)÷(3﹣1.5)=10千米/时,A步行的速度为:(22.5﹣10)÷3=千米/时;(4)由图象可得,B出发时的速度为:7.5÷0.5=15千米/时,设若B的自行车不发生故障,保持出发时的速度前进,x小时与A相遇,15x=10+,解得,x=,∴15x=15×,即若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B的出发点千米;(5)设A行走的路程S与时间t的函数关系式为:S=kt+b,,得,即A行走的路程S与时间t的函数关系式是S=.24.【解答】解:(1)将点A(1,0)代入y=2x+b中得b=﹣2,即为y=2x﹣2,∵DB相交于y轴,∴令x=0,∴y=﹣2,∴B(0,﹣2),将C(4,0)代入y=ax+中得:a=﹣,即为y=,∵D相交于两线之间∴,∴x=,将x=代入y=2x﹣2中得:y=1,∴D(1.5,1),(2),(3)假设存在P,则S△ACP =2S△ACD=3,∴,∴y P=2将y P=2代入y=2x﹣2中∴x=2,∴P(2,2),∴,∴,将y=﹣2代入y=2x﹣2中得x=0,∴P2(0,﹣2)即D的坐标轴为(2,2)和(0,﹣2).。
2023-2024学年湖北省武汉市洪山区南片区教联体八年级(上)月考数学试卷(12月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.2.下列运算正确的是()A.B.C.D.3.一个多边形的每个外角都等于,则这个多边形的边数为() A.5 B.6C.7D.84.等式,括号内应填上的项为()A.B.C.D.5.下列因式分解结果正确的是()A. B.C.D.6.已知n 正整数,若一个三角形的三边长分别是2、8、3n ,则满足条件的n 的值有()A.1个B.2个C.3个D.0个7.如图,将一副三角板的斜边AB 重合,点E 是AB 的中点,连接CE ,DE ,已知,则AD 的长是()A.3B.C.2D.8.如图,在中,BD 、CD 分别平分、,BG 、CG 分别平分三角形的两个外角、,则和的数量关系为()A. B.C.D.9.如图,在中,,,以C为原点,AC所在直线为y轴,BC所在直线为x轴建立平面直角坐标系,在坐标轴上取一点M使为等腰三角形,符合条件的M点有()A.5个B.6个C.7个D.8个10.如图,在和中,,,,,连接AC,BD交于点M,连接下列结论:①;②;③OM平分;④MB平分其中正确的个数为()A.4B.3C.2D.1二、填空题:本题共6小题,每小题3分,共18分。
11.若点A的坐标为,则点A关于x轴的对称点的坐标是______.12.计算:______.13.若多项式是一个完全平方式,则______.14.一个等腰三角形的三边长分别为12,6,,则这个等腰三角形的周长为______.15.一个等边三角形,一个直角三角形,一个等腰三角形按如图方式摆放,其中,则______.16.如图,边长为2的等边三角形ABC,点C在x轴上,轴为x轴上一点,Q为直线BC上一点,满足,则的最小值是______.三、计算题:本大题共2小题,共16分。
2023-2024学年湖北省武汉市东西湖五中八年级(上)月考数学试卷(12月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.2.若分式无意义,则x 的值为()A.0B.1C.D.23.如图,点B 、F 、C 、E 在一条直线上,,,那么添加下列一个条件后,仍无法判定≌的是()A. B. C.D.4.下列因式分解正确的是()A. B.C.D.5.如图,在中,,,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则()A. B. C. D.6.已知:,则()A.16B.25C.32D.647.已知,则() A.B.5C.D.18.如图,在中,,将沿着直线l折叠,点C落在点D的位置,则的度数是()A.B.C.D.9.a、b为实数,整式的最小值是()A. B. C. D.10.如图,,M,N分别是边OA,OB上的定点,P、Q分别是边OB,OA上的动点,记,,当最小时,则关于,的数量关系正确的是()A. B. C. D.二、填空题:本题共6小题,每小题3分,共18分。
11.分式的值为0,则x的值是__________.12.计算:__________.13.若,其中b,c为常数,则点关于y轴对称的点的坐标是______.14.如图,OP平分,,,于点D,,则______.15.已知,则的值是______.16.如图,等边三角形ABC中,于D,,E在BD上一动点,以CE为边作等边三角形ECP,连DP,则DP的最小值为______.三、解答题:本题共8小题,共72分。
解答应写出文字说明,证明过程或演算步骤。
17.本小题8分计算:;18.本小题8分因式分解.;19.本小题8分已知,,求,的值;先化简,再求值:,其中20.本小题8分在中,,AD是的中线,AE是的角平分线,交AE的延长线于若,求的度数.求证:是等腰三角形.21.本小题8分如图是由边长为1的小正方形组成的网格,每个小正方形的顶点叫做格点,和的顶点都是格点.请在直线m上找到点P,使得的值最小;和关于直线n对称,请画出直线n;作出的高AH;的面积为______.22.本小题10分如图1,长方形的两边长分别为,;如图2的长方形的两边长分别为,其中m为正整数写出两个长方形的面积,,并比较,的大小;现有一个正方形的周长与图1中的长方形的周长相等.试探究该正方形的面积与长方形的面积的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由.在的条件下,若某个图形的面积介于,之间不包括,且面积为整数,这样的整数值有且只有19个,求m的值.23.本小题10分以的AB、AC为边作和,且,,CE与BD相交于M,如图1,若,求的度数;如图2,若G、H分别是EC、BD的中点,求的度数用含式子表示;如图3,连接AM,直接写出与的数量关系是______.24.本小题12分在平面直角坐标系中,已知点,,其中a,b满足:为常数求点A,B的坐标;如图1,D为x轴负半轴上一点,C为第三象限内一点,且,,DB平分,过点C作于点E,求证:;如图2,P为y轴正半轴上一动点,连接BP,过点B在x轴下方作,且,连接PC,PQ,在的条件下,设,求的面积用含p的式子表示答案和解析1.【答案】A【解析】解:是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:利用轴对称图形的定义进行解答即可.此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.2.【答案】C【解析】【分析】本题考查了分式有意义的条件,利用分式的分母为零分式无意义得出方程是解题关键.根据分式的分母为零分式无意义,可得答案.【解答】解:由分式无意义,得,解得故选3.【答案】C【解析】解:选项A、添加可用AAS进行判定,故本选项错误;选项B、添加可用AAS进行判定,故本选项错误;选项C、添加不能判定≌,故本选项正确;选项D、添加可得出,然后可用ASA进行判定,故本选项错误.故选分别判断选项所添加的条件,根据三角形的判定定理:SSS、SAS、AAS进行判断即可.本题主要考查对全等三角形的判定,平行线的性质等知识点的理解和掌握,熟练地运用全等三角形的判定定理进行证明是解此题的关键,是一个开放型的题目,比较典型.4.【答案】C【解析】【分析】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式法分解因式是解题关键.分别利用公式法以及提取公因式法分解因式得出答案.【解答】解:A、无法分解因式,故此选项错误;B、无法分解因式,故此选项错误;C、,正确;D、,故此选项错误;故选:5.【答案】D【解析】首先利用三角形的内角和定理和等腰三角形的性质求得,利用线段垂直平分线的性质易得,解:,,,是AB的垂直平分线,,,故选:本题主要考查了等腰三角形的性质,三角形的内角和定理,线段垂直平分线的性质,掌握垂直平分线上任意一点,到线段两端点的距离相等和等边对等角是解答此题的关键.6.【答案】C【解析】【分析】本题考查了同底数幂的乘法、幂的乘方,解决本题的关键是熟记同底数幂的乘法、幂的乘方.根据同底数幂的乘法、幂的乘方,即可解答.【解答】解:,故选7.【答案】A【解析】此题考查了因式分解的应用,利用了整体代入的思想,熟练掌握因式分解的方法是解本题的关键.原式变形后,分解因式,把已知等式变形后代入计算即可求出值.解:,,故选:8.【答案】B【解析】【分析】此题考查了翻折变换折叠问题,以及外角的性质,熟练掌握折叠的性质是解本题的关键,由折叠的性质得到,再利用三角形外角性质即可求出所求角的度数.【解答】解:由折叠的性质得:,根据三角形外角性质得:,,则,则故选9.【答案】A【解析】解:,,,的最小值为,即的最小值为故选:利用完全平方公式对式子进行整理,再分析即可.本题主要考查完全平方公式,解答的关键是对完全平方公式的形式的掌握.10.【答案】D【解析】解:如图,作M关于OB的对称点,N关于OA的对称点,连接交OA于Q,交OB于P,则最小,,,,,,,,,故选:如图,作M关于OB的对称点,N关于OA的对称点,连接交OA于Q,交OB于P,则最小,根据外角的性质得到,,由轴对称的性质得到,,于是得到,由于,,,即可得到结论.本题考查了轴对称-最短路线问题,三角形的外角的性质,正确的作出图形是解题的关键.11.【答案】1【解析】【分析】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.根据分式的值为零的条件得到且,易得【解答】解:分式的值为0,且,故答案为:12.【答案】【解析】解:原式,故答案为:根据整式的除法运算法则即可求出答案.本题考查整式的运算,解题的的关键是熟练运用整式的运算法则,本题属于基础题型.13.【答案】【解析】解:,,,点P的坐标为,点关于y轴对称点的坐标是故答案为:先利用多项式的乘法展开再根据对应项系数相等确定出b、c的值,然后根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律14.【答案】5【解析】解:作于E,平分,,,,角平分线上的点到角两边的距离相等,,,,,在中,在直角三角形中,角所对的直角边等于斜边的一半,,故答案为:作于E,根据角平分线的性质可得,根据平行线的性质可得,由直角三角形中的角所对的直角边等于斜边的一半,可求得PE,即可求得此题主要考查角平分线的性质和平行线的性质,难度一般,作出相应的辅助线是解答本题的关键.15.【答案】16【解析】解:,,,,,故答案为先把变形为,把看作一个整体,根据完全平方公式展开,得到关于的方程,解方程即可求解.考查了完全平方公式,本题关键是把变形为,注意整体思想的应用.16.【答案】2【解析】解:如图,连接AP,为等边三角形,,,,,,,为等边三角形,,,,,在和中,,≌,,,当时,DP值最小,此时,,,,故答案为:连接AP,利用SAS证明≌得出,,再由垂线段最短得出当时,DP值最小,利用含角的直角三角形的性质求出DP即可.本题考查了全等三角形的判定与性质,等边三角形的判定与性质,证明≌是解题的关键.17.【答案】解:;【解析】先计算积的乘方,再根据多项式除以单项式的计算法则求解即可;先根据完全平方公式和平方差公式去括号,然后合并同类项即可.本题主要考查了整式的混合计算,熟知相关计算法则是解题的关键.18.【答案】解:;【解析】先提取公因式,再根据完全平方公式进行因式分解即可;先提取公因式,再根据平方差公式进行因式分解即可.此题考查的是因式分解,掌握因式分解的方法是解决此题关键.19.【答案】解:,原式,当时,原式【解析】利用完全平方公式的变形求出,,由此即可得到答案.先根据完全平方公式和平方差公式去括号,然后合并同类项化简,最后代值计算即可.本题主要考查了整式的化简求值,完全平方公式的变形求值,熟记相关计算法则是解题的关键.20.【答案】解:是等腰三角形,D为底边的中点,,,,;证明:是等腰三角形,D为底边的中点,即,是的角平分线,,,,,,是等腰三角形.【解析】根据等腰三角形三线合一的性质可得到,,从而可得到;根据等腰三角形三线合一的性质可得到:即,再根据角平分线的性质即可得到,从而可推出本题考查了平行线的性质,直角三角形的性质,等腰三角形的性质等知识,熟练掌握直角三角形的性质是解题的关键.21.【答案】【解析】解:如图所示:如图所示:如图所示:依题意,;的面积为点E和点C关于直线m对称,故连接BE,与直线m相交于点P,即可作答;因为和关于直线n对称,所以连接CF,BE,然后分别作出线段CF,BE的垂直平分线,即可作答;结合勾股定理,因为,且,故作线段AB的垂直平分线与BC的交点,即为点H,即可作答;运用割补法进行列式计算,即可作答.本题考查了坐标与图形,掌握作轴对称图形、轴对称性质,三角形的面积公式是解题的关键.22.【答案】解:,,,一个正方形的周长与图1中的长方形的周长相等,正方形的边长为,正方形的面积,,该正方形的面积与长方形的面积的差是一个常数;由得,,当时,,为正整数,【解析】利用矩形的面积公式计算即可;求出正方形的面积即可解决问题;构建不等式即可解决问题;本题考查多项式乘多项式、矩形的性质、正方形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.【答案】【解析】解:,,在和中,,≌,,,;连接AG,AH,由可得:,,、H分别是EC、BD的中点,,在和中,,≌,,,,,,,,,;如图3,连接AM,过点A作于P,于N,≌,,,,,又,,,,故答案为:由“SAS”可证≌,可得,由外角的性质可得结论;由“SAS”可证≌,可得,,即可求解;由全等三角形的性质可得,,由面积法可求,由角平分线的性质可求,即可求解.本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的性质,掌握全等三角形的判定定理是本题的关键.24.【答案】解:,,,,,;证:如图1,,,,,,,,,,,,,∽,,设,,,,,,;解:如图2,当时,延长QC交PA于D,PD与BQ交于I,,,,由知,,又∽,≌,,≌,,,,,,,,如图3,当时,,,,【解析】将左边展开,左右恒等得出方程求得;可得∽,从而,设,,推得是等腰直角三角形,可得,求出,从而得证;也可以分别求出DC和BC的函数关系式,联立成方程组,解得C点坐标.分为P在A点上方和在A点下方,可得≌,从而轴,进而表示出CQ及CQ上的高,从而求得.本题考查了一次函数及其图象,全等三角形的判定和性质,相似三角形的判定和性质等知识,解决问题的关键是根据条件,找出和运用全等.。
八年级数学月考试卷一.选择题:1.下列长度的三条线段能组成三角形的是()A.1,2,3 B.2,2,4 C.3,4,5 D.3,4,82.三角形的一个外角小于与它相邻的内角,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定3.已知等腰三角形的两边长分别是5和6,则这个等腰三角形的周长为().A.11 B.16 C.17 D.16或174 △ABC≌△BAD,A和B、C和D是对应点,如果AB=5cm,BD=4cm,AD=6cm,那么BC的长是()(A)6cm (B)5cm (C)4cm (D)无法确定5.为了测量河两岸相对点A、B的距离,小明先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上(如图所示),可以证明△BDC≌△ABC,得ED=AB,因此测得ED的长度就是AB的长,判定△BDC≌△ABC 的理由是()A.SAS B.ASA C.SSS D.AAS6.下列条件中,不能判定两个直角三角形全等的是()A.一锐角和斜边对应相等B.两条直角边对应相等C.一锐角和一直角边对应相等D.两个锐角对应相等7.一个多边形的内角和是外角和的3倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形8如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为多少?()A.2 B.3 C.4 D.59. 在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()10.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题:11.如图,已知△ABC ≌△ADE ,若∠BAE =120°,∠BAD =40°,则∠DAC =__________ 12.一个正多边形的每个外角都是36°,这个正多边形的边数是_______.___13. 将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为__________14.在数学活动课上,小明提出这样一个问题:∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC ,∠CDE =55°.如图,则∠EAB 的度数为_________15.如图,某同学将一块三角形的玻璃打碎成了三块,•现需配一块完全一样的玻璃,那么只需要其中的第______块就可以了.16.在平面直角坐标系中,点A (2,0)、B (0,4),作△BOC ,使以B ,O ,C 为顶点的三角形与△ABO 全等,则点C 的坐标为_________________三、解答题: 17. 如图,AC =AE ,∠1=∠2,AB =AD . 求证:BC =DE .19.如图,C 岛在A 岛的北偏东50°方向上,B 岛在A 岛的北偏东80°方向上,C 岛在B 岛的北偏西40°方向上,从C 岛看A 、B 两岛的视角∠ACB 是多少?19. 已知, 如图在ABC ∆中, MN AC ⊥于N, 且MN 平分AMC ∠, ABM ∆的周长是9cm, AN =2cm, 求ABC ∆的周长.3045120 .在△ABC 中,AB =AC ,DB 为△ABC 的中线,且BD 将△ABC 周长分为12cm 与15cm 两部分,求三角形各边长.21.如图,点M 、N 分别是正五边形ABCDE (每条边相等,每个内角相等)的边BC 、CD 上的点,且BM=CN ,AM 交BN 于点P . (1)求证:△ABM ≌△BCN ; (2)求∠APN 的度数.22. 已知:如图,AB=AC ,AE=AF ,连结BF ,CE ,交于O ,连结AO 。
