苏科版-数学-七年级上册-2.3 数轴(1) 教案
- 格式:docx
- 大小:47.09 KB
- 文档页数:3
正确理解绝对值的概念
一.创设情境,感受绝对值的几何意义
1.小明的家在学校西边3km处,小丽的家在学校东边2km处。
如果他们上学行走的速度相同,那么你认为谁所花时间少呢?为什么?
2.假设学校位于数轴的原点处,小明家在原点的左边,小丽家在原点的右边,你能根据上面的信息在数轴上标出小明的位置A和小丽家的位置B吗?
原点的距离是多少?数轴上点B与原点的距离是多少?——引入课题,绝对值
二.借助数轴,揭示绝对值的概念
1.数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。
例:表示-3的点A与原点的距离是3,所以-3的绝对值是3.
表示2的点B与原点的距离是2,所以2的绝对值是2. 表示0的点(原点)与原点的距离是0,所以0的绝对值是0.(教师借助数轴讲解)学生发表意见
学生动手画图
从学生熟
悉的生活
情景出发,
充分展示
绝对值的
几何意义
的实际生
活背景,自
然地引入
绝对值的
概念,能有
效地帮助
学生加深
对绝对值
概念的理
解和应用。
加深对绝
对值概念
的理解,渗
透数形结
合思想
小明家学校小丽。
苏科版七年级数学上册《2.3.2数轴》教学设计一. 教材分析苏科版七年级数学上册《2.3.2数轴》是学生在学习了有理数、相反数、绝对值等知识的基础上,进一步学习数轴的概念及其应用。
数轴是数学中一种重要的工具,可以直观地表示实数的大小关系,有助于学生更好地理解有理数的概念和性质。
本节课的教学内容主要包括数轴的定义、特点、表示方法以及数轴上的点与实数之间的关系。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象力,他们对数学概念和公式的接受能力较强。
但是,部分学生可能对数轴的理解和运用存在困难,特别是在数轴上表示实数和解决实际问题时,容易出现混淆和错误。
因此,在教学过程中,需要关注这部分学生的学习情况,引导他们逐步掌握数轴的知识和应用。
三. 教学目标1.知识与技能目标:使学生理解数轴的定义、特点和表示方法,能够熟练地在数轴上表示实数,解决与数轴相关的实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生运用数轴解决问题的能力,提高空间想象力。
3.情感态度与价值观目标:激发学生学习数轴的兴趣,培养他们勇于探究、积极向上的学习态度,体验数学在生活中的重要作用。
四. 教学重难点1.重点:数轴的定义、特点和表示方法,数轴上点与实数之间的关系。
2.难点:数轴在实际问题中的应用,特别是解决与距离、大小比较相关的问题。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生认识数轴,体会数轴在实际问题中的作用。
2.活动教学法:学生进行观察、操作、交流等活动,培养学生的动手能力和空间想象力。
3.问题驱动法:设置一系列问题,引导学生思考、探究,从而深入理解数轴的知识。
4.讲解法:针对数轴的概念、性质和应用进行讲解,帮助学生掌握知识要点。
六. 教学准备1.准备数轴的图片、实物模型等教学资源。
2.设计好导入、呈现、操练、巩固、拓展等环节的教学活动。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用生活中的实例,如温度计、尺子等,引导学生认识数轴,激发学生学习数轴的兴趣。
课题:2.3数轴(1)班级姓名【学习目标】1、掌握数轴的三要素及其概念,理解数轴上的点和有理数的对应关系;2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;3、感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
重点:能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。
难点:数轴的概念和用数轴上的点表示有理数【学具准备】直尺、圆规、半径为5cm的圆形小纸片【学法指导】针对学案中的自学指导学习教材,并独立完成学案中自主学习部分的题目。
准备好直尺、圆规,并根据活动要求实际操做。
【学习内容】一、自主学习学习内容学法指导、对应训练阅读课本第18页想一想,完成下列各题:问题一读出下面温度计所表示的温度:()()()问题二在一条东西向的马路上,有一个汽车站,汽车站向东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站向西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。
