大学物理参考答案(白少民)第4章 静电场
- 格式:pdf
- 大小:252.61 KB
- 文档页数:19
第4章 静电场4.1 根据点电荷的场强公式204rqE πε=当所考察的点到点电荷的距离r 接近于零时,则电场强度趋于无限大,这显然是没有意义的。
对此应作何解释?答:这是由于0→r 时,带电体已不能再看成是点电荷,点电荷是一种理想的模型,只有在带电体的线度远小于源点到场点的距离时才可把带电体看成是点电荷。
本题中0→r ,则带电体要按实际分布计算其场强,而不能用点电荷的场强公式。
4.2 在高斯定理Sε=⋅⎰⎰qS d E中,问:(1)高斯面上的E 是否完全由式中的 q 产生? (2)如果 q = 0 ,是否必定有E = 0 ?(3)如果在高斯面上E 处处为零,是否必定有 q = 0 ? 答:(1)高斯面上的场强E是由所有的电荷产生的。
(2)若0=q ,但E不一定为零。
(3)在高斯面上E处处为零,则必定有q=0。
4.3 将一个均匀带电(量值为Q )的球形肥皂泡,由半径1r 吹至2r 。
则半径为 R (21r R r <<)的高斯面上任意一点的场强大小由204R Q πε 变至______,电势由 R Q4πε 变至_______,通过这个高斯面的E 的通量由0Q ε/变至______ 。
答:(1)变为0(高斯面内无电荷,且球对称);(2)204r Q πε;(3)04.4 电势为零的地方,电场强度是否一定为零?电场强度为零的地方,电势是否一定为零?分别举例说明之。
答:电势为零的地方,电场强度不一定为零(电势零点可选任一位置);电场强度为零的地方,电势也不一定为零。
例如导体内电场为零,但电势可以不为零。
4.5 将一个带电物体移近一个导体壳,带电体单独在导体空腔内激发的电场是否等于零?静电屏蔽的效应是如何体现的?答:带电体单独在导体空腔内激发的电场不为零。
静电屏弊效应体现在带电体的存在使导体腔上的电荷重新分布(自由电子重新分布),从而使得导体空腔内的总电场为零。
4.6 将一个带正电的导体 A 移近一个接地的导体 B 时,导体 B 是否维持零电势?其上面是否带电?答:导体B 维持零电势,其上带负电。
题7.1:1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32的上夸克和两个带e 31-下夸克构成,若将夸克作为经典粒子处理(夸克线度约为10-20 m ),中子内的两个下夸克之间相距2.60⨯10-15 m 。
求它们之间的斥力。
题7.1解:由于夸克可视为经典点电荷,由库仑定律r r 220r 2210N 78.394141e e e F ===r e r q q πεπεF 与r e 方向相同表明它们之间为斥力。
题7.2:质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k 。
证明电子的旋转频率满足42k20232me E εν=其中是0ε真空电容率,电子的运动可视为遵守经典力学规律。
题7.2分析:根据题意将电子作为经典粒子处理。
电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷。
点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有220241r e r v m πε= 由此出发命题可证。
证:由上述分析可得电子的动能为re mv E 202k 8121πε==电子旋转角速度为30224mr e πεω=由上述两式消去r ,得43k 20222324me E επων== 题7.3:在氯化铯晶体中,一价氯离于Cl -与其最邻近的八个一价格离子Cs +构成如图所示的立方晶格结构。
(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作品格缺陷),求此时氯离子所受的库仑力。
题7.3分析:铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加。
为方便计算可以利用晶格的对称性求氯离子所受的合力。
解:(l )由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故01=F (2)除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力2F 的值为N 1092.134920220212-⨯===ae rq q F πεπε2F 方向如图所示。
大学物理静电场考试题及答案5 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A)放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B)中的( )分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B).5 -2 下列说法正确的是( )(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B).5 -3 下列说法正确的是( )(A) 电场强度为零的点,电势也一定为零(B) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*5 -4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).5 -5 精密实验表明,电子与质子电量差值的最大范围不会超过±10-21 e ,而中子电量与零差值的最大范围也不会超过±10-21e ,由最极端的情况考虑,一个有8 个电子,8 个质子和8 个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力.5 -6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律()r r r re εr q q εe e e F N 78.3π41π412202210=== F 与径向单位矢量e r 方向相同表明它们之间为斥力.5 -7 质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k .证明电子的旋转频率满足4320232me E εk =v 其中ε0 是真空电容率,电子的运动可视为遵守经典力学规律.分析 根据题意将电子作为经典粒子处理.