八年级(上)第一次月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系()A.平行 B.垂直 C.平行或垂直D.不确定3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有()A.5个B.3个C.4个D.6个4.在下列给出的条件中,不能判定两个三角形全等的是()A.两边一角分别相等 B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为()A.5 B.10 C.15 D.208.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.二、填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°,∠B′=50°,则∠C= .10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= .11.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=36°,则∠3= .12.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.13.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,则△DEB 的周长为cm.14.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有个.15.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= °.16.如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,若AE=12cm,则DE的长为cm.17.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 度.18.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP= 时,△ABC和△PQA全等.三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.23.已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.24.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线(如图1),方法如下:作法:①在OA和OB上分别截取OD、OE,使OD=OE.②分别以DE为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C③作射线OC,则OC就是∠AOB的平分线小聪只带了直角三角板,他发现利用三角板也可以做角平分线(如图2),方法如下:步骤:①用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是.②小聪的作法正确吗?请说明理由.25.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.26.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.27.如图1,在△ABC中,∠BAC为直角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如图1,则∠(2)若AB=AC,①当点D在线段BC上时(与点B不重合),如图2,问CF、BD有怎样的关系?并说明理由.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,直接写出结论.28.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故轴对称图形一共有2个.故选:B.【点评】此题主要考查了轴对称图形,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系()A.平行 B.垂直 C.平行或垂直D.不确定【考点】轴对称的性质.【分析】点P与点Q关于直线m成轴对称,即线段PQ关于直线m成轴对称;根据轴对称的性质,有直线m垂直平分PQ.【解答】解:点P和点Q关于直线m成轴对称,则直线m和线段QP的位置关系是:直线m垂直平分PQ.故选:B.【点评】此题考查了对称轴的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有()A.5个B.3个C.4个D.6个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念可知:①两个点;②线段;③角;④长方形;⑤两条相交直线一定是轴对称图形;⑥三角形不一定是轴对称图形.故选A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.在下列给出的条件中,不能判定两个三角形全等的是()A.两边一角分别相等 B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等【考点】全等三角形的判定.【分析】根据判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL分别进行分析.【解答】解:A、两边一角分别相等的两个三角形不一定全等,故此选项符合题意;B、两角一边分别相等可用AAS、ASA定理判定全等,故此选项不合题意;C、两角一边对应相等,可用SAS或AAS定理判定全等,故此选项不合题意;D、三边分别相等可用SSS定理判定全等,故此选项不合题意;故选:A.【点评】本题考查三角形全等的判定方法,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为()A.5 B.10 C.15 D.20【考点】轴对称的性质.【分析】根据题意,观察可得:△ABC关于AD轴对称,且图中阴影部分的面积为△ABC面积的一半,先求出△ABC的面积,阴影部分的面积就可以得到.【解答】解:根据题意,阴影部分的面积为三角形面积的一半,∵S=×BC•AD=×4×5=10,△ABC∴阴影部分面积=×10=5.故选A.【点评】考查了轴对称的性质,根据轴对称得到阴影部分面积是解题的关键.8.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.【考点】剪纸问题.【专题】压轴题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右对折,向上对折,从正方形的上面那个边剪去一个长方形,左下角剪去一个正方形,展开后实际是从大的正方形的中心处剪去一个较小的正方形,从相对的两条边上各剪去两个小正方形得到结论.故选:B.【点评】本题主要考查学生的动手能力及空间想象能力.二、填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°,∠B′=50°,则∠C= 90°.【考点】轴对称的性质.【分析】根据成轴对称的两个图形全等求得未知角即可.【解答】解:∵△ABC与△A′B′C′关于直线L对称,∴△ABC≌△A′B′C′,∴∠B=∠B′=50°,∵∠A=40°,∴∠C=180°﹣∠B﹣∠A=180°﹣50°﹣40°=90°,故答案为:90°.【点评】本题考查轴对称的性质,属于基础题,注意掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= 3 .【考点】全等三角形的性质.【分析】根据全等三角形对应边相等可得BC=EF,再根据三角形的周长的定义列式计算即可得解.【解答】解:∵△ABC≌△DEF,∴BC=EF=4,∵△ABC的周长为12,AB=5,∴AC=12﹣5﹣4=3.故答案为:3.【点评】本题考查了全等三角形的性质,三角形的周长的定义,熟记性质是解题的关键.11.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=36°,则∠3= 60°.【考点】全等三角形的判定与性质.【专题】常规题型.【分析】易证△AEC≌△ADB,可得∠ABD=∠2,根据外角等于不相邻内角和即可求解.【解答】解:∵∠BAC=∠DAE,∠BAC=∠BAD+∠DAC,∠DAE=∠DAC+∠CAE,∴∠CAE=∠1,∵在△AEC和△ADB中,,∴AEC≌△ADB,(SAS)∴∠ABD=∠2,∵∠3=∠ABD+∠1,∴∠3=∠2+∠1=60°.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证AEC≌△ADB是解题的关键.12.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第 2 块.【考点】全等三角形的应用.【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:2.【点评】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.13.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,则△DEB 的周长为20 cm.【考点】角平分线的性质;等腰直角三角形.【分析】先根据ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再将其代入△DEB的周长中,通过边长之间的转换得到,周长=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以为20cm.【解答】解:∵CD平分∠ACB∴∠ACD=∠ECD∵DE⊥BC于E,∴∠DEC=∠A=90°在△ACD与△ECD中,∵,∴△ACD≌△ECD(ASA),∴AC=EC,AD=ED,∵∠A=90°,AB=AC,∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=20cm.故答案为:20.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有 4 个.【考点】全等三角形的判定;角平分线的性质.【分析】根据题目所给条件可得∠ODF=∠OEF=90°,再加上添加条件结合全等三角形的判定定理分别进行分析即可.【解答】解:∵FD⊥AO于D,FE⊥BO于E,∴∠ODF=∠OEF=90°,①加上条件OF是∠AOB的平分线可利用AAS判定△DOF≌△EOF;②加上条件DF=EF可利用HL判定△DOF≌△EOF;③加上条件DO=EO可利用HL判定△DOF≌△EOF;④加上条件∠OFD=∠OFE可利用AAS判定△DOF≌△EOF;因此其中能够证明△DOF≌△EOF的条件的个数有4个,故答案为:4.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= 135 °.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.16.如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,若AE=12cm,则DE的长为12 cm.【考点】直角三角形全等的判定;全等三角形的性质.【分析】根据已知条件,先证明△DBE≌△ABE,再根据全等三角形的性质(全等三角形的对应边相等)来求DE的长度.【解答】解:连接BE.∵D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,∴∠A=∠BDE=90°,∴在Rt△DBE和Rt△ABE中,BD=AB(已知),BE=EB(公共边),∴Rt△DBE≌Rt△ABE(HL),∴AE=ED,又∵AE=12cm,∴ED=12cm.故填12.【点评】本题主要考查了直角三角形全等的判定(HL)以及全等三角形的性质(全等三角形的对应边相等).连接BE是解决本题的关键.17.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 45 度.【考点】直角三角形全等的判定;全等三角形的性质.【分析】根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.【解答】解:∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为:45.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.18.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP= 5或10 时,△ABC和△PQA全等.【考点】直角三角形全等的判定.【分析】当AP=5或10时,△ABC和△PQA全等,根据HL定理推出即可.【解答】解:当AP=5或10时,△ABC和△PQA全等,理由是:∵∠C=90°,AO⊥AC,∴∠C=∠QAP=90°,①当AP=5=BC时,在Rt△ACB和Rt△QAP中∴Rt△ACB≌Rt△QAP(HL),②当AP=10=AC时,在Rt△ACB和Rt△PAQ中∴Rt△ACB≌Rt△PAQ(HL),故答案为:5或10.【点评】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,HL.三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.【考点】作图-轴对称变换.【分析】过点B作BD⊥AC于点D,延长BD至点B′,使DB′=DB,连接AB′,CB′即可.【解答】解:如图,△A′B′C′即为所求.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)【考点】作图—应用与设计作图.【分析】根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.【解答】解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.都是所求的点.P和P1【点评】此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】求出BC=EF,根据平行线性质求出∠B=∠E,∠ACB=∠DFE,根据ASA推出△ABC≌△DEF即可.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.【点评】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.【考点】全等三角形的判定与性质.【分析】根据HL推出Rt△BDE≌Rt△ADC,推出∠C=∠BED=75°,根据等腰三角形的性质和三角形的内角和定理求出∠ABD=∠BAD=45°,∠EBD=15°,即可求出答案.【解答】解:∵AD是△ABC一边上的高,∴∠BDE=∠ADC=90°,在Rt△BDE和Rt△ADC中,,∴Rt△BDE≌Rt△ADC(HL),∴∠C=∠BED=75°,∵∠BDE=90°,AD=BD,∴∠ABD=∠BAD=45°,∠EBD=15°,∴∠ABE=∠ABD﹣∠EBD=45°﹣15°=30°.【点评】本题考查了全等三角形的性质和判定,三角形内角和定理,等腰三角形的性质的应用,解此题的关键是推出△BDE≌△ADC,注意:全等三角形的对应边相等,对应角相等.23.已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)利用“边边边”求出△ABC和△ADE全等,根据全等三角形对应角相等可得∠BAC=∠DAE,然后都减去∠CAD即可得证;(2)根据全等三角形对应角相等可得∠B=∠ADE,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EDC=∠BAD,从而得解.