由上述两问题我们得到什么启发?你能根据直线上的点写出合适的数吗?你能在直线上画出点来表示数吗?试试看。
尝试在已有的认知中寻找数轴。
二、课堂探究(一)预习汇报1.根据数轴的定义,试着画一条数轴,并指出数轴上的三要素。
2.判断下列数轴的画法是否正确,若不正确,请指出错误原因23-1-2-3013213210-1-2-3例1.如图,指出数轴上点A 、B 、C 、D 、E 表示的数3EDC BA例2.在数轴上画出表示下列各数的点2,-1.5,0,-3,1.5,-2,0,4,0.5,-4,-0.5注:表示正数的点都在原点的_________侧,表示负数的点都在原点的_________侧例3.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.请利用数轴回答下列问题:⑴ 在数轴上,到原点的距离为5的点有_______个,它们表示的数是______________; ⑵ 在数轴上,从表示2的点出发,先向右移动3个单位长度,再向左移动6个单位长度,最后的终点表示的数是_____________________⑶ 在数轴上,点M 表示数2,那么与点M 相距4个单位的点表示的数是_____________(二)动手探究有理数都可以在数轴上表示出来,无理数也可以在数轴上表示出来吗? 问题一:面积为2的正方形的边长a 是无理数,如何在数轴上画出表示a 的点? (提示:以原点为一个端点,在数轴上向右画一条长为a 的线段。
苏科版数学七年级上册2.3.2《数轴》说课稿一. 教材分析《数轴》是苏科版数学七年级上册2.3.2的内容。
数轴是数学中的一个重要概念,它是一种用来表示数的大小和位置的工具。
通过数轴,学生可以更直观地理解实数的大小关系,以及进行实数的比较和计算。
本节课的内容为数轴的定义、特点和基本操作,包括数轴的绘制、数轴上的点的表示方法、数轴上的距离计算等。
这些内容为学生以后学习函数、方程等数学知识奠定了基础。
二. 学情分析七年级的学生已经初步掌握了实数的概念,具备了一定的逻辑思维能力。
但是,对于数轴这一概念,学生可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生对于数轴上的点的表示方法和距离计算可能还存在一定的困难,需要教师进行详细的讲解和引导。
三. 说教学目标1.知识与技能目标:学生能够理解数轴的定义和特点,掌握数轴上的点的表示方法,能够绘制数轴,并计算数轴上的距离。
2.过程与方法目标:通过观察、实践和思考,学生能够培养数形结合的思想,提高解决问题的能力。
3.情感态度与价值观目标:学生能够体验数学与实际生活的联系,增强对数学的兴趣和信心。
四. 说教学重难点1.教学重点:数轴的定义和特点,数轴上的点的表示方法,数轴上的距离计算。
2.教学难点:数轴上的点的表示方法,数轴上的距离计算。
五. 说教学方法与手段本节课采用讲授法、示范法、讨论法、练习法等教学方法,结合多媒体课件和数轴教具,引导学生观察、实践和思考,从而达到教学目标。
六. 说教学过程1.导入:通过复习实数的大小比较,引出数轴的概念,激发学生的学习兴趣。
2.新课导入:讲解数轴的定义和特点,通过示例让学生理解数轴上的点的表示方法。
3.实践操作:学生分组合作,绘制数轴,并练习数轴上的点的表示方法和距离计算。
4.疑难解答:教师针对学生在实践中遇到的问题进行解答和指导。
5.巩固提高:学生进行数轴相关的练习题,加深对数轴的理解和应用。
6.总结:教师引导学生总结数轴的概念和应用,强调数形结合的思想。
2.3 数轴(2)教学目标:1.进一步体会数轴上的点与有理数的对应关系.2.会用数轴比较两个数的大小;3.初步感受数形结合是一种化抽象为直观的数学思想方法.教学重点、难点:利用数轴比较两个数的大小.教学工具:笔记本电脑 投影仪 电子白板教材分析:前阶段学习了有理数的正负数,数轴的三要素及画法,了解每一个有理数会在数轴上表示,这节课充分利用数轴会比较有理数的大小,通过学习使学生掌握数形相结合的方法。
教学过程:环节一:情境创设,导入新知(为了让学生更加直观的了解有理数的大小的引入,利用PPT 的动画效果进行展示,这样,提高学生的积极性和好奇心。
