数学分析中的极限求法
- 格式:doc
- 大小:262.00 KB
- 文档页数:12
求极限的方法求极限是数学分析中的一种重要方法,用于研究数列和函数在某一点或无穷远处的性质。
极限的概念是分析学中涉及面最广、最重要的一类问题之一。
求极限的方法有很多种,常见的有直接代入法、夹逼定理、基本初等函数性质、洛必达法则等。
下面将从这些方法入手,进行详细阐述。
首先,直接代入法是求极限最简单直接的一种方法。
当函数在极限点处连续时,我们可以直接将极限点代入函数,得到极限的值。
例如,对于函数f(x)=x+1,当x趋近于2时,我们可以直接代入x=2,得到极限的值为f(2)=2+1=3。
同时,在使用直接代入法时要注意避免出现未定义的情况,如分母为0的情况。
其次,夹逼定理也是一种常用的求极限的方法。
夹逼定理是指当一个数列或函数的值始终夹在两个已知数列或函数之间,并且这两个数列或函数的极限相等时,该数列或函数的极限也等于这个共同的极限。
这种方法常用于求无穷小量的极限。
例如,对于数列an=1/n,我们可以通过夹逼定理将其夹在0和1之间,从而求得其极限为0。
第三,基本初等函数性质是求极限时经常用到的工具。
基本初等函数的性质有连续性、有界性、单调性等,这些性质对于求极限时有较大帮助。
例如,当x趋近于无穷时,指数函数的极限必定是无穷大,对数函数的极限必定是无穷小。
最后,洛必达法则是一种常用的求极限的方法,尤其适用于求函数之间的极限。
洛必达法则可以将一个函数的极限转化为求该函数的导数的极限。
具体来说,当函数的极限形式是0/0或无穷/无穷时,我们可以计算函数的导数,并再次求极限。
通过多次应用洛必达法则,可以解决一些较为复杂的极限问题。
总结起来,求极限的方法有很多种,适用于不同类型的函数和数列。
除了前面提到的直接代入法、夹逼定理、基本初等函数性质和洛必达法则之外,还有级数展开法、泰勒展开法等等。
在实际求极限的过程中,我们可以根据具体的问题和函数特点选择合适的方法来求解。
掌握这些方法,对于理解函数和数列的性质,解决一些数学问题都极为有帮助。
求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
求函数的极限值的方法总结在数学中,函数的极限值是指函数在某一特定区间上取得的最大值或最小值。
求解函数的极限值是数学分析中经常遇到的问题之一,下面将总结一些常用的方法来求解函数的极限值。
一、导数法对于给定的函数,可以通过求导数来判断函数在某一点附近的单调性和极值情况。
导数表示了函数在某一点处的变化率,通过求导数可以获得函数的驻点(导数为零的点)以及极值点。
一般来说,当函数从单调递增变为单调递减时,即导数由正变负,函数的极大值出现;当函数从单调递减变为单调递增时,即导数由负变正,函数的极小值出现。
所以,通过求导数可以找到函数的极值点,然后通过比较极值点和边界点的函数值,即可确定函数的极限值。
二、二阶导数法在某些特殊情况下,求函数的二阶导数可以提供更加准确的信息来确定函数的极限值。
当函数的二阶导数恒为正时,表示函数处于凸型,此时函数可能有极小值但没有极大值;当函数的二阶导数恒为负时,表示函数处于凹型,此时函数可能有极大值但没有极小值。
通过对二阶导数进行符号判断,可以帮助确定函数的极限值。
三、极限值存在性判定对于一些特殊的函数,通过判定函数的极限值是否存在可以快速确定函数的极限值。
当函数在某一区间上连续且存在最大最小值时,函数的极限值也会存在。
因此,可以通过求解函数在区间端点的函数值,并比较这些函数值来确定函数的极限值。
四、拉格朗日乘数法拉格朗日乘数法是一种通过引入约束条件来求解极值的方法,特别适用于求解带有约束条件的函数的极值。
通过构造拉格朗日函数,将原始问题转化为无约束的极值问题,然后通过求解极值问题来确定函数的极限值。
五、切线法切线法是一种直观而有效的求解函数极值的方法。
通过观察函数图像,在极值附近找到一条切线,使得切线与函数图像的接触点的函数值最大或最小。
通过近似切线与函数图像的接触点,可以获得函数的极值的近似值。
六、数值法数值法是一种通过计算机进行数值逼近的方法来求解函数的极限值。