【解答】(1)证明:在△ABC和△ADE中,,∴△ABC≌△ADE(SSS),∴∠BAC=∠DAE,∴∠DAE﹣∠CAD=∠BAC﹣∠CAD,即:∠EAC=∠BAD;(2)解:∵△ABC≌△ADE,∴∠B=∠ADE,由三角形的外角性质得,∠ADE+∠EDC=∠BAD+∠B,∴∠EDC=∠BAD,∵∠BAD=42°,∴∠EDC=42°.【点评】本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.24.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线(如图1),方法如下:作法:①在OA和OB上分别截取OD、OE,使OD=OE.②分别以DE为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C③作射线OC,则OC就是∠AOB的平分线小聪只带了直角三角板,他发现利用三角板也可以做角平分线(如图2),方法如下:步骤:①用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS .②小聪的作法正确吗?请说明理由.【考点】作图—基本作图;全等三角形的判定.【分析】①根据全等三角形的判定即可求解;②根据HL可证Rt△OMP≌Rt△ONP,再根据全等三角形的性质即可作出判断.【解答】解:①李老师用尺规作角平分线时,用到的三角形全等的判定方法SSS.故答案为SSS;②小聪的作法正确.理由:∵PM⊥OM,PN⊥ON,∴∠OMP=∠ONP=90°,在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP平分∠AOB.【点评】本题考查了用刻度尺作角平分线的方法,全等三角形的判定与性质,难度不大.25.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【考点】全等三角形的判定与性质.【分析】(1)在△CBF和△DBG中,利用SAS即可证得两个三角形全等,利用全等三角形的对应边相等即可证得;(2)根据全等三角形的对应角相等,以及三角形的内角和定理,即可证得∠DHF=∠CBF=60°,从而求解.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.【点评】本题考查了全等三角形的判定与性质,正确证明三角形全等是关键.26.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得∠HFB=∠HEC,由得对顶角相等得∠BHF=∠CHE,所以∠ABD=∠ACG.再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.【点评】此题考查了全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.27.如图1,在△ABC中,∠BAC为直角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如图1,则∠CAF(2)若AB=AC,①当点D在线段BC上时(与点B不重合),如图2,问CF、BD有怎样的关系?并说明理由.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,直接写出结论.【考点】全等三角形的判定与性质;正方形的性质.【分析】(1)根据∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,即可解题;(2)易证∠BAD=∠CAF,即可证明△BAD≌△CAF,可得CF=BD,即可解题;(3)易证∠BAD=∠CAF,即可证明△BAD≌△CAF,可得CF=BD,即可解题.【解答】证明:(1)∵∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,∴∠BAD=∠CAF;(2)①∵∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF,(SAS)∴CF=BD;②∵∠BAD=∠BAC+∠CAD=90°+∠CAD,∠CAF=∠CAD+∠DAF=90°+∠CAD,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF,(SAS)∴CF=BD.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BAD ≌△CAF是解题的关键.28.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为10﹣4t cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?【考点】四边形综合题.【分析】(1)①根据正方形边长为10cm和点P在线段BC上的速度为4cm/秒即可求出CP的长;②分△BPE≌△CPQ和△BPE≌△CQP两种情况进行解答;(2)根据题意列出方程,解方程即可得到答案.【解答】解:(1)①PC=BC﹣BP=10﹣4t;②当△BPE≌△CPQ时,BP=PC,BE=CQ,即4t=10﹣4t,at=6,解得a=4.8;当△BPE≌△CQP时,BP=CQ,BE=PC,即4t=at,10﹣4t=6,解得a=4;(2)当a=4.8时,由题意得,4.8t﹣4t=30,解得t=37.5,∴点P共运动了37.5×4=150cm,∴点P与点Q在点A相遇,当a=4时,点P与点Q的速度相等,∴点P与点Q不会相遇.∴经过37.5秒点P与点Q第一次在点A相遇.【点评】本题考查的是正方形的性质和全等三角形的判定和性质,正确运用数形结合思想和分类讨论思想是解题的关键.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°。
八年级数学上册月考试卷(含答案和解释)掌握一定的数学基础知识和基本技能,是每一个人应当具备的文化素养之一。
查字典数学网小编为大家准备了这篇八年级数学上册月考试卷。
八年级数学上册月考试卷(含答案和解释)一、选择题:每小题2分,共12分。
1.计算(a2)6的结果正确的是()A.a7B.a8C.a10D.a122.下列图形中,是轴对称图形的是()A. B. C. D.3.计算(﹣2a2)2÷2a的结果是()A.﹣2a2B.2a2C.2a3D.﹣2a34.下列计算中正确的是()A.3a+2a=5a2B.2a2?a3=2a6C.(2a+b)(2a﹣b)=2a2﹣b2D.(2ab)2=4a2b25.如图,在△ABC中,AB=AC,∠BAC=50°,点D在AC上,作直线BD,过C作CE∥BD,若∠BCE=40°,则∠ABD的度数是()A.10°B.15°C.25°D.65°6.如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成了一个长方形(如图②),则这个长方形的面积为()A.a2﹣4b2B.(a+b)(a﹣b)C.(a+2b)(a﹣b)D.(a+b)(a﹣2b)二、填空题:每小题3分,共24分。
7.五边形的内角和为.8.计算:(x+2)( x﹣3)=.9.计算:(2a+b)2=.10.若点P(a,﹣3)与点P′(2,b)关于x轴对称,则a2+b2=.11.因式分解:2a2﹣2=.12.若2×4m=211,则m的值是.13.如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=.14.如图,在△ABC中,AB=AC,∠BAC=48°,点D在AC上,将△ABC沿BD折叠,若点C恰好落在AB边上的C′处,则∠AC′D的度数是.三、解答题:每小题5分,共20分。
2019-2020学年八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,共30.0分)1.在△ABC中,∠C=90°,AB=10,AC:BC=3:4,则BC=()A. 4B. 6C. 8D. 102.下列数中,有理数是()A. −√7B. −0.6C. 2πD. 0.151151115…3.已知P(x,y)在第二象限,且x2=4,∣y∣=7,则点P的坐标是()A. (2,−7)B. (−4,7)C. (4,−7)D. (−2,7)4.在下列各式中正确的是()A. √(−2)2=2B. ±√9=3C. √16=8D. √22=±25.若a=√13,则实数a在数轴上对应的点P的大致位置是()A. B.C. D.6.下列说法中:(1)√5是实数;(2)√5是无限不循环小数;(3)√5是无理数;(4)√5的值等于2.236,正确的说法有()A. 4个B. 3个C. 2个D. 1个7.(如图)在4×8的方格中,建立直角坐标系E(−1,−2),F(2,−2),则G点坐标()A. (−1,1)B. (−2,−1)C. (−3,1)D. (1,−2)8.如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是()A. 3cmB. 4cmC. 5cmD. 6cm9.和数轴上的点一一对应的数是()A. 整数B. 有理数C. 无理数D. 实数10.在直角坐标系xOy中,△ABC关于直线y=1轴对称,已知点A坐标是(4,4),则点B的坐标是()A. (4,−4)B. (−4,2)C. (4,−2)D. (−2,4)二、填空题(本大题共4小题,共16.0分)11.一直角三角形的三边分别为6,8,x,那么以x为边长的正方形的面积为______.12.916的算术平方根是.13.计算:√−83+√9=______.14.若点(a,−4)与点(−3,b)关于x轴对称,则a=________,b=________.三、计算题(本大题共2小题,共14.0分)15.计算12√113+(3√18+15√50−4√12)÷√3216.计算(1)(2x−1)2+(1−2x)(1+2x)(2)(x+2)(x−3)−x(x+1)四、解答题(本大题共5小题,共40.0分)17.求满足下列各式的未知数x(1)27x3+125=0(2)(x+2)2=16.18.如图,在每个小正方形是边长为1的网格中,A,B,C均为格点.(Ⅰ)仅用不带刻度的直尺作BD⊥AC,垂足为D,并简要说明道理;(Ⅱ)连接AB,求△ABC的周长.19.如图,在海上观察所A处.我边防海警发现正南方向60海里的B处有一可疑船只正以每小时20海里的速度向正东方向C处驶去,海我边防海警即刻从A处派快艇去拦截.若快艇的速度是每小时1003里.问快艇最快几小时拦截住可疑船只?20.求代数式的值:(1)当a=7,b=4,c=0时,求代数式a(2a−b+3c)的值.(2)如图是一个数值转换机的示意图.请观察示意图,理解运算原理,用代数式表示为______ .若输入x的值为3,y的值为−2,输出的结果是多少?21.如图1,在平面直角坐标系中,A(a,0),B(0,2√3)(1)点(k+1,2k−5)关于x轴的对称点在第一象限,a为实数k的范围内的最大整数,求A点的坐标及△AOB的面积;(2)在(1)的条件下如图1,点P是第一象限内的点,且△ABP是以AB为腰的等腰直角三角形,请直接写出P点坐标;(3)在(1)的条件下,如图2,以AB、OB的作等边△ABC和等边△OBD,连接AD、OC交于E 点,连接BE.①求证:EB平分∠CED;②M点是y轴上一动点,求AM+CM的最小值.-------- 答案与解析 --------1.答案:C解析:解:∵∠C=90°,AB=10,AC:BC=3:4,∴BC2+AC2=AB2,AC:BC:AB=3:4:5,∴BC=8;故选:C.根据勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,即BC2+AC2=AB2,结合已知条件,即可得出BC的长.本题考查了勾股定理;熟记勾股定理是解决问题的关键.2.答案:B解析:解:A、−√7是无理数,故选项错误;B、−0.6是有理数,故选项正确;C、2π是无理数,故选项错误;D、0.151151115…是无理数,故选项错误.故选:B.本题考查了实数,根据有理数的定义选出即可.3.答案:D解析:【分析】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).根据第二象限内点的横坐标是负数,纵坐标是正数分别求出x、y的值,然后写出点P的坐标即可.【解答】解:∵P(x,y)在第二象限,且x2=4,|y|=7,∴x=−2,y=7,∴点P的坐标为(−2,7).故选D.4.答案:A解析:【分析】此题考查了算术平方根,以及平方根,熟练掌握各自的性质是解本题的关键.根据算术平方根和平方根的定义分别对每一项进行计算,即可得出答案.【解答】解:A.√(−2)2=√4=2,正确;B.±√9=±3,故本选项错误;C.√16=4,故本选项错误;D.√22=2,故本选项错误;故选A.5.答案:C解析:解:∵3<√13<4,故选:C.根据3<√13<4,即可选出答案本题主要考查了是实数在数轴上的表示,熟悉实数与数轴的关系式解答此题的关键.6.答案:B解析:解:(1)√5是实数,故正确;(2)√5是无限不循环小数,故正确;(3)√5是无理数,故正确;(4)√5的值等于2.236,故错误;故选B.根据实数的分类进行判断即可.本题考查了实数的分类,掌握实数包括有理数和无理数,有理数是有限小数和无限循环小数,而无理数是无限不循环小数.7.答案:C解析:【分析】本题考查了平面直角坐标系,点的坐标的确定,先由E(−1,−2),F(2,−2)确定平面直角坐标系,然后确定G点坐标即可.【解答】解:如图,由E(−1,−2),F(2,−2)可确定平面直角坐标系如下图:∴G点坐标为(−3,1),故选C.8.答案:A解析:【分析】折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8−x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长【解答】解:设CN=xcm,则DN=(8−x)cm,BC=4cm,根据题意可知DN=EN,EC=12在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8−x)2=16+x2,整理得16x=48,∴x=3,则CN=3cm.故选A.9.答案:D解析:和数轴上的点一一对应的数是实数,故选:D .熟练掌握实数与数轴上的点是一一对应的关系是解题的关键.10.答案:C解析:解:根据题意,点A 和点B 是关于直线y =1对称的对应点,它们到y =1的距离相等是3个单位长度,所以点B 的坐标是(4,−2).故选:C .根据轴对称的两点到对称轴的距离相等,此题易解.主要考查了坐标的对称特点.解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标.11.答案:100或28解析:解:当较大的数8是直角边时,根据勾股定理,得x 2=36+64=100;当较大的数8是斜边时,根据勾股定理,得x 2=64−36=28.所以以x 为边长的正方形的面积为100或28.故答案为:100或28.以x 为边长的正方形的面积是x 2,所以只需求得x 2即可.但此题应分8为直角边和为斜边两种情况考虑.此题考查勾股定理,此类题在没有明确直角边或斜边的时候,一定要注意分情况考虑,熟练运用勾股定理进行计算.12.答案:34解析:【分析】此题主要考查了算术平方根的定义,根据算术平方根的定义即可解答.【解答】解:916的算术平方根为34.故答案为34.13.答案:1解析:解:原式=−2+3=1,故答案为:1原式利用平方根与立方根定义计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.答案:−3;4解析:【分析】本题考查了关于轴x、y轴对称的点的坐标,据关于x轴对称的点的坐标规律是:横坐标相同,纵坐标互为相反数,根据关于x轴对称的点的坐标规律是:横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点P(a,−4)与点Q(−3,b)关于x轴对称,得a=−3,b+(−4)=0,解得a=−3,b=4,故答案为−3;4.15.答案:解:原式=12×2√3+(9√2+√2−2√2)÷4√23=8√3+2.解析:先化简二次根式,然后根据二次根式的混合运算法则计算得出答案.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.16.答案:解:(1)(2x−1)2+(1−2x)(1+2x)=4x2−4x+1+1−4x2=−4x+2;(2)(x+2)(x−3)−x(x+1)=x2−3x+2x−6−x2−x=−2x−6.解析:(1)根据完全平方公式和平方差公式可以解答本题;(2)根据多项式乘多项式和单项式乘多项式可以解答本题.本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.17.