)问题1:把0℃、5℃、-3℃、-2℃按从低到高的顺序排列.学生从生活常识易知:-3℃<-2℃<0℃<5℃.问题2:在数轴上画出表示0、5、3-、2-的点,你能比较这几个数的大小吗? 学生画出数轴,并用数轴上的点表示0、5、-3、-2.比较大小:-3 < -2 < 0 < 5,体验与温度高低的一致性.问题3:任意给出几个数,并在数轴上画出表示这几个数的点,你能比较这几个数的大小吗?组织学生自己写出一组数并在数轴上画出相应的点,比较大小,使学生获得更多的感性认识.问题4:数轴上点的位置与它们所表示的数的大小有什么关系?让学生尝试归纳,鼓励学生发言.归纳:法则1:(1)在数轴上表示的两个数,右边的数总比左边的数大.法则2:(2)正数都大于0,负数都小于0,正数大于负数.这里包含两种比较大小的方法:数形结合;正负数的特征【设计意图】对于比较两个负数的大小,学生比较陌生,因此借助于学生的生活经验温度的感知,类比利用数轴比较数的大小关系,再让学生通过具体操作直观感受在数轴上这几个数的大小关系与它们的位置关系【教学建议】小学已经认知的两个正数的大小比较方法,学生的难点在于两个负数的大小比较,因此问题3中要留给学生体验的时间,通过观察数轴上表示各数的点的位置关系.问题4具有较高的数形结合的要求及较高的概括要求,应鼓励学生思考①表示正数的点在原点的哪边?②表示负数的点在原点的哪边?③表示0的点?体会在数轴上表示的两个数,右边的数总比左边的数大,数形结合体验两个负数的大小比较方法.环节二:例题讲解,理解新知例1 比较下列各组数的大小:(这组题目比较简单,直接利用幻灯片投影出来,利用数数轴来让学生回答。
苏科版数学七年级上册2.2 数轴教教学设计一. 教材分析数轴是数学七年级上册第二章第二节的内容,本节课主要让学生了解数轴的定义、特点以及数轴上的基本运算。
教材通过引入数轴的概念,使学生能够更直观地理解实数的大小关系,为后续的实数运算打下基础。
二. 学情分析七年级的学生已经掌握了实数的基本概念,但对实数的大小关系缺乏直观的感受。
通过数轴的学习,学生可以更清晰地认识到实数的大小关系,从而提高他们的空间想象能力和逻辑思维能力。
三. 教学目标1.知识与技能:理解数轴的定义,掌握数轴上的基本运算;2.过程与方法:通过数轴的学习,培养学生直观认识实数大小关系的能力;3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索的精神。
四. 教学重难点1.数轴的定义及其特点;2.数轴上的基本运算。
五. 教学方法采用讲授法、引导法、讨论法、实践法等教学方法,以学生为主体,教师为主导,充分发挥学生的积极性、主动性和创造性。
六. 教学准备1.准备数轴的图片和实例;2.准备数轴上的基本运算题目;3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用数轴的图片和实例,引导学生直观地认识数轴,激发学生的学习兴趣。
2.呈现(10分钟)详细讲解数轴的定义、特点以及数轴上的基本运算,让学生理解和掌握数轴的基本知识。
3.操练(10分钟)让学生在数轴上进行一些基本运算,如求距离、比较大小等,巩固所学的知识。
4.巩固(10分钟)通过一些数轴上的题目,让学生运用所学知识解决问题,提高他们的实际操作能力。
5.拓展(10分钟)讨论数轴在实际生活中的应用,让学生认识到数轴的重要性,培养他们的应用意识。
6.小结(5分钟)对本节课的主要内容进行总结,强调数轴的定义和基本运算。
7.家庭作业(5分钟)布置一些数轴相关的题目,让学生课后巩固所学知识。
8.板书(5分钟)总结本节课的主要内容和知识点,方便学生复习。
教学过程每个环节所用的时间如上所示,总共为50分钟。
2.3数轴(1)
教学目标:
知识与技能:掌握数轴的三要素,能正确画出数轴;能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.
数学思考:使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识;对学生渗透数形结合的思想方法
解决问题:能够准确画出数轴,在数轴上表示出相应的有理数以及在数轴上读出点所表示的有理数.
情感态度:使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.重点:正确掌握数轴画法和用数轴上的点表示有理数.
难点:有理数和数轴上的点的对应关系
教学过程设计
一、创设情景,引入本节课所研究的课题
请大家看,这是一支温度计(课件演示),它的用途大家是知道的.但是你会读温度计吗?请同学们读出此时温度计所显示的温度.这样看来,
液面所在的刻度就表示此时的温度.这说明温度计上的刻度与一些有理数
建立了对应的关系,也就是说温度计上的每一个刻度都表示一个有理数.在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5
m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8 m处分别有一棵槐树和一根电线杆,
试画图表示这一情境.