电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷.点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有2202π41r e εr m =v 由此出发命题可证.证 由上述分析可得电子的动能为re εm E K 202π8121==v 电子旋转角速度为3022π4mr εe ω= 由上述两式消去r ,得432022232π4me E εωK ==v 5 -8 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力.分析 铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加.为方便计算可以利用晶格的对称性求氯离子所受的合力.解 (1) 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.(2) 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为N 1092.1π3π4920220212⨯===aεe r εq q F F 2 方向如图所示.5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为 2204π1Lr Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21L r r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r rq εe E 20d π41d '= 整个带电体在点P 的电场强度⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=LE i E d (2) 若点P 在棒的垂直平分线上,如图(A)所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==Ly E αE j j E d sin d 证 (1) 延长线上一点P 的电场强度⎰'=L r πεq E 202d ,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2203/22222041π2d π41L r r εQ r x L xrQ εE L/-L/+=+=⎰当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度r ελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(B)].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.5 -10 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθR δS δq d sin π2d d 2⋅==,在点O 激发的电场强度为()i E 3/2220d π41d r x qx ε+=由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+=积分得 02/004d cos sin 2εδθθθεδE π⎰== 5 -11 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θer P cos 20=,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41x p εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布.解1 水分子的电偶极矩θer θP P cos 2cos 200==在电偶极矩延长线上30030030cos π1cos 4π412π41x θer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-= 代入得()⎥⎥⎦⎤⎢⎢⎣⎡--+-=23/20202001cos 2cos π42x θxr r x θr x εe E测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x θr x x θr x θxr r x cos 2231cos 21cos 2033/2033/20202,将上式化简并略去微小量后,得300cos π1xθe r εE = 5 -12 两条无限长平行直导线相距为r 0 ,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有()i i E E E x r x r ελx r x ελ-=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2。
9.1 试指出下列说法是否正确,如有错误,指出错误所在。
(1) 高温物体所含热量多,低温物体所含热量少;(2) 同一物体温度越高,所含热量就越多。
答:(1)错。
这是因为热量是系统与外界或两物体间由于温度不同而交换的热运动能量。
它是过程量,而不是状态量。
(2)错。
同上。
9.2 热力学系统的内能是状态的单值函数,对此作如下理解是否正确?(1) 一定量的某种气体处于某一定状态,就具有一定的内能;(2) 物体的温度越高,内能就越大;(3) 当参考态的内能值选定后,对应于某一内能值,只可能有一个确定的状态。
答:(1)正确;(2)、(3)错。
9.3 公式dT C M m V ,µ=V (dQ)与dT C M dU m V ,µ=的意义有何不同,二者的适用条件有何不同?答:dT C M m V ,µ=V (dQ)的意义是在等体过程中系统从外界吸收的热量与温度成正比,它只适用于定体过程;dT C M dU m V ,µ=的意义是系统内能的增量在等体过程中与温度增量成正比,它适用于定体过程,也适用于理想气体的任何过程。
9.4 怎样从由P 、V 参量表示的绝热过程方程导出由T 、V 和T 、P 参量表示的绝热过程方程?答:由P 、V 参量表示的绝热过程方程为: 常数=γPV (1)理想气体状态方程常数=TPV (2)两式相比得T 、V 参量表示的绝热过程方程 常数=−γ1TV (2)式的 次幂除以(1)式得由T 、P 参量表示的绝热过程方程 常数=γ−−γT P 19.5 试说明为什么气体热容的数值可以有无穷多个,什么情况下气体的热容是零?什么情况下是无穷大?什么情况下是正值和负值?答:由于不同过程气体的热容不同,而过程可有无穷多个,所以热容就有无穷多个。