答案:解:(1)27x3+125=0则x3=−12527解得:x=−5;3(2)(x+2)2=16则x+2=±4,解得:x1=−6,x2=2.解析:(1)直接利用立方根的定义化简求出答案;(2)直接利用平方根的定义化简求出答案.此题主要考查了立方根以及平方根,正确把握相关定义是解题关键.18.答案:解:(Ⅰ)取线段AC的中点为格点D,则有DC=AD.连接BD,则BD⊥AC,理由:由图可知BC=√32+42=5,连接AB,则AB=5,∴BC=AB,又CD=AD,∴BD⊥AC.(Ⅱ)由(1)可得AB=5,BC=5由图得AC=√22+42=2√5,∴△ABC的周长=5+5+2√5=10+2√5.解析:本题考查作图−应用与设计,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(Ⅰ)取线段AC的中点为格点D,则有DC=AD.连接BD,根据等腰三角形的性质可得BD⊥AC,(Ⅱ)利用勾股定理求出AC、BC即可解决问题;19.答案:解:设快艇最快x小时拦截住可疑船只,x,则BC=20x,AC=1003由勾股定理得:AC2=AB2+BC2,x)2=602+(20x)2,即(1003(负值舍去),解得:x=±94∴x=9,4小时拦截住可疑船只.答:快艇最快94解析:本题考查了勾股定理在实际生活中的应用,本题中正确的找到CB,AB,AC的等量关系,并且根据该等量关系在直角△CAB中求解是解题的关键.首先求得线段AC,BC的长,然后利用勾股定理得出方程,解方程即可.20.答案:(1)∵a=7,b=4,c=0,∴原式=2a2−ab+3ac=98−28+0=70;(2x+y2)(2)用代数式表示为12将x=3,y=−2代入(2×3+4)=5.得:原式=12解析:解:(1)∵a=7,b=4,c=0,∴原式=2a2−ab+3ac=98−28+0=70;(2x+y2),(2)由题意可得:12将x=3,y=−2代入得:原式=5.(2x+y2).故答案为:12(1)直接利用已知数据代入代数式求出答案;(2)直接利用已知数值转换机的示意图得出代数式,进而求出答案.此题主要考查了代数式求值,正确列出代数式是解题关键.21.答案:解:(1)∵点(k+1,2k−5)关于x轴的对称点在第一象限,∴点(k+1,2k−5)在第四象限,∴k+1>0,2k−5<0,∴−1<k<2.5,∵a为实数k的范围内的最大整数,∴a=2,∵A(a,0),∴A(2,0),∴OA=2,∵B(0,2√3),∴OB=2√3,∴S△AOB=12OA⋅OB=12×2×2√3=2√3;(2)如图1,∵点P是第一象限内的点,且△ABP是以AB为腰的等腰直角三角形,∴①当∠BAP=90°时,AB=AP,过点P作PF⊥OA于F,∴∠PAF+∠APF=90°,∵∠BAP=90°,∴∠PAF+∠BAO=90°,∴∠APF=∠BAO,∵AB=AP,∴△OAB≌△FPA(AAS),∴PF=OA=2,AF=OB=2√3,∴OF=OA+AF=2+2√3,∴P(2+2√3,2),②当∠ABP=90°时,同①的方法得,P′(2√3,2√3+2),即:P点坐标为(2+2√3,2)或(2√3,2√3+2);(3)①如图2,∵△OBD和△ABC都是等边三角形,∴BD=OB,AB=BC,∠OBD=∠ABC=60°,∴∠ABD=∠CBO,在△ABD和△CBO中,{BD=OB∠ABD=∠CBO AB=BC,∴△ABD≌△CBO(SAS),∴S△ABD=S△CBO,AD=OC,过点B作BM⊥AD于M,BN⊥OC于N,∴BM=BN,∵BM⊥AD,BN⊥OC,∴BE是∠CED的角平分线;②如图3,作点A关于y轴的对称点A′,∵A(2,0),∴A′(−2,0),连接A′C交y轴于M,过点C作CH⊥OA于H,在Rt△AOB中,OA=2,OB=2√3,∴AB=4,tan∠OAB=OBOA =2√32=√3,∴∠OAB=60°,∵△ABC是等边三角形,∴AC=AB=4,∠BAC=60°,∴∠CAH=60°,在Rt△ACH中,∠ACH=90°−∠CAH=30°,∴AH=2,CH=2√3,∴OH=OA+AH=4,∴点C(4,2√3),∵A′(−2,0),∴直线A′C的解析式为y=√33x+2√33,∴M(0,2√33).解析:(1)根据点在第四象限内,得出不等式,进而求出k的范围,进而求出点A坐标,最后用三角形面积公式即可得出结论;(2)分两种情况:构造全等三角形求出PF和AF,即可求出点P坐标;(3)①先判断出△ABD≌△CBO(SAS),进而得出S△ABD=S△CBO,AD=OC,即可得出BM=BM,最后用角平分线的判定定理即可得出结论;②根据含30度角的直角三角形的性质求出线段的长,进而求出点C坐标,求出直线A′C的解析式,即可得出结论.此题是三角形综合题,主要考查了全等三角形的判定和性质,角平分线的判定定理,等腰直角三角形的性质,待定系数法,等边三角形的性质,正确作出辅助线是解本题的关键.。
2024-2025八年级上册第一次月考模拟试卷一、填空题(本题满分30分,每小题3分)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A. B. C. D. 2. 若一个等腰三角形的两边长分别为2,4,则第三边的长为( )A. 2B. 3C. 4D. 2或43. 已知一个等腰三角形有一个角为50o ,则顶角是 ( )A. 50oB. 80oC. 50o 或80oD. 不能确定 4. 若三角形的两条边的长度是4cm 和9cm ,则第三条边的长度可能是( )A. 4 cmB. 5 cmC. 9cmD. 13cm5. 一个多边形的内角和是900°,则这个多边形的边数为 ( )A. 6B. 7C. 8D. 96. 下列长度的各种线段,可以组成三角形的是( )A. 1,2,3B. 1,3,5C. 3,3,6D. 4,5,6 7. 如图,AB 与CD 相交于点E ,EA EC =,DE BE =,若使AED CEB ≌,则( )A. 应补充条件A C ∠=∠B. 应补充条件B D ∠=∠C. 不用补充D. 以上说法都不正确8. 已知△ABC 和△DEF ,下列条件中,不能保证△ABC ≌△DEF 的是( )A. AB =DE ,AC =DF ,BC =EFB. ∠A =∠D , ∠B =∠E ,AC =DFC. AB =DE ,AC =DF ,∠A =∠DD. AB =DE ,BC =EF , ∠C =∠F9. 如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若12PP =6,则△PMN 的周长为( )的A. 4B. 5C. 6D. 710. 如图,直线AB CD ∥,70A ∠=°,40C ∠=°,则E ∠的度数为( )A. 30°B. 40°C. 50°D. 60°11. 如图,在ABC 中,AD BC ⊥于点D ,48C ∠=°.则DAC ∠的度数为( )A. 52°B. 42°C. 32°D. 28°12. 如图,在ΔΔΔΔΔΔΔΔ中,AD 平分BAC ∠交BC 于点D ,30B ∠= ,70ADC ∠=,则C ∠的度数是( )A. 50B. 60C. 70D. 80二. 填空题(本题满分24分,每小题3分)13. BD 是ABC 的中线,53AB BC ABD ==,, 和BCD △的周长的差是____.14. 若一个多边形从一个顶点可以引8条对角线,则这个多边形的内角和是______.15. Rt ABC 中,∠C=90°,∠B=2∠A ,BC=3cm , AB=____cm .16. 如图,Rt ABC ∆中,∠B =90 ,AB =3cm ,AC =5cm ,将ΔΔΔΔΔΔΔΔ折叠,使点C 与点A 重合,折痕为DE ,则CE =____cm .17. 若一个n 边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3:1,那么,这个多边形的边数为________.18. 如下图,在ABC 中,AB AC =,BE CD =,BD CF =,若50B ∠=°,则EDF ∠的度数是____度.三.解答题(本大题满分62分)19 如图,DF ⊥AC 于F ,BE ⊥AC 于E ,AB =CD ,DF =BE .;求证:AF =CE .20. 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数..21. 如图,点D E ,分别AB AC ,上,CD 交BE 于点O ,且AD AE =,AB AC =.求证:(1)B C ∠=∠;(2)OB OC =.22. 如图,两人从路段ΔΔΔΔ上一点C 同时出发,以相同速度分别沿两条直线行走,并同时到达D E ,两地.且DA AB ⊥,EB AB ⊥.若线段DA EB =相等,则点C 是路段ΔΔΔΔ的中点吗?为什么?23. 在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:ABD △是等腰三角形;(2)①若40A ∠=°,求DBC ∠的度数为 ;②若6AE =,CBD △的周长为20,求ABC 的周长.在的24. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.25. 如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .26. 如图,∠ABC =90°,D 、E 分别在BC 、AC 上,AD ⊥DE ,且AD =DE ,点F 是AE 中点,FD 与AB 相交于点M .(1)求证:∠FMC =∠FCM ;(2)AD 与MC 垂直吗?并说明理由.的2024-2025八年级上册第一次月考模拟试卷一、填空题(本题满分30分,每小题3分)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A 、不是轴对称图形,不符合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不符合题意.故选:B .【点睛】本题考查了轴对称图形识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2. 若一个等腰三角形的两边长分别为2,4,则第三边的长为( )A. 2B. 3C. 4D. 2或4【答案】C【解析】【分析】分4是腰长与底边两种情况,再根据三角形任意两边之和大于第三边讨论求解即可.【详解】①4是腰长时,三角形的三边分别为4、4、2,能组成三角形,所以,第三边4;②4是底边时,三角形的三边分别为2、2、4, 224+= ,∴不能组成三角形,综上所述,第三边为4.故选C .【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论.3. 已知一个等腰三角形有一个角为50o ,则顶角是 ( )为.A50o B. 80o C. 50o或80o D. 不能确定【答案】C【解析】【分析】已知中没有明确该角为顶角还是底角,所以应分两种情况进行分析.【详解】分两种情况:若该角为底角,则顶角为180°−2×50°=80°;若该角为顶角,则顶角为50°.∴顶角是50°或80°.故选C.【点睛】此题考查等腰三角形的性质,解题关键在于分情况讨论.4. 若三角形的两条边的长度是4cm和9cm,则第三条边的长度可能是( )A. 4 cmB. 5 cmC. 9cmD. 13cm【答案】C【解析】【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边,进行解答即可.【详解】由题可得:9﹣4<第三边<9+4,所以5<第三边<13,即第三边在5 cm~13 cm之间(不包括5 cm 和13 cm),结合选项可知:9 cm符合题意.故选C.角形的两边的差一定小于第三边.5. 一个多边形的内角和是900°,则这个多边形的边数为()A. 6B. 7C. 8D. 9【答案】B【解析】【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【详解】解:设这个多边形的边数为n,则有(n-2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选B.【点睛】本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.6. 下列长度的各种线段,可以组成三角形的是( )A. 1,2,3B. 1,3,5C. 3,3,6D. 4,5,6【答案】D【解析】【分析】根据三角形的三边关系逐一判断即可得答案.【详解】A .∵1+2=3,故不能组成三角形,不符合题意,B .∵1+3<5,故不能组成三角形,不符合题意,C .∵3+3=6,故不能组成三角形,不符合题意,D .∵4+5>6;5-4<6,故能组成三角形,符合题意,.故选:D .【点睛】本题考查三角形的三边关系,任意三角形的两边之和大于第三边,两边之差小于第三边,熟练掌握三角形的三边关系是解题关键.7 如图,AB 与CD 相交于点E ,EA EC =,DE BE =,若使AED CEB ≌,则( )A. 应补充条件A C ∠=∠B. 应补充条件B D ∠=∠C. 不用补充D. 以上说法都不正确【答案】C【解析】 【分析】本题要判定AED CEB ≌,已知EA EC =,DE BE =,具备了两组边对应相等,由于对顶角相等可得AED CEB ∠=∠,可根据SAS 能判定AED CEB ≌.【详解】解:在AED 与CEB 中,EA EC AED CEB DE BE = ∠=∠ =,(SAS)AED CEB ∴ ≌,∴不用补充条件即可证明AED CEB ≌,.故选:C .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8. 已知△ABC 和△DEF ,下列条件中,不能保证△ABC ≌△DEF 的是( )A. AB =DE ,AC =DF ,BC =EFB. ∠A =∠D , ∠B =∠E ,AC =DFC. AB =DE ,AC =DF ,∠A =∠DD. AB =DE ,BC =EF , ∠C =∠F【答案】D【解析】【分析】三角形全等的判定定理中,常见的不能判定三角形全等的条件为SSA ,AAA ,通过对条件的对比很容易得出结论.【详解】A 选项对应判定定理中的SSS ,故正确;B 选项对应判定定理中的AAS ,故正确;C 选项对应判定定理中的ASA ,故正确;D 选项则为SSA ,两边加对角是不能判定三角形全等的,故错误.故选D .【点睛】本题考查三角形全等判定定理,能熟记并掌握判定定理是解题关键.9. 如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若12PP =6,则△PMN 的周长为( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】根据题意易得1PM PM =,2P N PN =,然后根据三角形的周长及线段的数量关系可求解. 【详解】解:由轴对称的性质可得:OA 垂直平分1PP ,OB 垂直平分2P P ,∴1PM PM =,2P N PN =, ∵1212PMN C PM PN MN PM P N MN PP =++=++=△,12PP =6,∴6PMN C = ;故选C .【点睛】本题主要考查轴对称的性质及线段垂直平分线的性质定理,熟练掌握轴对称的性质及线段垂直平分线的性质定理是解题的关键.10. 如图,直线AB CD ∥,70A ∠=°,40C ∠=°,则E ∠的度数为( )A. 30°B. 40°C. 50°D. 60°【答案】A【解析】 【分析】此题考查了平行线的性质,三角形外角的性质,首先根据AB CD ∥得到170A ∠=∠=°,然后利用三角形外角的性质求解即可.解题的关键是熟练掌握三角形外角的性质:三角形的外角等于与它不相邻的两个内角的和.【详解】如图所示,∵AB CD ∥,70A ∠=°,∴170A ∠=∠=°,∵40C ∠=°∴1704030E C ∠=∠−∠=°−°=°.故选A .11. 如图,在ABC 中,AD BC ⊥于点D ,48C ∠=°.则DAC ∠的度数为( )A. 52°B. 42°C. 32°D. 28°【答案】B【解析】 【分析】根据垂直的定义,直角三角形的两个锐角互余,即可求解.【详解】解:∵AD BC ⊥,48C ∠=°,∴90ADC ∠=°,∵48C ∠=°,∴904842DAC ∠=°−°=°,故选:B .【点睛】本题考查了垂直的定义,直角三角形的两个锐角互余,求得90ADC ∠=°是解题的关键. 12. 如图,在ΔΔΔΔΔΔΔΔ中,AD 平分∠交BC 于点D ,30B ∠= ,70ADC ∠=,则C ∠的度数是( )A. 50B. 60C. 70D. 80【答案】C【解析】 【分析】由30B ∠= ,70ADC ∠= ,利用外角的性质求出BAD ∠,再利用AD 平分BAC ∠,求出BAC ∠,再利用三角形的内角和,即可求出C ∠的度数.【详解】∵30B ∠= ,70ADC ∠=, ∴703040BAD ADC B ∠=∠−∠=−= ,∵AD 平分BAC ∠,∴280BAC BAD ∠=∠= ,∴180180308070C B BAC ∠=−∠−∠=−−= .故选C .【点睛】本题考查了三角形的外角性质定理,角平分线的定义以及三角形的内角和定理,熟练掌握相关性质和定理是解题关键.