通过将函数离散化,并在离散点上进行计算,可以得到函数在这些离散点上的函数值,然后通过比较这些函数值来确定函数的极限值。
千里之行,始于足下。
求极限的计算方法总结极限是数学中重要的概念,它描述了函数在某一点无限接近于某个值的性质。
计算极限是数学分析中的基础内容,对于解决数学问题和理解函数的行为至关重要。
下面将总结一些计算极限的常见方法。
1.代入法:当极限的表达式中存在某个点的函数值不存在时,可以通过代入法来计算极限。
代入法即将极限的定义中与某些点不全都的部分进行代入,然后计算出相应的极限值。
2.分子分母有理化:当极限表达式中含有分数,且分母中有根式时,可以将分子分母有理化,即通过乘以分子分母的共轭形式,将根式消去。
3.利用无穷小量的性质:当极限表达式中存在无穷小量时,可以利用无穷小量的性质进行计算。
例如,常见的无穷小量的性质有:a.加减无穷小量仍旧是无穷小量;b.有界函数与无穷小量相乘仍旧是无穷小量;c.有限次幂无穷小量也是无穷小量等。
4.利用极限的四则运算法则:对于四则运算,极限也有相应的运算法则。
常见的极限运算法则有:a.加减法则:lim(f(x) ± g(x)) = lim f(x) ± lim g(x)b.乘法法则:lim(f(x) * g(x)) = lim f(x) * lim g(x)c.除法法则:lim(f(x) / g(x)) = lim f(x) / lim g(x),其中lim g(x) ≠ 0d.复合函数法则:lim(f(g(x))) = lim f(g(x)), when lim g(x) exists第1页/共2页锲而不舍,金石可镂。
5.利用夹逼定理:当极限表达式无法直接计算时,可以利用夹逼定理进行计算。
夹逼定理规定了假如存在两个函数h(x)和i(x),使得对于足够大的x,h(x) ≤ f(x) ≤i(x),且lim h(x) = lim i(x) = L,则lim f(x)也等于L。
6.利用洛必达法则:洛必达法则可用于计算形如lim(f(x)/g(x))的不定型极限,其中f(x)和g(x)在极限点四周连续可导。
求极限的几种方法在数学分析中,求极限是一种重要的技巧和方法,用于研究数列、函数的收敛性和特性。
对于求极限的方法,可以总结为以下几类:代入法、夹逼法、等价无穷小代换法、洛必达法则、泰勒展开精确到n次、换元法、分数分解法、递归关系法等。
一、代入法:代入法是求函数极限的最基本的方法之一,适用于绝大多数最简单的函数。
通过将自变量值代入函数中,得到具体的函数值,看函数的值是否有限并趋于确定的值,如果有限且趋于确定的值,则可以认为该函数极限存在,并等于该确定的值。
当然,代入法只是一种相对简单和直观的方法,并不适用于复杂函数的极限计算。
二、夹逼法:夹逼法也被称为迫敛法或挤压定理,适用于数列或函数的极限计算。
当数列或函数存在上、下界,且上、下界的极限都为所求极限时,可以通过夹逼法来证明所求极限的存在并求得。
三、等价无穷小代换法:等价无穷小代换法是一种常用的得到极限的方法之一,将一个复杂的极限问题转化成一个简单的等价无穷小求极限问题。
其主要思想是将原函数与理论已知的函数进行比较,找出它们之间的等价关系,进而得到原函数的极限。
常用的等价无穷小有:指数、对数、三角函数等。
四、洛必达法则:洛必达法则是求函数极限的常用方法之一,主要用于求解0/0型或∞/∞型的极限。
其基本思想是将函数的极限转化成求导数的极限。
通常情况下,通过不断使用洛必达法则,可以通过求多次极限最终得到函数的极限。
五、泰勒展开精确到n次:对于有限次求导的函数,可以使用泰勒展开式来近似估计函数极限。
泰勒展开式是用若干项之和来逼近一个函数的方法,通过将函数展开成多项式形式,可以在一定程度上表示出原函数的性质。
通常情况下,使用泰勒展开精确到n次可以更加准确地求得函数的极限。
六、换元法:换元法也称为特殊换元法,通过选择合适的换元变量,将原来复杂的极限问题转化成更加简单的极限计算问题。
常见的换元方法有:取代法、正弦替换法、余弦替换法、平方根替换法等。
七、分数分解法:分数分解法是一种常用的计算复杂函数极限的方法,通过将极限问题利用分式相除的形式,将复杂的极限表达式化简成多个简单函数之比的极限表达式,进而进行求解。