在绝热过程中气体的热容为0;等温过程中气体的热容为无穷大;在n<1和n>γ的多方过程中热容为正,在1<n<γ的多方过程中热容为负。
第四章 静电场本章提要1.电荷的基本性质两种电荷,量子性,电荷首恒,相对论不变性。
2.库仑定律两个静止的点电荷之间的作用力12122204kq q q q r r==F r r πε 其中922910(N m /C )k =⨯⋅122-1-2018.8510(C N m )4k -==⨯⋅επ3.电场强度q =F E 0q 为静止电荷。
由10102204kq q q q r r==F r r πε 得112204kq q r r ==E r r πε4.场强的计算(1)场强叠加原理电场中某一点的电场强度等于各个点电荷单独存在时在该点产生的电场强度的矢量和。
i =∑E E(2)高斯定理电通量:在电场强度为E 的某点附近取一个面元,规定S ∆=∆S n ,θ为E 与n 之间的夹角,通过S ∆的电场强度通量定义为e cos E S ∆ψ=∆=⋅∆v S θ取积分可得电场中有限大的曲面的电通量ψd e sS =⋅⎰⎰E Ò高斯定理:在真空中,通过任一封闭曲面的电通量等于该封闭曲面内的所有电荷电量的代数和除以0ε,与封闭曲面外的电荷无关。
即i 01d sq=∑⎰⎰E S g Ò内ε5.典型静电场(1)均匀带电球面0=E (球面内) 204q r πε=E r (球面外)(2)均匀带电球体304q R πε=E r (球体内) 204q r πε=E r (球体外)(3)均匀带电无限长直线场强方向垂直于带电直线,大小为02E r λπε=(4)均匀带电无限大平面场强方向垂直于带电平面,大小为2E σε=6.电偶极矩电偶极子在电场中受到的力矩=⨯M P E思考题4-1 020 4qq r ==πεr 与FE E 两式有什么区别与联系。
答:公式q FE =是关于电场强度的定义式,适合求任何情况下的电场。
而公式0204q rπε=E r是由库仑定理代入定义式推导而来,只适于求点电荷的电场强度。
4.4解:如图所示建立坐标系,在半圆 环上取一小段圆弧,其长度为θRd则其带电量为θλ=Rd q d此段圆弧在环心O 点产生的电场强度为R4d R 4dq dE 020πεθλ=πε=由半圆环的对称性可知0点的场强E沿y 轴负向,所以有R4d sin sin dE dE 0y πεθθλ=θ=故环心处的电场强度大小R2R 4d sin dE E E 000y y πελ=πεθθλ===⎰⎰π所以 j R2E 0πελ-=4.5解:(1)两电荷同号时,在其连线外侧电场强度方向相同,内侧电场强度方向相反,故电场强度为零的点在两电荷连线内侧,设该点与q 1距离为r 1 ,(r 1>0),由场强叠加原理有0)(4421022101=--r d q rq πεπε 可得2111q q d q r +=(2)两电荷异号时,在其连线内侧电场强度方向相同,外侧电场强度方向相反。
故电场强度为零的点在两电荷连线外侧,又由于q 2>q 1 ,所以电场强度为零的点在q 1的外侧,设该点与q 1的距离为2r ,由场强叠加原理得0)r d (4q r 4q 22022201=+πε-πε可得 1212q q d q r -=4.7 解:建立如图所示的坐标系。
将带电 线分成两部分半圆环和两条半无 限长直线进行考虑。
设带电线线电荷密度为λ,分析半圆环部分:在半圆环上取一小段圆弧,其长度为dl ,则其带电量为 θλ=λ=d R dl dq 此段圆弧在环心0点产生的电场强度为: 20Rd R 41E d θλπε=电场分布关于x 轴对称:0=y E ,θθλπε=θ=sin R d R 41sin dE dE 20x所以R2d sin R 4sin R rd 41sin E E 000020πελ=θθπελ=θθλπε=θ=⎰⎰⎰ππ 方向沿x 轴正方向 分析两个半无限长直线:建立如图所示的坐标系,在带电直线上取电荷元dx dq λ=,它在O 点产生的电场强度大小为O ′)(4422020R x dxr dq dE +==πελπε 由带电线的对称性可知O 点的电场强度E沿x 轴负方向,所以有2/322022220)(4)(4cos R x xdxRx x R x dxdE dE x +=++==πελπελθ所以剩下部分在O 点产生的场强大小RR x xdxdE E E x x 002/32202)(4πελπελ=+===⎰⎰∞方向水平向左。
作业4 静电场四它们离地球很远,内球壳用细导线穿过外球壳上得绝缘小孔与地连接,外球壳上带有正电荷,则内球壳上[ ]。
不带电荷 带正电 带负电荷外表面带负电荷,内表面带等量正电荷答案:【C 】解:如图,由高斯定理可知,内球壳内表面不带电。
否则内球壳内得静电场不为零。
如果内球壳外表面不带电(已经知道内球壳内表面不带电),则两壳之间没有电场,外球壳内表面也不带电;由于外球壳带正电,外球壳外表面带正电;外球壳外存在静电场。
电场强度由内球壳向外得线积分到无限远,不会为零。
即内球壳电势不为零。
这与内球壳接地(电势为零)矛盾。
因此,内球壳外表面一定带电。
设内球壳外表面带电量为(这也就就是内球壳带电量),外球壳带电为,则由高斯定理可知,外球壳内表面带电为,外球壳外表面带电为。
这样,空间电场强度分布,(两球壳之间:) ,(外球壳外:)其她区域(,),电场强度为零。
内球壳电势为041)11(4ˆ4ˆ4)()(403202020214324322=++-=⋅++⋅=⋅+⋅=⋅=⎰⎰⎰⎰⎰∞∞∞R Qq R R q r d r rQq r d rr q r d r E r d r E l d E U R R R R R R R πεπεπεπε则,由于,,所以即内球壳外表面带负电,因此内球壳负电。
2.真空中有一组带电导体,其中某一导体表面某处电荷面密度为,该处表面附近得场强大小为,则。
那么,就是[ ]。
该处无穷小面元上电荷产生得场 导体上全部电荷在该处产生得场 所有得导体表面得电荷在该处产生得场 以上说法都不对 答案:【C 】解:处于静电平衡得导体,导体表面附近得电场强度为,指得就是:空间全部电荷分布,在该处产生得电场,而且垂直于该处导体表面。
注意:由高斯定理可以算得,无穷小面元上电荷在表面附近产生得电场为;无限大带电平面产生得电场强度也为,但不就是空间全部电荷分布在该处产生得电场。
3.一不带电得导体球壳半径为,在球心处放一点电荷。