二. 填空题(本题满分24分,每小题3分)13. BD 是ABC 的中线,53AB BC ABD ==,, 和BCD △的周长的差是____.【答案】2【解析】【分析】由中线定义,得AD CD =,根据周长定义,进行线段的和差计算求解.【详解】∵BD 是ABC 的中线,∴AD CD =,∴ABD △和BCD △的周长的差()()AB BD AD BC BD CD AB BC =++−++=−,∵53AB BC ==,, ∴ABD △和BCD △的周长的差532=−=.故答案为:2.【点睛】本题考查中线的定义;由中线得到线段相等是解题的关键.14. 若一个多边形从一个顶点可以引8条对角线,则这个多边形的内角和是______.【答案】1620°【解析】【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n−3)条对角线可得n−3=8,计算出n 的值,再根据多边形内角和(n−2)•180 (n ≥3)且n 为整数)可得答案.【详解】解:设多边形边数为n ,由题意得:n−3=8,n=11,内角和:180°×(11−2)=1620°.故答案为1620°.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n边形从一个顶点出发可引出(n−3)条对角线,多边形内角和公式(n−2)•180 (n≥3)且n为整数).中,∠C=90°,∠B=2∠A,BC=3cm,AB=____cm.15. Rt ABC【答案】6【解析】【详解】试题分析:根据直角三角形的性质即可解答.解:如图:∵Rt△ABC中,∠C=90°,∠B=2∠A∴∠A+∠B=90°∴∠A=30°,∠B=60°∴=,∵BC=3cm,∴AB=2×3=6cm.故答案为6.考点:直角三角形的性质.∆中,∠B=90 ,AB=3cm,AC=5cm,将ΔΔΔΔΔΔΔΔ折叠,使点C与点A重合,折痕为DE,16. 如图,Rt ABC则CE=____cm.【答案】258【解析】 【分析】在Rt △ABC 中,由勾股定理可得BC4= cm ,设AE =x cm ,由折叠的性质可得CE =x cm ,BE = (4)x −cm ,从而由勾股定理可得:2223(4)x x =+−,即可求解.【详解】解:∵在Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,∴由勾股定理可得:BC4=cm ,设AE =x cm ,则由折叠的性质可得:CE =x cm ,BE =BC -CE =(4)x −cm ,∴在Rt △ABE 中,由勾股定理可得:2223(4)x x =+−,解得:258x =(cm ). 即CE 的长为258cm . 故答案是:258. 【点睛】本题考查了折叠性质以及勾股定理的应用,熟练掌握勾股定理的内容是解题的关键. 17. 若一个n 边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3:1,那么,这个多边形的边数为________.【答案】8##八【解析】【分析】本题考查的是多边形的内角和,以及多边形的外角和,解答本题的关键是熟练掌握任意多边形的外角和是360°,与边数无关. 先根据内角的度数与和它相邻的外角的度数比为3:1,求得每一个外角的度数,再根据任意多边形的外角和是360°,即可求得结果.【详解】解:设每一个外角的度数为x ,则每一个内角的度数3x ,则3180x x +=°,解得45x =°,∴每一个外角的度数为45°,∴这个多边形的边数为360458°÷°=,故答案为:8.18. 如下图,在ABC 中,AB AC =,BE CD =,BD CF =,若50B ∠=°,则EDF ∠的度数是____度. 的【答案】50【解析】【分析】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形内角和定理,由等腰三角形的性质可得B C ∠=∠,进而可证明()SAS BDE CFD ≌,得到BED CDF ∠=∠,即可得130BDE CDF BDE BED ∠+∠=∠+∠=°,最后根据平角的定义即可求解,掌握等腰三角形的性质及全等三角形的判定和性质是解题的关键.【详解】解:∵AB AC =,∴B C ∠=∠,又∵BE CD =,BD CF =,∴()SAS BDE CFD ≌,∴BED CDF ∠=∠,∵50B ∠=°,∴18050130BDE BED ∠+∠=°−°=°,∴130BDE CDF ∠+∠=°,∴()18018013050EDF BDE CDF ∠=°−∠+∠=°−°=°, 故答案为:50.三.解答题(本大题满分62分)19. 如图,DF ⊥AC 于F ,BE ⊥AC 于E ,AB =CD ,DF =BE .;求证:AF =CE .【答案】证明见解析.【解析】【分析】由HL 证明Rt △ABE ≌Rt △CDF ,得出对应边相等AE =CF ,由AE ﹣EF =CF =EF ,即可得出结论.详解】∵DF ⊥AC ,BE ⊥AC ,∴∠CFD =∠AEB =90°,在Rt △ABE 和Rt △CDF 中,{AB CD BE DF==, ∴Rt △ABE ≌Rt △CDF (HL ),∴AE =CF ,∴AE ﹣EF =CF =EF ,∴AF =CE .【点睛】本题考查了全等三角形的判定与性质.掌握全等三角形的判定方法是解题的关键.20. 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数.【答案】∠A=36°,∠ABC=∠C=72°【解析】【分析】设∠A=x ,根据等腰三角形的性质和三角形的外角性质、三角形的内角和定理即可求得各个角的度数.【详解】解:设∠A=x ,∵AD=BD ,∴∠ABD=∠A=x ,∴∠BDC=∠ABD+∠A=2x ,∵BD=BC ,∴∠C=∠BDC=2x ,∵AB=AC ,∴∠ABC=∠C=2x ,∴在△ABC 中,x+2x+2x=180°,∴x=36°,2x=72°,【即∠A=36°,∠ABC=∠C=72°.【点睛】本题考查了等腰三角形的性质、三角形的外角性质、三角形内角和定理,熟练掌握等腰三角形的性质和外角性质是解答的关键.21. 如图,点D E ,分别在AB AC ,上,CD 交BE 于点O ,且AD AE =,AB AC =.求证:(1)B C ∠=∠;(2)OB OC =.【答案】(1)证明见解析(2)证明见解析【解析】【分析】本题考查三角形全等的判定与性质,熟记三角形全等的判定定理:SSS SAS ASA AAS 、、、是解决问题的关键.(1(2)根据三角形全等的判定定理找条件证明即可得证.【小问1详解】证明:在ABE 和ACD 中,AD AE A A AB AC = ∠=∠ =()SAS ABE ACD ∴≌ ,∴B C ∠=∠;【小问2详解】证明: AD AE =,AB AC =,BD CE ∴=,由(1)知,B C ∠=∠,在BOD 和COE 中,BOD COE B C DB EC ∠=∠ ∠=∠ =()AAS ≌BOD COE ∴△△,∴OB OC =.22. 如图,两人从路段ΔΔΔΔ上一点C 同时出发,以相同的速度分别沿两条直线行走,并同时到达D E ,两地.且DA AB ⊥,EB AB ⊥.若线段DA EB =相等,则点C 是路段ΔΔΔΔ的中点吗?为什么?【答案】点C 是路段ΔΔΔΔ的中点,理由见解析.【解析】【分析】本题考查了全等三角形的判定和性质,利用HL 证明Rt Rt ACD BCE ≌得到AC BC =即可求解,掌握全等三角形的判定和性质是解题的关键.【详解】解:点C 是路段ΔΔΔΔ的中点,理由如下:∵两人从点C 同时出发,以相同的速度同时到达D E ,两地,∴CD CE =,∵DA AB ⊥,EB AB ⊥,∴90A B ∠=∠=°,又∵DA EB =,∴()Rt Rt HL ACD BCE ≌, ∴AC BC =,∴点C 是路段ΔΔΔΔ的中点.23. 在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:ABD △是等腰三角形;(2)①若40A ∠=°,求DBC ∠的度数为 ;②若6AE =,CBD △的周长为20,求ABC 的周长.【答案】(1)见解析 (2)①;②32【解析】【分析】(1)根据线段的垂直平分线到线段两端点的距离相等即可得证;(2)①由在ABC 中,AB AC =,40A ∠=°,利用等腰三角形的性质,即可求得ABC ∠的度数,利用等边对等角求得DBA ∠的度数,则可求得DBC ∠的度数;②将ABC 的周长转化为AB AC BC ++的长即可求得.【小问1详解】解:∵AB 的垂直平分线MN 交AC 于点D ,∴DB DA =,∴ABD △是等腰三角形;【小问2详解】解:①在ABC 中,∵AB AC =,40A ∠=°, ∴180180407022AABC C −∠°−∠=∠=°==°°, 由(1)得DA DB =,40DBA A ∠=∠=︒,∴704030DBC ABC DBA ∠=∠−∠=°−°=°;故答案为:30°;②∵AB 的垂直平分线MN 交AC 于点D ,6AE =,∴212AB AE ==,∵CBD △的周长为20,∴20BD CD BC AD CD BC AC BC ++=++=+=,∴ABC 的周长122032AB AC BC =++=+=. 【点睛】此题考查了线段的垂直平分线的性质及等腰三角形的判定与性质,解题的关键是熟练掌握以上知识的应用.24. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.【答案】见解析【解析】【分析】利用AAS 证明PBD PCE ≌即可.本题考查了三角形全等的判定和性质,熟练掌握三角形全等的判定是解题的关键.【详解】证明:∵PD AB PE AC ⊥⊥,,∴90PDB PEC ∠=∠=°,∵AB AC =,∴B C ∠=∠,∵P 是边BC 的中点,∴PB PC =,∵PDB PEC B C PB PC ∠=∠ ∠=∠ =,∴PBD PCE ≌,∴PD PE =.25. 如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .【答案】证明见解析【解析】【分析】过M作ME⊥AD于E,根据垂直定义和角平分线性质得出∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=ME,根据全等三角形性质,推导得△MCD≌△MED,根据全等得出CD=DE,同理得AE=AB,即可得出答案.【详解】如图,过M作ME⊥AD于E,∵∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,∴∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=EM,∴CDM EDMC DEMCM EM∠=∠∠=∠=,∴△MCD≌△MED(AAS),∴CD=DE,∵BAM EAMB AEMBM EM∠=∠∠=∠=∴△ABM≌△AEM(AAS),∴AE=AB,∴AD=AE+DE=CD+AB.【点睛】本题考查了角平分线、全等三角形的知识;解题的关键是熟练掌握角平分线、全等三角形的性质,从而完成求解.26. 如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.【答案】(1)见解析;(2)AD ⊥MC ,理由见解析【解析】【分析】(1)由已知可以证得△DFC ≌△AFM ,从而得到CF =MF ,最后得到∠FMC =∠FCM ; (2)由(1)可以证得DE ∥CM ,再根据AD ⊥DE 可得AD ⊥MC .【详解】解:(1)证明:∵△ADE 是等腰直角三角形,F 是AE 中点,∴DF ⊥AE ,DF =AF =EF ,又∵∠ABC =90°,∠DCF ,∠AMF 都与∠MAC 互余,∴∠DCF =∠AMF ,在△DFC 和△AFM 中,DCF AMF CFD MFA DF AF∠=∠ ∠=∠ = , ∴△DFC ≌△AFM (AAS ),∴CF =MF ,∴∠FMC =∠FCM ;(2)AD ⊥MC ,理由:由(1)知,∠MFC =90°,FD =FA =FE ,FM =FC ,∴∠FDE =∠FMC =45°,∴DE ∥CM ,∴AD ⊥MC .【点睛】本题考查全等三角形的综合运用,熟练掌握三角形全等的判定和性质、等腰三角形的性质、同角余角相等的性质、平行线的判定与性质、垂直的判定并灵活运用是解题关键.。
2023-2024学年湖北省武汉市江汉区四校联盟八年级(上)月考数学试卷(12月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.第19届杭州亚运会刚刚落下帷幕,在以下给出的运动图片中,属于轴对称图形的是()A. B. C. D.2.下列计算正确的是()A. B. C. D.3.若代数式在实数范围内有意义,则实数a的取值范围为()A. B. C. D.4.在平面直角坐标系中,点关于y轴对称的点的坐标是()A. B. C. D.5.下列因式分解正确的是()A. B.C. D.6.已知,则()A.1B.C.D.7.如图,它由两块相同的直角梯形拼成,由此可以验证的算式为()A.B.C.D.8.如图,三角形纸片,,,,沿过点B的直线折叠这个三角形,折痕为点D在线段AC上且不与A、C重合若点C落在AB边下方的点E处,则的周长p的取值范围是()A.B. C.D.9.如图,已知,点,,…在射线ON 上,点,,…在射线OM 上,,,…均为等边三角形,若,则的边长为()A.2022B.2023C. D.10.计算…………的结果是()A.2023B.2022C.2021D.2020二、填空题:本题共6小题,每小题3分,共18分。
11.①______;②______;③______.12.若分式的值为零,则______.13.若多项式是一个完全平方式,那么______.14.若,则的值是______.15.在中,,,以点C 为圆心,CA 长为半径作弧,交直线BC 于点P ,连接AP ,则的度数是______.16.如图,已知在四边形ABCD 内,,,,,则______.三、解答题:本题共8小题,共72分。
解答应写出文字说明,证明过程或演算步骤。
17.本小题8分计算:;因式分解:18.本小题8分先化简再求值:,其中;,其中19.本小题8分如图,“丰收1号”小麦试验田是一块边长为a米的正方形上修建两条宽为2米的甬道后剩余的部分,“丰收2号”小麦试验田是边长为a米的正方形去掉一个边长为2米的正方形蓄水池后余下的部分,两块试验田的小麦都收获了n千克.“丰收1号”试验田的面积为______平方米;“丰收2号”试验田的面积为______平方米;高的单位面积产量比低的单位面积产量多多少?20.本小题8分如图,在正方形网格上有一个,网格上的每个小正方形的边长为无刻度直尺作图在图1中画关于直线MN的对称图形;的面积______;在图1中直线MN上画一点P,使的周长最小;在图2中直线MN上画点Q,使得21.本小题8分如图在中,AD为BC边上的中线,E是线段AD上一点,且,BE的延长线交AC于F,且求证:;求的度数.22.本小题10分利用完全平方公式,将多项式变形为的形式.例如:①②根据以上材料,解答下列问题:将变形为的形式,并求出的最小值;分解因式:;如图①所示的长方形边长分别是,,面积为,如图②所示的长方形边长分别是5a、面积为试比较与的大小,并说明理由.23.本小题10分如图1,,AC平分,,,,若,求的长;如图2,中其他条件不变,将图1中的绕点C逆时针旋转,CD交MA的延长线于点D,CB 交射线AN于点B,写出线段AD,AB,AC之间的数量关系,并就图2的情形说明理由;如图3,为等边三角形,,P为BC边的中点,,将绕点P转动使射线PM交直线AC于点M,射线PN交直线AB于点N,当时,请直接写出AN的长______.24.本小题12分如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分交AB于点C,点D为线段AB上一点,过点D作交y轴于点E,已知,,且m、n满足求A、B两点的坐标;若点D为AB中点,求OE的长;如图2,若点为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.答案和解析1.【答案】D【解析】解:A,B,C选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:根据轴对称图形的概念解答即可.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】D【解析】解:A、,故错误,不合题意;B、,故错误,不合题意;C、,故错误,不合题意;D、,故正确,符合题意;故选:先根据同底数幂的乘法,幂的乘方和积的乘方,合并同类项法则进行计算,再判断即可.本题考查了同底数幂的乘法,幂的乘方和积的乘方,合并同类项法则等知识点,能正确求出每个式子的值是解此题的关键.3.【答案】D【解析】【分析】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.分式有意义时,分母,求解即可.【解答】解:依题意得:,解得:故选:4.