求函数极限的方法与技巧求函数极限是微积分的重要内容之一,也是数学分析中的基本问题。
求函数极限需要掌握一定的方法与技巧,下面将从常用的方法、典型的技巧和注意事项等方面进行详细介绍。
1. 代入法代入法是求函数极限最简单的方法之一。
当函数在极限点附近没有特殊的性质时,可以通过直接代入极限值来求解极限。
求函数f(x)=2x-1在点x=3处的极限,直接代入x=3,即可得到f(3)=2*3-1=5,所以极限值为5。
2. 分式化简法对于复杂的函数极限,通常可以利用分式化简法来解决。
将函数化为分式形式,通过合并同类项或者提取公因式等方法,将分式化简至最简形式,然后再进行极限运算。
这样可以简化计算,并且更容易得到极限值。
3. 夹逼准则夹逼准则也是求解极限常用的方法之一。
夹逼准则是一种利用不等式来求解极限的方法,通常用于求解无穷小的极限。
利用夹逼准则可以将复杂的极限问题转化为相对简单的不等式推导问题,从而更容易求得极限值。
4. 极限换元法极限换元法是求解函数极限的一种有效方法,也是求极限的一个经典技巧。
通过将变量进行适当的换元,可以将原来复杂的极限问题转化为相对简单的形式,从而更容易求解极限值。
常见的换元方式包括三角换元、指数换元、对数换元等。
二、典型的技巧1. 分步求解有些复杂的函数极限问题可以通过分步求解来进行,先将函数进行分解或者阶段性的处理,然后逐步求解各个部分的极限值,最后将结果进行合并得到整体的极限值。
这样可以降低计算的复杂度,更容易求得极限值。
2. 极限的运算法则在进行极限运算时,可以利用极限的运算法则来简化计算。
其中包括加减法法则、乘法法则、除法法则、幂函数法则、复合函数法则等,这些运算法则可以在极限计算中起到一定的简化作用,并帮助求得极限值。
3. 利用对称性对称性在求解函数极限中也是一种常用的技巧。
对于对称性的函数或者函数的特殊性质,可以利用对称性来简化极限计算,例如利用奇偶性、周期性等性质,从而简化计算过程,更容易求得极限值。
求极限的方法总结求极限是数学分析中的一个重要概念,用于描述函数在某一点的变化趋势,包括函数趋于无穷大、无穷小、某一常数以及其他特殊情况等。
在解题过程中,需要灵活运用各种极限的计算方法,掌握不同类型极限的求解技巧。
下面将对常见极限的求解方法进行总结。
一、几种常见的极限类型1. 无穷大与无穷小极限当自变量趋于无穷大或无穷小时,函数的极限值称为无穷大或无穷小极限。
在计算过程中,可以利用以下方法求解:(1)使用等价无穷小替换法,将复杂的函数替换为更简单的无穷小,从而求出极限;(2)利用夹逼准则,通过找到两个函数夹住待求函数,确定其极限范围;(3)使用洛必达法则,计算函数的导数与求导后函数的极限,进而求得原函数的极限。
2. 常数极限当自变量趋于某一常数时,函数的极限称为常数极限。
常见的求解方法包括:(1)直接计算法,将自变量带入表达式中,求解对应的极限值;(2)利用函数的连续性,根据定义进行计算;(3)使用复合函数的性质,将函数分解为多个部分,然后计算各部分的极限。
3. 极限的两侧性质当自变量趋于某一点的左右两侧时,函数的极限可能存在不同的值。
这时可根据函数的性质和定义来判断其左右极限是否相等,常用的方法有:(1)利用函数的连续性,判断函数在特定点处是否连续,以及左右极限是否相等;(2)使用夹逼准则,确定左右极限的取值范围。
4. 极限存在性的判定在有些情况下,函数的极限可能不存在。
判断函数是否存在极限的方法有多种:(1)使用保号性质,判断是否存在有界变量和无穷小数列;(2)利用函数的性质,如奇偶性、周期性等,判断函数在某一点的趋势。
二、极限的计算方法1.常用求极限的基本运算法则(1)常数运算法则:如果f(x)和g(x)的极限都存在,那么常数c * f(x)和f(x) ± g(x)的极限也存在,并且满足以下关系:lim(c * f(x)) = c * lim(f(x)),lim(f(x) ± g(x)) = lim(f(x)) ± lim(g(x))。
求极限的计算方法总结在数学中,极限是一种重要的概念,用于描述一个函数或者数列在一些点或无穷远处的趋势。