学生活动设计:
思考:怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(方向、距离)?先鼓励学生画画这一情景。
后演示课件。
象这种生活中的例子,同学还能列举出来吗?我们能否利用一个类似于温度计图形,用它的刻度(也就是点)来表示所有的有理数呢?这就是我们今天要一起研究的——数轴.
二、探索新知、讲授新课
问题1:观察温度计的刻度规律,你能发现什么?
先让学生讨论,在此基础上统一思路,归纳总结数周的主要特征。
并同时进行相关画图。
最后演示课件验证。
学生观察温度计,从温度计上发现:刻度有正有负也有0,结合有理数包含正数、零、负数的特点,类比一条直线在什么样的条件下才能成为数轴,于是:因为有零,就必须在直线上取一点,用这个点表示零.(如图1)我们把这个点叫做原点,用大写字母O 表示.由温度计的刻度规律可知:原点的一侧表示正数,另一侧表示负数.因而我们就规定原点的其中一侧为正方向,那么另一侧就为负方向.习惯上,当直线水平放置时,原点右方为正方向,原点的左方为负方向.正方向的一侧我们用箭头表示.(如图2)现在同学们来猜想一下,正有理数应该在图2的哪一个区域?负有理数呢?
知道正数在原点的右边,那么我们用多长来表示+1呢?怎么办?我们需要规定一个单位长度.(如图3)一旦表示1的点确定了,表示其他的有理数的点就好确定了.我想请同学们举例说明其他有理数点的确定.(利用成倍的关系)
这样能用来表示全体有理数的图形我们就找到了.我们把这种图形叫做数轴.现在我请同学们归纳一下数轴有哪几个特点?(原点、正方向、单位长度)于是:
规定了原点、正方向和单位长度的直线叫做数轴
归纳数轴的规范画法:
1. 三要素:原点、正方向和单位长度;
2. 刻度要在直线上,且是细短线;数字在下,字母在上.
三、动手操作、感受数轴的画法、巩固对数轴的认识.
问题2:尝试解决下列问题
1.动手操作,画数轴.
教师活动设计:现在每一位同学都画一个数轴,根据你所画的数轴提出你的问题.
学生活动设计:学生动手画数轴,在画的过程中可能有诸多问题,比如:数轴一定是水平放置的吗?原点一定在最中间吗?单位长度究竟是什么样的一个长度?数轴可以画为射线吗?然后学生进行交流,得到数轴规范的画法.
2 .判断下列图形哪些是数轴?(课件演示)
(1)(2) (3)
(4) (5)
O
图1
图2图图图
1图30 1 2
-1 -2
学生活动设计:学生独立思考上述5个图形,根据数轴的定义进行分析,只有符合数轴三要素的直线才是数轴,于是只有(5)是正确的.
答案:只有(5)是正确的.
四、解决问题、拓展创新
了解数轴不是目的,我们应该掌握两个方面的能力:将已知数在数轴上表示出来;说出数轴上已知点表示的数.
注意:用数轴上的点表示有理数(正数在数轴的右边,负数在左边,0用原点表示);所有的有理数都可以用数轴上的点来表示,但是数轴上的点并不全是有理数.下面我们通过两个例题锻炼我们的能力.
问题3:根据对数轴的理解,解决下列问题
1.画出一个单位长度是1厘米的数轴,并用刻度尺画出表示下列各数的点:
-1.5.0、2.-2.2.5
学生活动设计:先考虑在原点的哪一侧,然后看距原点的距离是单位长度的倍数. 〔解答〕如图(课件演示)
2.如图,(课件演示)
(1)写出数轴上的A.B.C.D.E.F 表示的有理数.
学生活动设计:根据数轴的特征和各点所在的位置,学生直接从图中读出各点表示的数,若在学生读的过程中出现问题,则由学生进行纠正,直到得出正确的结果.
〔解答〕A:-3,B:5. 5,C:3,D:-1.5,E:-3.5,F:0.
五、小结与练习:
小结:
1.数轴的三要素:原点单位长度正方向
2.单位长度的确定方式
2.5
1.5-6-5-4-3-2-16
543210A B
C D E F。