【答案】A【解析】解:点关于y轴对称的点的坐标是,故选:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.5.【答案】C【解析】解:A、,不是因式分解,故此选项错误;B、,故此选项错误;C、,正确;D、,故此选项错误;故选:直接利用完全平方公式分解因式进而判断得出答案.此题主要考查了公式法因式分解,正确应用完全平方公式是解题关键.6.【答案】C【解析】解:已知等式两边平方得:,即,,则故选:已知等式两边平方,利用完全平方公式求出的值,再利用完全平方公式求出所求式子的值即可.此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.【答案】A【解析】解:图形的面积故选:根据正方形和梯形的面积公式,观察图形发现这两个图形的面积此题主要考查了平方差公式的几何背景.熟练掌握正方形和梯形面积是关键.8.【答案】A【解析】解:折叠这个三角形顶点C落在AB边下方的点E处,,,在中,,,即在中,,即所以,的周长故选:根据翻折变换的性质可得,,然后求出AE,再求出,最后根据三角形的周长公式列式计算即可得解.本题考查了翻折变换的性质,熟记翻折前后的两个图形能够完全重合得到相等的线段是解题的关键.9.【答案】C【解析】解:为等边三角形,,,,,同理可得,,……,的边长为故选:根据等边三角形的性质得到,根据三角形的外角性质求出,得到,根据等腰三角形的判定定理得到,然后找到规律即可得解.本题考查的是等边三角形的性质、三角形的外角性质,等腰三角形的判定及其性质,总结出规律是解题的关键.10.【答案】A【解析】解:…………………………………………………………故选:本题需要把…和…当成整体,根据乘法分配律和分解因式解答即可.本题考查了乘法分配律和分解因式的应用,解题关键是整体思想.11.【答案】【解析】解:①②③①利用积的乘方法则计算即可.②利用零指数幂计算即可.③利用单项式除以单项式的法则计算即可.本题考查了幂的乘方与积的乘方,整式的除法,零指数幂,掌握它们的性质是解题关键.12.【答案】【解析】解:由分式的值为零的条件得,,由,得或,由,得,综上,得,故答案为根据分式的值为零的条件可以求出x的值.若分式的值为零,需同时具备两个条件:分子为0;分母不为这两个条件缺一不可.13.【答案】【解析】解:多项式是一个完全平方式,,,故答案为:根据首末两项是2x和3的平方可得,中间一项为加上或减去它们乘积的2倍,据此可得答案.本题主要考查了完全平方式,对于一个具有若干个简单变元的整式A,如果存在另一个实系数整式B,使,则称A是完全平方式.14.【答案】【解析】解:,,,故答案为:根据比例的性质去分母整理即可得解.本题考查了比例的性质,是基础题,关键在于利用两内项之积等于两外项之积去掉分母.15.【答案】或【解析】解:在中,,,,则,以点C为圆心,CA长为半径作弧,交直线BC于点P,连接AP,有以下两种情况:①当该圆交CB的延长线于P时,如图1所示:,,;②当该圆与BC的延长线于点P时,如图2所示:,,,,,综上所述:的度数是或故答案为:或先根据等腰三角形性质及三角形的内角和定理求出,,再分两种情况讨论如下:①当该圆交CB的延长线于P时,根据得,进而根据可得出答案;②当该圆与BC的延长线于点P时,根据得,进而根据可得出答案,综上所述即可得出的度数.此题主要考查了考查等腰三角形的性质,三角形的内角和定理,熟练掌握查等腰三角形的性质,三角形的内角和定理是解决问题的关键,分类讨论是解决问题的难点,也是易错点.16.【答案】【解析】解:延长CA到E使,连接DE,,,,,,≌,,,是等边三角形,,,,,,,延长CA到E连DE从而可证是等边三角形,就可解决问题.此题较难,考查了全等三角形,等边三角形的知识,要构造全等三角形,得到等边三角形.17.【答案】解:原式;原式【解析】利用平方差公式进行计算即可;利用提公因式法进行计算即可.本题考查利用平方差公式,因式分解,掌握平方差公式,提公因式法因式分解是解题的关键.18.【答案】解:原式,当时,原式;原式,当时,原式【解析】先去括号,再合并同类项,然后将已知数据代入计算即可得出答案;先计算括号内,然后将除法转化成乘法,进行化简计算,然后代入求值即可.此题考查了整式的加减混合运算,分式的混合运算,熟练掌握整式的加减混合运算,分式的混合运算法则是解本题的关键.19.【答案】【解析】解:由题意得,“丰收1号”试验田的面积为:平方米,“丰收2号”试验田的面积为平方米;高的单位面积产量比低的单位面积产量多千克/平方米根据题意可以求得两块试验田的面积;根据“高的单位面积产量除以低的单位面积产量”进行计算求解即可.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.20.【答案】【解析】解:如图所示,即为所求;的面积故答案为:;如图所示,点P即为所求;如图2所示,点Q即为所求.利用网格特点和轴对称的性质画出A、B、C关于MN的对称点、、即可,用一个矩形的面积分别减去三个直角三角形的面积去计算的面积;连接交MN于P,利用得到,则根据两点之间线段最短可判断此时P 点满足条件;取格点D,得到正方形ABCD,进而得出结果.本题考查作图-轴对称变换,轴对称最短问题等知识,解题的关键是掌握轴对称变换的性质,正确作出图形.21.【答案】证明:延长AD至点T,使得,连在和中,,≌,,,又,,,解:在DT上取,连接,即,≌,,为正三角形,【解析】延长AD到T,使得,先证明≌,得,证明即可解决问题;在DT上取,连接想办法证明是等边三角形即可解决问题;本题考查全等三角形的判定和性质,三角形中线的性质、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形,属于中考常考题型.22.【答案】解:,当时,原式最小;;【解析】利用完全平方公式变形求解即可;利用完全平方公式分解因式即可;分别表示出,,然后作差求解即可.本题主要考查了因式分解的应用、非负数的性质:偶次方、完全平方公式的几何背景,正确理解题意利用完全平方公式把对应的式子化为的形式是解题的关键.23.【答案】14或10【解析】解:平分,,、,,,,;如图2,过C作AM、AN的垂线,垂足为E、F,平分,,又,,,在和中,,≌,,,AC平分,,则,,,;①连接PA,在AN上取一点G使得,过P作交AN于H,是BC的中点,且为等边三角形,,,,,,又,,在和中,,≌,,,则,,,,;②M在射线AC上时,同理可证:≌,所以,,故答案为:14或利用含角的直角三角形的性质,得到,由此得到答案.过C作AM、AN的垂线,垂足为E、F,证明≌,利用全等三角形的性质,得到答案.连接PA,在AN上取一点G使得,过P作交AN于H,通过证明≌,得到,由此得到AN的长;M在射线AC上时,同理得到≌,得到,由此得到AN的长.本题考查了角平分线的性质,全等三角形的判定与性质,等边三角形的性质,含30度角的直角三角形的性质,勾股定理,利用角平分线的性质构造全等三角形是解答本题的关键.24.【答案】解:,,,,,,,,点A为,点B为;如图,延长DE交x轴于点F,延长FD到点G,使得,连接BG,设,平分,,,,,点D为AB中点,,在和中,,≌,,,,,解得,;分别过点F、P作轴于点M,轴于点N,则,设点E为,点P的坐标为,,,,轴,,,在和中,,≌,,,点F为,点的横坐标与纵坐标相等,,,【解析】由得到,根据非负数的性质,得到方程,,求得,,即可得到A、B两点的坐标;延长DE交x轴于点F,延长FD到点G,使得,连接BG,构造全等三角形,再根据列出关于x的方程,即可求得OE的长;分别过点F、P作轴于点M,轴于点N,设点E为,构造全等三角形,再根据F点的横坐标与纵坐标相等,得出方程,解之即可得到点P的坐标.本题考查了非负数的性质,等腰直角三角形的性质以及全等三角形的判定与性质,作出辅助线构造全等三角形是解题的关键.。
2020-2021学年湖北省武汉市硚口区同济附中八年级(上)段测数学试卷(9月份)一.选择题(共5小题,每小题3分,共30分)1.(3分)如果三角形的两边长分别为7和9.那么第三边的长可能是下列数据中的()A.2B.13C.16D.182.(3分)如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠BAE=30°,∠CAD=20°,则∠B=()A.45°B.60°C.50°D.55°3.(3分)在正方形方格纸中,每个小方格的顶点叫做格点,以格点的连线为边的三角形叫做格点三角形.如图是5×5的正方形方格纸,以点D,E为两个顶点作格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A.2个B.4个C.6个D.8个4.(3分)如图,在四边形ABCD中,∠C=70°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.30°B.40°C.50°D.70°5.(3分)如图,△ABC中,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N,若∠BAC=70°,则∠EAN的度数为()A.35°B.40°C.50°D.55°二.解答题(共6小题,共90分)6.(10分)已知∠AOB,点M、N,在∠AOB的内部求作一点P.使点P到∠AOB的两边距离相等,且PM=PN(要求:尺规作图,保留作图痕迹,不写作法).7.(10分)如图,在四边形ABCD中,∠B+∠ADC=180°,CE平分∠BCD交AB于点E,连结DE.(1)若∠A=50°,∠B=85°,求∠BEC的度数;(2)若∠A=∠1,求证:∠CDE=∠DCE.8.(15分)如图,△ABC中,AB=AC,点D在AB边上,点E在AC的延长线上,且CE =BD,连接DE交BC于点F.(1)求证:EF=DF;(2)过点D作DG⊥BC,垂足为G,求证:BC=2FG.9.(15分)如图,△ABC中,AB=AC,∠BAC+∠BDC=180°.(1)求证:AD为∠BDC的平分线;(2)若∠DAE=∠BAC且点E在BD上,直接写出BE、DE、DC三条线段之间的等量关系.10.(20分)已知:在△ABC中,AB=AC,点E在AB上,以BE为底边作等腰△DBE,取CE的中点为G,连接AG、DG.(1)如图1,若BE=AE,∠BDE=120°,∠BAC=60°,求证AG⊥DG;(2)如图2,若BE≠AE,∠BDE+∠BAC=180°,则(1)中结论仍然成立吗?说明理由.11.(20分)在平面直角坐标系xOy中,点A(0,3),点B(m,0),以AB为腰作等腰Rt △ABC,如图所示.(1)若S△ABC的值为5平方单位,求m的值;(2)BC交y轴于点D,CE⊥y轴于点E,当y轴平分∠BAC时,求的值;(3)连接OC,当OC+AC最小时,求点C的坐标.2020-2021学年湖北省武汉市硚口区同济附中八年级(上)段测数学试卷(9月份)参考答案与试题解析一.选择题(共5小题,每小题3分,共30分)1.(3分)如果三角形的两边长分别为7和9.那么第三边的长可能是下列数据中的()A.2B.13C.16D.18【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边,得出答案.【解答】解:∵三角形的两边长分别为7和9,∴9﹣7<第三边的长<9+7,即2<第三边的长<16,选项中只有,13符合题意.故选:B.2.(3分)如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠BAE=30°,∠CAD=20°,则∠B=()A.45°B.60°C.50°D.55°【分析】想办法求出∠AED,再利用三角形的外角的性质求解即可.【解答】解:∵AE平分∠BAC,∴∠BAE=∠CAE=30°,∴∠EAD=∠EAC﹣∠DAC=30°﹣20°=10°,∵AD⊥BC,∴∠ADE=90°,∴∠AED=90°﹣∠EAD=80°,∵∠AED=∠B+∠BAE,∴∠B=80°﹣30°=50°,故选:C.3.(3分)在正方形方格纸中,每个小方格的顶点叫做格点,以格点的连线为边的三角形叫做格点三角形.如图是5×5的正方形方格纸,以点D,E为两个顶点作格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A.2个B.4个C.6个D.8个【分析】观察图形可知:DE与AC是对应边,B点的对应点在DE上方两个,在DE下方两个共有4个满足要求的点,也就有四个全等三角形.【解答】解:根据题意,运用SSS可得与△ABC全等的三角形有4个,线段DE的上方有两个点,下方也有两个点.故选:B.4.(3分)如图,在四边形ABCD中,∠C=70°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.30°B.40°C.50°D.70°【分析】据要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=70°,进而得出∠AEF+∠AFE=2(∠AA′E+∠A″),即可得出答案.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=70°,∴∠DAB=110°,∴∠HAA′=70°,∴∠AA′E+∠A″=∠HAA′=70°,∵∠EA′A=∠EAA′,∠F AD=∠A″,∴∠EAA′+∠A″AF=70°,∴∠EAF=110°﹣70°=40°,故选:B.5.(3分)如图,△ABC中,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N,若∠BAC=70°,则∠EAN的度数为()A.35°B.40°C.50°D.55°【分析】根据三角形内角和定理可求∠B+∠C,根据垂直平分线性质,EA=EB,NA=NC,则∠EAB=∠B,∠NAC=∠C,从而可得∠BAC=∠BAE+∠NAC﹣∠EAN=∠B+∠C﹣∠EAN,即可得到∠EAN=∠B+∠C﹣∠BAC,即可得解.【解答】解:∵∠BAC=70°,∴∠B+∠C=180°﹣70°=110°,∵AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N,∴EA=EB,NA=NC,∴∠EAB=∠B,∠NAC=∠C,∴∠BAC=∠BAE+∠NAC﹣∠EAN=∠B+∠C﹣∠EAN,∴∠EAN=∠B+∠C﹣∠BAC,=110°﹣70°=40°.故选:B.二.解答题(共6小题,共90分)6.(10分)已知∠AOB,点M、N,在∠AOB的内部求作一点P.使点P到∠AOB的两边距离相等,且PM=PN(要求:尺规作图,保留作图痕迹,不写作法).【分析】使P到点M、N的距离相等,即画MN的垂直平分线,且到∠AOB的两边的距离相等,即画它的角平分线,两线的交点就是点P的位置.【解答】解:如图所示:P点即为所求.7.(10分)如图,在四边形ABCD中,∠B+∠ADC=180°,CE平分∠BCD交AB于点E,连结DE.(1)若∠A=50°,∠B=85°,求∠BEC的度数;(2)若∠A=∠1,求证:∠CDE=∠DCE.【分析】(1)求出∠A+∠BCD=180°,求出∠BCD,求出∠BCE,根据三角形内角和定理求出即可;(2)根据三角形内角和定理和∠A+∠BCD=180°求出∠CDE=∠BCE,即可得出答案.【解答】(1)解:∵∠B+∠ADC=180°,∠A+∠B+∠BCD+∠ADC=360°,∴∠A+∠BCD=180°,∵∠A=50°,∴∠BCD=130°,∵CE平分∠BCD,∴∠BCE=∠BCD=65°,∵∠B=85°,∴∠BEC=180°﹣∠BCE﹣∠B=180°﹣65°﹣85°=30°;(2)证明:∵由(1)知:∠A+∠BCD=180°,∴∠A+∠BCE+∠DCE=180°,∵∠CDE+∠DCE+∠1=180°,∠1=∠A,∴∠BCE=∠CDE,∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠CDE=∠DCE.8.(15分)如图,△ABC中,AB=AC,点D在AB边上,点E在AC的延长线上,且CE =BD,连接DE交BC于点F.(1)求证:EF=DF;(2)过点D作DG⊥BC,垂足为G,求证:BC=2FG.【分析】(1)过点D作DH∥AC,DH交BC于H,由平行线的性质得∠DHB=∠ACB,∠DHF=∠ECF,由等腰三角形的性质得∠B=∠ACB,则∠B=∠DHB,证出BD=HD,得HD=CE,证△DHF≌△ECF(AAS),即可得出EF=DF;(2)由(1)知BD=HD,由等腰三角形的性质得BG=GH,由全等三角形的性质得HF =CF,则GH+HF=BC,即可得出结论.【解答】证明:(1)过点D作DH∥AC,DH交BC于H,如图1所示:则∠DHB=∠ACB,∠DHF=∠ECF,∵AB=AC,∴∠B=∠ACB,∴∠B=∠DHB,∴BD=HD,∵CE=BD,∴HD=CE,在△DHF和△ECF中,,∴△DHF≌△ECF(AAS),∴EF=DF;(2)如图2,由(1)知:BD=HD,∵DG⊥BC,∴BG=GH,由(1)得:△DHF≌△ECF,∴HF=CF,∴GH+HF=BH+CH=BC,∴BC=2FG.9.(15分)如图,△ABC中,AB=AC,∠BAC+∠BDC=180°.(1)求证:AD为∠BDC的平分线;(2)若∠DAE=∠BAC且点E在BD上,直接写出BE、DE、DC三条线段之间的等量关系DE=DC+BE.