计算极限是解决微积分、数学分析以及其他数学领域中问题的基础。
极限的计算方法种类繁多,以下是一些常见的极限计算方法的总结:1.代入法:直接将要计算的极限值代入函数中。
这个方法通常适用于简单的极限,例如多项式的极限。
2. 分子有理化法:对于含有根式的极限,可以通过有理化方法将分子有理化,从而更容易求得极限。
例如,对于极限lim(x->0)((sinx)/x),可以通过将分子分母都乘以(conj(x))来有理化。
3. 倍角公式和和差化积公式:对于一些三角函数的极限,可以使用倍角公式或和差化积公式进行化简。
例如,对于极限lim(x->0)((sin2x)/(x^3)),可以使用倍角公式将分子化简为2*sin(x)*cos(x),进而求得极限。
4. 指数函数和对数函数的性质:对于一些指数函数和对数函数的极限,可以利用它们的性质进行计算。
例如,对于极限lim(x->0)(e^x-1)/x,可以利用指数函数的性质e^0=1进行计算。
5. L'Hospital法则:L'Hospital法则是求解一些特定类型极限的强大工具。
该法则适用于极限形式为0/0或无穷/无穷的情况。
它的基本思想是将函数的求导转化为简化问题。
例如,对于极限lim(x->0)((sinx)/x),可以使用L'Hospital法则将其转化为lim(x->0)(cosx)/1=16. 夹逼准则:夹逼准则适用于求解一些不能直接计算的极限,它的基本思想是找到两个函数夹住要计算的函数,并且这两个函数的极限相等。
然后可以利用夹逼准则得到要计算函数的极限。
例如,对于极限lim(x->0)(x*sin(1/x)),我们可以利用夹逼准则,将其夹逼在两个函数0和x之间,从而得到0。
7. 泰勒级数展开:对于一些复杂的函数,可以利用泰勒级数展开来近似求解极限。
数学分析中极限的求法综述摘要:本文主要归纳了数学分析中求极限的十四种方法, 1:利用两个准则求极限, 2:利用极限的四则运算性质求极限, 3:利用两个重要极限公式求极限, 4:利用单侧极限求极限,5:利用函数的连续性求极限, 6:利用无穷小量的性质求极限, 7:利用等价无穷小量代换求极限, 8:利用导数的定义求极限, 9:利用中值定理求极限, 10:利用洛必达法则求极限, 11:利用定积分求和式的极限,12:利用级数收敛的必要条件求极限, 13:利用泰勒展开式求极限, 14:利用换元法求极限。
关键词: 夹逼准则, 单调有界准则, 无穷小量的性质, 洛必达法则, 中值定理, 定积分, 泰勒展开式, 级数收敛的必要条件.极限是数学分析的基础,数学分析中的基本概念来表述,都可以用极限来描述。
如函数y =f(x)在0x x =处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。
极限是研究数学分析的基本公具。
极限是贯穿数学分析的一条主线。
学好极限是从以下两方面着手。
1:是考察所给函数是否存在极限。
2:若函数否存在极限,则考虑如何计算此极限。
本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述。
1:利用两个准则求极限。
(1)夹逼准则:若一正整数 N,当n>N 时,有n x ≤n y ≤n z 且lim lim ,n n x x x z a →∞→∞==则有 lim n x y a →∞= .利用夹逼准则求极限关键在于从n x 的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列{}n y 和 {}n z ,使得n n n y x z ≤≤。
例[1]n x =求n x 的极限解:因为n x 单调递减,所以存在最大项和最小项.......n x ≥=.......n x ≤+=n x ≤≤又因为1x x ==lim 1n x x →∞=(2):单调有界准则:单调有界数列必有极限,而且极限唯一。
利用单调有界准则求极限,关键先要证明数列的存在,然后根据数列的通项递推公式求极限。
例:[1] 证明下列数列的极限存在,并求极限。
123,n y y y y a a a a ===++++证明:从这个数列构造来看n y 显然是单调增加的。