【分析】(1)延长DC至E,使CE=BD,连接AE,利用SAS证明△ABD≌△ACE可证明∠ADB=∠ADE,进而证明结论;(2)延长DC至F,使CF=BE,连接AF,利用SAS证明△ABE≌△ACF可得AE=AF,结合角平分线的性质可得DE=DF,进而可证明结论.【解答】(1)证明:延长DC至E,使CE=BD,连接AE,∵∠BAC+∠BDC=180°,∠BAD+∠BDC+∠ABC+∠DCA=360°,∴∠ABD+∠DCA=180°,∵∠ACE+∠DCA=180°,∴∠ABD=∠ACE,∵AB=AC,∴△ABD≌△ACE(SAS),∴AD=AE,∠ADB=∠AEC,∴∠ADE=∠AEC,∴∠ADB=∠ADE,∴AD为∠BDC的平分线;(2)DE=DC+BE.延长DC至F,使CF=BE,连接AF,∵∠BAC+∠BDC=180°,∠BAD+∠BDC+∠ABC+∠DCA=360°,∴∠ABD+∠DCA=180°,∵∠ACF+∠DCA=180°,∴∠ABD=∠ACF,∵AB=AC,∴△ABE≌△ACF(SAS),∴AE=AF,∠AEB=∠AFC,∵∠ADB=∠BDC,∠DAE=∠BAC,∴∠ADB+∠DAE=90°,∴∠AED=90°,∴∠AFC=∠AEB=90°,∴DE=DF,∴DE=DF=DC+CF=DC+BE,即DE=DC+BE.10.(20分)已知:在△ABC中,AB=AC,点E在AB上,以BE为底边作等腰△DBE,取CE的中点为G,连接AG、DG.(1)如图1,若BE=AE,∠BDE=120°,∠BAC=60°,求证AG⊥DG;(2)如图2,若BE≠AE,∠BDE+∠BAC=180°,则(1)中结论仍然成立吗?说明理由.【分析】(1)延长DG至H,使GH=GD,连接AD,AH,CH,利用SAS证明△CHG≌△EDG可得CH=ED,∠HCG=∠DEG,再利用SAS证明△ABD≌△ACH可得AD=AH,根据等腰三角形的性质可证明结论;(2)延长DG至M,使GM=GD,连接AD,AM,CM,利用SAS证明△CMG≌△EDG 可得CM=ED,∠MCG=∠DEG,再利用SAS证明△ABD≌△ACM可得AD=AM,根据等腰三角形的性质可求解.【解答】(1)证明:延长DG至H,使GH=GD,连接AD,AH,CH,如图1,∵G为CE的中点,∴GC=GE,在△CHG和△EDG中,,∴△CHG≌△EDG(SAS),∴CH=ED,∠HCG=∠DEG,∵BD=ED,∠BDE=120°,∴∠BED=∠EBD=30°,∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∵AE=BE,∴CE⊥AB,∴∠BED+∠DEG=90°,∠BAC+∠ACE=90°,∴∠HCG=∠DEG=60°,∠ACE=30°,∴∠ACH=30°,∴∠ABD=∠ACH,在△ABD和△ACH中,,∴△ABD≌△ACH(SAS),∴AD=AH,∵HG=DG,∴AG⊥DG;(2)解:(1)中结论仍然成立.理由:延长DG至M,使GM=GD,连接AD,AM,CM,如图2,∵G为CE的中点,∴GC=GE,在△CMG和△EDG中,,∴△CMG≌△EDG(SAS),∴CM=ED,∠MCG=∠DEG,∵BD=ED,∴∠BED=∠EBD=180°﹣∠BDE,∵∠BDE+∠BAC=180°,∴∠BAC=180°﹣∠BDE,∴∠BAC=2∠BED=2∠EBD,∵∠BEC=∠BED+∠DEG=∠BAC+∠ACE,∴∠BED+∠MCG=∠BAC+∠ACE,∵∠MCG=∠ACM+∠ACE,∴∠BED+∠ACM+∠ACE=2∠BED+∠ACE,∴∠ACM=∠BED=∠ABD,在△ABD和△ACM中,,∴△ABD≌△ACM(SAS),∴AD=AM,∵MG=DG,∴AG⊥DG.11.(20分)在平面直角坐标系xOy中,点A(0,3),点B(m,0),以AB为腰作等腰Rt △ABC,如图所示.(1)若S△ABC的值为5平方单位,求m的值;(2)BC交y轴于点D,CE⊥y轴于点E,当y轴平分∠BAC时,求的值;(3)连接OC,当OC+AC最小时,求点C的坐标.【分析】(1)由三角形的面积公式可得AB2=10,由勾股定理可求解;(2)延长CE,AB交于点H,由“ASA”可证△AEH≌△AEC,可得HE=EC,由“ASA”可证△ABD≌△CBH,可得AD=CH=2CE,可求解;(3)先求出点C的运动轨迹,由一次函数的性质可求解.【解答】解:(1)∵△ABC是等腰直角三角形,∴S△ABC=AB2,∴AB2=10,∵AO2+BO2=AB2,∴9+BO2=10,∴BO=1,∵点B在x轴的负半轴,∴m=﹣1;(2)如图2,延长CE,AB交于点H,∵y轴平分∠BAC,∴∠CAE=∠HAE,在△AEH和△AEC中,,∴△AEH≌△AEC(ASA),∴HE=EC,∴CH=2EC,∵∠H+∠HAE=90°,∠H+∠HCB=90°,∴∠HAE=∠HCE,又∵AB=BC,∠ABC=∠CBH=90°,∴△ABD≌△CBH(ASA),∴AD=CH=2CE,∴=2;(3)如图3,过点C作CP⊥x轴于P,∵∠ABO+∠CBP=90°,∠ABO+∠BAO=90°,∴∠BAO=∠CBP,又∵∠AOB=∠BPC=90°,AB=BC,∴△ABO≌△BCP(AAS),∴BO=CP=﹣m,AO=BP=3,∴OP=m+3,∴点C坐标为(m+3,m),∴点C在直线y=x﹣3上运动,如图,直线y=x﹣3与x轴交于点K,与y轴交于点M,过点O作MK的对称点N,连接ON交直线MK于点F,连接AN交MK于点C',即点C'为所求点,∴点M(0,﹣3),点N(3,0),∴OM=OK,∵点O,点N关于直线MK对称,∴OF⊥MK,OF=FN,∴点F(,﹣),∴点N(3,﹣3),∴直线AN解析式为:y=﹣2x+3,联立方程组,解得,∴点C坐标为(2,﹣1).。
月考数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.下列几何图形一定是轴对称图形的是()A. 三角形B. 梯形C. 等腰三角形D. 直角三角形2.下列长度的三根小木棒能构成三角形的是()A. 2cm,3cm,5cmB. 7cm,4cm,2cmC. 3cm,4cm,8cmD. 3cm,3cm,4cm3.下列运算正确的是()A. 2a+a=3a2B. (-2a)3=-8a3C. (a2)3÷a5=1D. 3a3•2a2=6a64.下列各式计算正确的是()A. (x+y)2=x 2+y2B. (x-5)(x+6)=x2-30C. (-x+1)(-x-1)=x2-1D. (x-y)2=x 2-xy+y25.如图,小明从O点出发,前进6米后向右转20°,再前进6米后又向右转20°,…,这样一直走下去,他第一次回到出发点O时一共走了()A. 72米B. 108米C. 144米D. 120米6.等腰三角形一腰上的高与另一腰的夹角为45°,则等腰三角形的底角为()A. 67°B. 67.5°C. 22.5°D. 67.5°或22.5°7.下列命题中正确的有()①已知任意一边和一个锐角对应相等的两个直角三角形全等.②任意两角和一边对应相等的两个三角形全等.③已知任意两边和一角对应相等的两个三角形全等.④已知腰和顶角对应相等的两个等腰三角形全等.⑤如果两个三角形有两条边及其中一边上的中线分别相等,那么这两个三角形全等.A. 1个B. 2个C. 3个D. 4个8.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A. 2:3:4B. 3:4:5C. 4:5:6D. 以上结果都不对9.如图是由8个全等的长方形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰三角形的点P的个数是()A. 3个B. 4个C. 5个D. 6个10.如图,DB=DC,∠BAC=∠BDC=120°,DM⊥AC,E为BA延长线上的点,∠BAC的角平分线交BC于N,∠ABC的外角平分线交CA的延长线于点P,连接PN交AB 于K,连接CK,则下列结论正确的是()①∠ABD=∠ACD;②DA平分∠EAC;③当点A在DB左侧运动时,为定值;④∠CKN=30°A. ①③④B. ②③④C. ①②④D. ①②③二、填空题(本大题共6小题,共18.0分)11.若一个n边形的外角和与它的内角和之和为1800°,则边数n=______.12.若x2-2(m-3)x+16是完全平方式,则m的值是______.13.已知(x2+px+8)(x2-3x+q)展开后不含x2与x3的项,则q p=______.14.如图,△ABC中,AB=AC,点D为BC上一点,以AD为腰作等腰△ADE,且AD=AE,∠BAC=∠DAE=30°,连接CE,若BD=2,S△DCE=,则CD的长为______.15.如图,△ABC中,∠BAC=90°,AB=AC,D是△ABC内一点,∠DAC=∠DCA=15°,则∠BDA=______.16.△ABC中,∠B=80°,∠BAC=40°,D为BC上一点,若DA平分∠BAC,BD=2,BC=5,则AB=______.三、计算题(本大题共1小题,共8.0分)17.阅读下列文字:我们知道对于一个图形,通过不同的方法计算图形的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式______;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=9,ab+bc+ac=29,求a2+b2+c2的值;(3)小明同学打算用x张边长为a和y张边长为b的小正方形,z张相邻两边长分别为a、b的长方形纸片拼出了一个面积为(3a+5b)(4a+7b)的长方形,那么他总共需要多少张纸片?四、解答题(本大题共7小题,共64.0分)18.(1)计算:(-2a4)2•(-a3)÷(-a2)3(2)若x2+x-2019=0,求(2x+3)(2x-3)-x(5x+4)-(x-1)219.如图,点E、F在BC上,BE=CF,EG=GF,∠B=∠C,AF与DE交于点G,求证:AB=DC.20.如图,在△ABC中,AB=2,BC=4,其两条外角平分线AD、CD交于点D,且∠ADC=45°,连接BD交AC于点P,过点P作PE⊥AC交BC于点F,交AB的延长线于点E.(1)求证:∠ABC=90°.(2)求S△PFC:S△PBF的值.21.如图,在直角坐标系中,△ABC三个顶点的坐标分别是A(1,1),B(4,2),C(3,4).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)△A1B1C1的面积为______.(3)在x轴上求作一点P,使△PAB周长最小,请画出△PAB,并直接写出点P的坐标.22.已知:BF为△ABC的外角∠ABE的平分线,D为BF上一点,且AD=CD.(1)如图1,过点D作DH⊥CE于点H,若AB=8,BC=6,求BH的长.(2)如图2,若∠ABC=24°,∠ABD=78°,∠BAD=60°,求∠BAC的度数.23.(1)如图1,等腰Rt△ABC中,∠CAB=90°,点H在BC边上,连AH,作等腰Rt△HFA,∠HFA=90°.求证:AF=CF.(2)如图2,等腰Rt△ABC中,∠CAB=90°,D在BC上,AD⊥AE,AD=AE,G为CD中点,求证:AG⊥BE.(3)如图3,等腰Rt△ABC中,∠BAC=90°,过C作CD∥AB,CD=8,连AD,在AD上取一点E使AE=AB,连BE交AC于F,若AF=9,则AD=______.24.已知,在直角坐标系中,A(-a,0),B(b,0),C(0,c),且满足b=++2(1)如图1,过B作BD⊥AC,交y轴于M,垂足为D,求M点的坐标.(2)如图2,若a=3,AC=6,点P为线段AC上一点,D为x轴负半轴上一点,且PD=PO,∠DPO=45°,求点D的坐标.(3)如图3,M在OC上,E在AC上,满足∠CME=∠OMA,EF⊥AM交AO于G,垂足为F,试猜想线段OG,OM,CM三者之间的数量关系,并给出证明.答案和解析1.【答案】C【解析】解:A、不一定是轴对称图形,故此选项错误;B、不一定是轴对称图形,故此选项错误;C、一定是轴对称图形,故此选项正确;D、不一定是轴对称图形,故此选项错误.故选:C.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】D【解析】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<7,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.依据三角形任意两边之和大于第三边求解即可.本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.3.【答案】B【解析】解:A、2a+a=3a,故本选项不符合题意.B、(-2a)3=-8a3,故本选项符合题意.C、(a2)3÷a5=a,故本选项不符合题意.D、3a3•2a2=6a5,故本选项不符合题意,故选:B.根据合并同类项法则、幂的乘方和积的乘方,完全平方公式,同底数幂的乘法求出每个式子的值,再判断即可.本题考查了合并同类项法则、幂的乘方和积的乘方,完全平方公式,同底数幂的乘法等知识点,能求出每个式子的值是解此题的关键.4.【答案】C【解析】解:A、(x+y)2=x 2+2xy+y2,故此选项错误;B、(x-5)(x+6)=x2+x-30,故此选项错误;C、(-x+1)(-x-1)=x2-1,正确;D、(x-y)2=x 2-xy+y2,故此选项错误;故选:C.直接利用乘法公式进而分别计算得出答案.此题主要考查了整式的混合运算,正确运用乘法公式是解题关键.5.【答案】B【解析】解:依题意可知,小陈所走路径为正多边形,设这个正多边形的边数为n,则20n=360,解得n=18,∴他第一次回到出发点O时一共走了:6×18=108(米),故选:B.利用多边形外角和等于360度即可求出答案.本题考查了多边形的外角和,正多边形的判定与性质.关键是根据每一个外角判断多边形的边数.6.【答案】D【解析】解:有两种情况;(1)如图当△ABC是锐角三角形时,BD⊥AC于D,则∠ADB=90°,已知∠ABD=45°,∴∠A=90°-45°=45°,∵AB=AC,∴∠ABC=∠C=×(180°-45°)=67.5°;(2)如图,当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,已知∠HFE=45°,∴∠HEF=90°-45°=45°,∴∠FEG=180°-45°=135°,∵EF=EG,∴∠EFG=∠G=×(180°-135°)=22.5°,综合(1)(2)得:等腰三角形的底角是67.5°或22.5°.故选:D.先知三角形有两种情况(1)(2),求出每种情况的顶角的度数,再利用等边对等角的性质(两底角相等)和三角形的内角和定理,即可求出底角的度数.本题考查了三角形有关高问题有两种情况的理解和掌握,能否利用三角形的内角和定理和等腰三角形的性质,知三角形的一个角能否求其它两角.7.【答案】D【解析】解:已知任意一边和一个锐角对应相等的两个直角三角形全等,所以①正确;任意两角和一边对应相等的两个三角形全等,所以②正确;已知任意两边和它们的夹角对应相等的两个三角形全等,所以③错误;已知腰和顶角对应相等的两个等腰三角形全等,所以④正确;如果两个三角形有两条边及其中一边上的中线分别相等,那么这两个三角形全等,所以⑤正确.故选:D.利用三角形全等的判定方法对①②③进行判断;利用等腰三角形的性质和三角形全等的判定方法对④进行判断;利用三角形中线的定义和三角形全等的判定方法对⑤进行判断.本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.也考查了全等三角形的判定.8.【答案】A【解析】解:如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB,∴△P′CP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C-∠AP′P=∠APB-∠AP′P=100°-60°=40°,∠P′PC=∠APC-∠APP′=140°-60°=80°,∠PCP′=180°-(40°+80°)=60°,∴∠PP′C:∠PCP′:∠P′PC=2:3:4.故选A.将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,则AP′=AP,∠P′AP=60°,得到△AP′P是等边三角形,PP′=AP,所以△P′CP的三边长分别为PA,PB,PC;再由∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,得到∠APB=100°,∠BPC=120°,∠CPA=140°,这样可分别求出∠PP′C=∠AP′C-∠AP′P=∠APB-∠AP′P=100°-60°=40°,∠P′PC=∠APC-∠APP′=140°-60°=80°,∠PCP′=180°-(40°+80°)=60°,即可得到答案.本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的性质.9.【答案】D【解析】解:如图所示,使△ABP为等腰直角三角形的点P的个数是6,故选:D.根据等腰直角三角形的判定即可得到结论.本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.10.【答案】C【解析】解:如图,∵∠BAC=∠BDC=120°,∴A,B,C,D四点共圆,DB=DC,作四边形ABCD的外接圆⊙O,∴∠ABD=∠ACD,故①正确,作DN⊥AE于N.∵DM⊥AC,∴∠DMC=∠DNB=90°,∵∠DCM=∠DBN,DC=DB,∴△DMC≌△DNB(AAS),∴DM=DN,BN=CM,∵DN⊥AE,DM⊥AC,∴DA平分∠EAC,故②正确,∵∠DNA=∠DMA=90°,AD=AD,DN=DM,∴△ADN≌△ADM(HL),∴AN=AM,∴AC+AB=BN-AN+AM+CM=2CM,∴=≠定值,故③错误,作KG⊥AP于G,KH⊥AN于H,延长AN,在AN上取一点J,使得KJ=KC.∵∠BAC=120°,AN平分∠BAC,∴∠PAB=∠BAN=60°,∴KG=KH,∵∠KGC=∠KHJ=90°,KJ=KC,KH=KG,∴Rt△KHJ≌Rt△KGC(HL),∴∠HKJ=∠GKC,∴∠CKJ=∠KGH=∠AKG+∠AHK=30°+30°=60°,∵KJ=KC,∴△KJC是等边三角形,∴∠KCJ=∠KJC=∠CKJ=60°,作PT⊥JA交JA的延长线于T,PR⊥CB于R,PW⊥AB于W,KL⊥BC于L.∵BP平分∠ABR,PA平分∠TAB,∴PE=PW,PW=PT,∴PR=PT,∵PR⊥NR,PT⊥NT,∴PN平分∠RNT,∵KH⊥NT,KL⊥NR,∴KL=KH,∵KH=KG,∴KL=KG,∵KL⊥CL,KG⊥CG,∴∠KCG=∠KCL=∠NJK,∵∠KCJ=∠KJC,∴∠NCJ=∠NJC,∴NC=NJ,∵KN=KN,AC=KJ,∴△KNC≌△KNJ(SSS),∴∠NKC=∠NKJ=30°,故④正确.故选:C.①正确.利用圆周角定理证明即可.②正确,构造全等三角形解决问题即可.③错误,作DN⊥AE于N.证明△ADN≌△ADM(HL),推出AN=AM,推出AC+AB=BN-AN+AM+CM=2CM,推出=≠定值.④正确.作KG⊥AP于G,KH⊥AN于H,延长AN,在AN上取一点J,使得KJ=KC.作PT⊥JA交JA的延长线于T,PR⊥CB于R,PW⊥AB于W,KL⊥BC于L.想办法证明△KCJ 是等边三角形,证明△KNC≌△KNJ(SSS)即可解决问题.本题属于三角形综合题,考查了圆周角定理,角平分线的性质定理,全等三角形的判定和性质,等边三角形的判定和性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.11.【答案】10【解析】解:由题意得(n-2)•180°+360°=1800°,解得n=10.故答案为:10根据n边形的内角和可以表示成(n-2)•180°,外角和为360°,根据题意列方程求解.本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.12.【答案】7或-1【解析】【解答】解:∵x2-2(m-3)x+16是完全平方式,∴-(m-3)=±4,解得:m=7或m=-1,故答案为:7或-1【分析】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.利用完全平方公式的结构特征判断即可确定出m的值.13.【答案】1【解析】解:(x2+px+8)(x2-3x+q)=x4-3x3+qx2+px3-3px2+pqx+8x2-24x+8q=x4+(p-3)x3+(-3p+q+8)x2+(pq-24)x+8q,∵(x2+px+8)(x2-3x+q)展开后不含x2与x3的项,∴p-3=0,-3p+q+8=0,解得p=3,q=1,∴q p=13=1.故答案为:1.根据多项式乘多项式的法则把式子展开,找到所有x2与x3的所有系数,令其为0,可求出p,q的值,再代入计算即可求解.本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.14.【答案】2【解析】解:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠EAC,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE=2;过D作DF⊥EC交EC的延长线于F,∵△ABD≌△ACE,∴∠ACE=∠B,∵∠BAC=30°,∴∠B+∠ACB=150°,∴∠BCE=∠ACB+∠ACE=150°,∴∠DCF=30°,∴DF=CD,∵△DCE的面积为,∴DF•CE=×2DF=,∴DF=,∴CD=2DF=2,故答案为:2.根据全等三角形的性质得到BD=CE=2;过D作DF⊥EC交EC的延长线于F,求得∠DCF=30°,根据直角三角形的性质得到DF=CD,根据三角形的面积求得DF=,于是得到结论.本题考查等腰三角形的性质以及三角形全等的判定和性质,灵活运用相关的判定定理和性质定理是解题的关键.15.【答案】75°【解析】解:如图:以AD为边,在△ADB中作等边三角形ADE,连接BE.∵∠BAE=90°-60°-15°=15°,即∠BAE=∠CAD,在△AEB和△ADC中,∵,∴△EAB≌△DAC(SAS),∴∠BEA=∠CDA=180°-15°-15°=150°,∴∠BED=360°-∠BEA-60°=150°,即∠BEA=∠BED;在△AEB和△DEB中∵∴△BEA≌△BED(SAS),∴BA=BD,∠DBE=∠ABE=15°∴∠ABD=30°∴∠BDA==75°故答案为:75°.先作辅助线,以AD为边,在△ADB中作等边三角形ADE,连接BE.可证得△EAB≌△DAC,再证得△BEA≌△BED,即可得结论.本题主要考查了三角形全等的判定和性质,涉及到等边三角形的性质、三角形内角和定理、周角的定义等知识点,正确作出辅助线是解题的关键.16.【答案】7【解析】解:延长CB至G,使CG=AC,连接AG,过A作AH⊥BC于H,∵∠ABC=80°,∠BAC=40°,∴∠C=60°,∴△ACG为等边三角形,∴∠CAG=60°,∵AD平分∠BAC,∴∠BAD=∠CAD=20°,∴∠ADB=∠C+∠DAC=60°+20°=80°,∵∠ABC=80°,∴∠ABC=∠ADB,∴AB=AD,∴DH=BH=BD=1,∵BC=5,∴CH=5-1=4,∵△ACG是等边三角形,AH⊥CG,∴∠CAH=30°,∴AC=2CH=8,AH=4,由勾股定理得:AB===7,故答案为:7.作辅助线,构建等边三角形,先证明△ACG为等边三角形,得∠CAG=60°,根据三角形内角和定理可得∠C=60°,由角平分线的定理和三角形外角的性质得:∠ABC=∠ADB,所以AB=AD,由等腰三角形三线合一的性质得DH=BH=1,由直角三角形30度角的性质和勾股定理可得结论.本题主要考查了等边三角形的判定与性质,等腰三角形的判定,勾股定理等知识,正确作辅助线是本题的关键.17.【答案】(a+b+c)2=a2+b2+c2+2ab+2ac+2bc【解析】解:(1)根据阅读材料,观察图2中所表示的数学等式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc∴(a+b+c)2-2(ab+ac+bc)=a2+b2+c2∴a2+b2+c2=81-58=23答:a2+b2+c2的值为23.(3)∵(3a+5b)(4a+7b)=12a2+41ab+35b212+41+35=88答:总共需要88张纸片.(1)根据阅读材料即可写出数学等式;(2)根据(1)中所得到的结论,代入求值即可;(3)根据多项式乘以多项式,再根据(1)的思想,即可得出结论.本题考查了因式分解的应用、完全平方公式的几何背景,解决本题的关键是利用数形结合思想.18.【答案】解:(1)(-2a4)2•(-a3)÷(-a2)3=4a8•(-a3)÷(-a6)=-4a11÷(-a6)=4a5;(2)∵x2+x-2019=0,∴x2+x=2019,(2x+3)(2x-3)-x(5x+4)-(x-1)2=4x2-9-5x2-4x-(x2-2x+1)=4x2-9-5x2-4x-x2+2x-1=-2x2-2x-10=-2(x2+x)-10=-2×2019-10=-4048.【解析】(1)直接利用积的乘方运算法则以及整式的乘除运算法则计算得出答案;(2)直接利用乘法公式化简,再把已知代入求出答案.此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.19.【答案】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵EG=GF,∴∠DEF=∠AFB,在△ABF和△DCE中,∵,∴△ABF≌△DCE(ASA),∴AB=DC(全等三角形对应边相等).【解析】根据BE=CF推出BF=CE,用EG=GF推出∠AFB=∠DEC,然后利用“角边角”证明△ABF和△DCE全等,根据全等三角形对应边相等即可证明.本题考查了全等三角形的判定与性质,根据BE=CF推出BF=CE,从而得到三角形全等的条件是解题的关键.20.【答案】解:(1)设∠BAC=α,∠BCA=β,∵AD、CD为△ABC外角平分线,∴∠DAC=(180°-∠BAC)=90°-α∠DCA=(180°-∠BCA)=90°-β∵∠DAC+∠DCA+∠ADC=180°即90°-α+90°-β+45°=180°∴α+β=90°∴∠ABC=180°-(α+β)=90°.(2)如图所示:过点D作DN⊥AB于点N,DM⊥BC于点M,DH⊥AC于点H,∵AD平分∠NAC,CD平分∠ACM,∴DN=DH,DH=DM,∴DN=DM,∴BD平分∠ABC,∵∠ABC=90°,∴∠PBC=45°,过点P作PG⊥BD交BC于点G,如图,∴∠PBG=∠PGB=45°,∴PB=PG,∵∠PCG+∠BAC=90°,∠E+∠BAC=90°,∴∠PCG=∠E,∵PE⊥AC,∴∠CPG+∠GPF=90°,∵∠EPB+∠GPF=90°,∴∠CPG=∠EPB,∴△PGC≌△PBE(AAS)∴PE=PC,∵∠PCF=∠E,∠CPF=∠EPA=90°,∴△PCF≌△PEA(ASA),∴CF=AE,设BF=x,则CF=AE=4-x,BE=AE-AB=4-x-2=2-x,∵∠ACB=∠E,∠ABC=∠FBE=90°,∴△ABC∽△FBE,∴==,即=,解得x=,∴CF=4-=∴==×=即S△PFC:S△PBF的值为.【解析】(1)设∠BAC=α,∠BCA=β,然后分别表示出∠DAC和∠DCA,利用三角形内角和可求出α+β=90°,即可得证;(2)由角平分线的性质可得BD平分∠ABC,过点P作PG⊥BD交BC于点G,证明△PBE≌△PGC,然后证明△PCF≌△PEA,可得CF=AE,设BF=x,则CF=AE=4-x,可得BE=2-x,由三角形相似得BF与BE的比例关系可解得x,得到BF与FC的比例关系即为面积比.本题考查了三角形全等、角平分线的性质、相似三角,形的判定与性质、三角形的面积,解决本题的关键是熟练应用以上知识.21.【答案】3.5【解析】解:(1)如图所示,△A1B1C1即为所求;(2)△A1B1C1的面积为:3×3-×1×2-×1×3-×2×3=9-1-1.5-3=3.5;故答案为:3.5.(3)如图所示,△PAB即为所求,点P的坐标为(2,0).(1)依据轴对称的性质进行作图,即可得到△A1B1C1;(2)依据割补法进行计算,即可得到△A1B1C1的面积;(3)作点A关于x轴的对称点A',连接A'B,交x轴于点P,则△PAB周长最小.本题考查了作图-轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的;凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.22.【答案】(1)解:作DG⊥AB于G,∵BF为△ABC的外角∠ABE的平分线,DH⊥CE于点H,∴DG=DH,在Rt△BDG和Rt△BDH中∴Rt△BDG≌Rt△BDH(HL),∴BG=BH,在Rt△ADG和Rt△CDH中∴Rt△ADG≌Rt△CDH(HL),∴AG=CH,∴AB-BH=BC+BH,∵AB=8,BC=6,∴BH=1;(2)解:作DG⊥AB于G,DH⊥CE于点H,同理:Rt△ADG≌Rt△CDH,∴∠BAD=∠BCD=60°,∵∠ADO+∠AOD+∠DAO=180°,∠OBC+∠BOC+∠BCO=180°,∠AOD=∠BOC,∴∠ADO=∠CBO,即∠ADC=∠ABC=24°.∵AD=DC,∴∠DAC=∠ACD=(180°-∠ADC)=78°,∴∠ACB=∠ACD+∠BCD=78°+60°=138°,∴∠BAC=180°-∠ACB-∠ABC=180°-138°-24°=18°.【解析】(1)作DG⊥AB于G,根据角平分线的性质,得出DG=DH,进而证得Rt△BDG≌Rt△BDH,得到BG=BH,证得Rt△ADG≌Rt△CDH,得到AG=CH,即可得到AB-BH=BC+BH,求得BH=1;(2)根据等腰三角形的性质,三角形内角和定理以及对顶角相等,即可解决问题.本题考查三角形综合题、等腰三角形的判定和性质、全等三角形的判定和性质.角平分线的性质定理等知识,解题的关键是学会添加常用辅助线构造全等三角形解决问题,属于中考压轴题.23.【答案】17【解析】证明:(1)如图1,过点F作FD∥AB交AC于点D,交BC于点G,在CD上取ED=FD,∴△EFD为等腰直角三角形,∠FEA=∠HGF=45°,又∵∠HFA+∠DFA=∠DFA+∠FAE=90°,∴∠HFG=∠EAF,又∵∠FEA=∠HGF=45°,FA=FH,∴△FHG≌△FAE(AAS),∴FG=EA,∴FG=DG+FD=CD+ED,EA=ED+DA,∴CD=DA.即FD垂直平分CA,∴FA=FC.(2)如图2,延长AG至T,使AG=GT,∵CG=GD,∠AGC=∠TGD,∴△ACG≌△TDG(SAS),∴∠ACG=∠GDF=45°,∴∠ADT=∠TDC+∠CDA=∠TDC+∠DAB+45°=90°+∠DAB=∠EAB,又∵AD=AE,DT=AC=AB,∴△ADT≌△EAB(SAS),∴∠TAD=∠AEB,∴∠EAT+∠AEB=∠EAB+∠TAD=90°,∴AG⊥BE;(3)解:如图3,作EM⊥AD交AC延长于点M,∵∠EDC=∠EMC,AB=AC=AE,∠AEM=∠ACD,∴△AEM≌△ACD(AAS),∴ME=CD=8,∵∠ABE=∠AEB,∠AFB=∠EFM,∠ABF+∠AFB=90°=∠AEF+∠FEM,∴∠EFM=∠FEM,∴FM=ME,∴AD=AM=AF+FM=AF+EM=AF+CD=8+9=17.故答案为:17.(1)过点F作FD∥AB交AC于点D,交BC于点G,在CD上取ED=FD,证得∠HFG=∠EAF,根据AAS证明△FHG≌△FAE,得出FG=EA,则CD=DA,结论得证;(2)延长AG至T,使AG=GT,根据SAS可证明△ACG≌△TDG,可得∠ACG=∠GDF=45°,证得∠ADT=∠EAB,证明△ADT≌△EAB,可得∠TAD=∠AEB,则∠EAT+∠AEB=∠EAB+∠TAD=90°;(3)作EM⊥AD交AC延长于点M,证明△AEM≌△ACD,可得ME=CD=8,证得∠EFM=∠FEM,则FM=ME,则答案可求出.本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,正确作出辅助线.24.【答案】解:(1)∵a-c≥0,c-a≥0,∴a=c,∴△AOC为等腰直角三角形,∠ACO=45°,∵BD⊥AC,∴∠CMD=∠BMO=45°,∴OM=OB=2,∴M(0,2).(2)∵∠APD+∠CPO=180°-∠DPO=135°,∠CPO+∠COP=180°-∠ACO=135°,∴∠APD=∠COP,∵∠PCO=∠PAD=45°,PD=PO,∴△PDA≌△OPC(AAS),∴PA=OC=3,DA=PC=6-3,∴OD=OA-DA=3-(6-3)=6-6.∴D(6-6,0).(3)OM=CM-OG.证明如下:作ON∥EG,CH∥AO,且CH与GE的延长线交于点H,∵EF⊥AM,∴ON⊥AM,∴∠NCO=∠AOM=90°,∴∠NCO=∠MAO,∵OA=OC,∴△AOM≌△OCN(ASA),∴OM=CN,∠CNO=∠AMO,∵∠ACO=45°,∴∠HCE=45°,∵∠CME=∠OMA,∵ON∥GH,∴∠CNO=∠H,∴∠H=∠CME,∵CM=CM,∴△CME≌△CEH(ASA),∴CH=CM,∴OM=CN=CH-HN=CM-OG.【解析】(1)由二次根式的性质得出a=c,根据等腰直角三角形的性质求出∠CMD和∠BMO的度数,则OM=OB=2;(2)根据等腰直角三角形的性质得到∠APD=∠COP,证明△PDA≌△OPC,根据全等三角形的性质得到OC=PA,根据坐标与图形性质可得到答案;(3)作ON∥EG,CH∥AO,CH与GE的延长线交于点H,可得出∠NCO=∠MAO,根据ASA可证明△AOM≌△OCN,得到OM=CN,证明△CME≌△CEH,得到CH=CM,即可得出结论.本题是三角形综合题,考查了二次根式的性质、全等三角形的判定和性质、等腰直角三角形的性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.。