用归纳法可证。
又因为23,n y y y === 所以得21n n y a y -=+. 因为前面证明n y 是单调增加的。
两端除以 n y得1n nay y <+因为1n y y ≥则n ay ≤从而11n ay +≤1n y ≤即 n y 是有界的。
根据定理{}n y 有极限,而且极限唯一。
令 lim n n y l→∞= 则 21lim lim()n n n n y y a -→∞→∞=+则2l l a =+. 因为 0,n y >解方程得l =所以1lim 2n n y l →∞+==2:利用极限的四则运算性质求极限极限的四则运算性质:1:两收敛数列的和或积或差也收敛且和或积或差的极限等于极限和的或积或差。
2:两收敛数列且作除数的数列的极限不为零,则商的极限等于极限的商。
通常在这一类型的题中,一般都含有未定式不能直接进行极限的四则运算。
首先对函数施行各种恒等变形。
例如分之,分母分解因式,约去趋于零但不等于零的因式;分之,分母有理化消除未定式;通分化简;化无穷多项的和(或积)为有限项。
例;求极限(1)2211lim 21x x x x →---(2)32lim3x x →- (3)3113lim()11x x x →--++(4) 已知111,1223(1)n x n n =+++⨯⨯-⨯求lim n n x→∞解:(1) 2211lim 21x x x x →---=1(1)(1)lim (1)(21)x x x x x →+--+=11lim 21x x x →++=23(2)32lim 3xx →-=x →=x →=14 (3)3113lim()11x x x →--++=2312lim 1x x x x →---+=21(1)(2)lim (1)(1)x x x x x x →-+-+-+=212lim 1x x x x →---+=-1(4) 因为111,1223(1)n x n n =+++⨯⨯-⨯111111111122334411n n n=-+-+-+--+---11n =-所以 1lim lim(1)1n n n x n →∞→∞=-=3:利用两个重要极限公式求极限两个极限公式 (1) 0sin 1limlim sin 1x x x x x x →→∞==(2)101lim(1)lim(1)xx x x x ex →∞→+=+=在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。
例:求下列函数的极限[4](1)230lim lim cos cos cos cos2222n n n x x xx →→∞⎧⎫⎡⎤⎨⎬⎢⎥⎣⎦⎩⎭(2)22lim(1)m m n m →∞- 解:(1)23cos cos cos cos2222n x x x x=231sin cos cos cos cossin 222222sin 2n nn x x xx xx x=1sin 2sin 2nnxx23lim cos cos cos cos2222n n x x xx→∞=1 limsin 2sin 2n nnxx →∞sin =lim 2sin2n n n x →∞=sin xx230lim lim cos cos cos cos2222n x n x x x x →→∞⎧⎫⎡⎤⎨⎬⎢⎥⎣⎦⎩⎭=0lim x →sin xx =1(2) 22lim(1)m m n m →∞-=2222()2lim(1)m n m n mm nm --→∞-=222()2lim(1)m n mn m nm --→∞-=0e =14:利用单侧极限求极限这种方法使用于求分段函数在分段点处的极限,首先必须考虑分段点的左、右极限,如果左、右极限都存在且相等,则函数在分界点处的极限存在,否则极限不存在。
例:x>0 x 021sin ,()1,x f x xx ⎧⎪=⎨⎪+≤⎩ 求 f(x)在x=0的左右极限 解:01lim sin x x x +→⋅=101lim sin x x x -→⋅=100lim ()lim ()1x x f x f x +-→→==0lim ()1x f x →=5:利用函数的连续性求极限这种方法适用于求复合函数的极限。
如果 u=g(x) 在点0x 连续 g(0x )=0u ,而y=f(u)在点0x 连续,那么复合函数y=f(g(x))在点0x 连续。
即0lim (())(())(lim ())x x x x f g x f g x f g x →→==也就是说,极限号limx x →可以与符号f 互换顺序。
例:求1lim ln(1)xx x →∞+ 解:令 y =lnu, u =1(1)xx + 因为 lnu 在点 01lim ln(1)x x u ex →∞=+= 处连续 所以 1lim ln(1)xx x →∞+ =1ln lim(1)x x x →∞⎡⎤+⎢⎥⎣⎦ =ln e =16:利用无穷小量的性质求极限:无穷小量的性质:无穷小量与有界量的乘积还是无穷小量。
如果lim ()0x x f x →=,g(x)在某区间0000(,),(,)x x x x δδ-+有界,那么0lim ()()0x x f x g x →⋅=.这种方法可以处理一个函数不存在但有界,和另一个函数的极限是零的极限的乘积的问题。
例:求sin limx xx →∞解: 因为 sin 1x ≤ 1lim0x x →∞=所以 sin limx xx →∞=07:利用等价无穷小量代换求极限:等价无穷小量:当1y z →时,称y,z 是等价无穷小量:记为 y z 在求极限过程中,往往可以把其中的无穷小量,或它的主要部分来代替。
但是,不是乘除的情况,不一定能这样做。
例:求4303lim (sin )2x x x x →+解:sin 22x x∴4303lim (sin )2x x x x →+=4303lim ()2x x x x →+=4330lim 8x x x x→+=88:利用导数的定义求极限导数的定义:函数f(x)在0x 附近有定义,,x ∀则00()()y f x x f x =+-如果0000()()limlim x x f x x f x yx x →→+-=存在,则此极限值就称函数 f(x)在点 0x 的导数记为 /0()f x .即/0000()()()limx f x x f x f x x →+-=在这种方法的运用过程中。
首先要选好f(x)。
然后把所求极限。
表示成f(x)在定点0x 的导数。
例:求2lim()22x x ctg xππ→-⋅解:取f(x)= 2tg x .则22211lim()222lim 2(2)2lim 22x x x x ctg x tg x tg x tg x x πππππππ→→→-⋅==-⋅--=2()()2lim2x f x f x πππ→--=/1()2f π=21(2sec 2)2x x π==129:利用中值定理求极限:1:微分中值定理:若函数 f(x) 满足 (i ) 在 [],a b 连续 .(ii )在(a,b)可导;则在(a,b)内至少存在一点ξ,使/()()()f b f a f b a ξ-=-例[2]:求30sin(sin )sin limx x xx →-解: []sin(sin )sin (sin )cos (sin )x x x x x x x θ-=-⋅⋅-+ ()01θ<<30sin(sin )sin limx x xx →-=[]3(sin )cos (sin )limx x x x x x x θ→-⋅⋅-+=20cos 1cos 0lim3x x x →-⋅=0sin lim6x xx →-=16-2:积分中值定理:设函数f(x) 在闭区间 [],a b 上连续;g(x) 在[],a b 上不变号且可积,则在[],a b 上至少有一点ξ使得()()()()bbaaf xg x f g x dxξ⋅=⋅⎰⎰()a b ξ≤≤例:求 40lim sin n n xdxπ→∞⎰解: 40lim sin n n xdxπ→∞⎰=lim (0)4nn six πξ→∞⋅⋅-04πξ⎛⎫≤≤ ⎪⎝⎭=lim(sin )4nn πξ→∞0=10:洛必达法则求极限:洛必达法则只能对00或∞∞型才可直接使用,其他待定型必须先化成这两种类型之一,然后再应用洛必达法则。