导数与微分的关系
- 格式:doc
- 大小:18.00 KB
- 文档页数:2
数学导数和微积分导数和微积分是数学中重要的概念和工具,它们在各个领域都有广泛的应用。
本文将详细介绍导数和微积分的基本概念、性质和应用。
一、导数的定义和性质导数是描述函数变化率的工具,它的定义如下:对于函数 f(x),在某一点 x0 处,如果极限lim(h→0)[f(x0+h)-f(x0)]/h存在,则该极限值就是函数 f(x) 在点 x0 处的导数。
导数具有一些重要的性质:1. 导数表示了函数变化的速率,可以理解为函数图像的切线的斜率。
2. 导数存在的充分必要条件是函数在该点可导。
3. 导数可以通过求导法则来计算,如加法法则、乘法法则、链式法则等。
二、微分与微分方程微分是导数的一种表达形式,是函数值和自变量之间的微小变化之间的关系。
微分可以用来解决很多实际问题,尤其在物理学和工程学中有广泛应用。
微分方程是包含导数的方程,通常形式为:dy/dx = f(x)其中f(x) 是已知函数,y 是未知函数。
解微分方程的过程称为积分,可以得到原始函数的解析表达式。
三、微分中值定理和泰勒展开微分中值定理是微积分中的重要定理之一,它有三种形式:拉格朗日中值定理、柯西中值定理和罗尔中值定理。
这些定理描述了函数在某个区间内的变化情况,提供了计算导数和函数性质的有效工具。
泰勒展开是函数在某个点附近用多项式逼近的方法。
它可以将函数在某个点展开成无穷级数,表达了函数在该点的各阶导数与函数值之间的关系。
四、微积分在物理学和工程学中的应用微积分在物理学和工程学中有广泛的应用,如下所示:1. 运动学:微积分用于描述物体的位置、速度和加速度之间的关系。
2. 力学:微积分用于描述物体的质心、力矩和动量等概念。
3. 电磁学:微积分用于描述电场、磁场和电磁感应等现象。
4. 热力学:微积分用于描述温度、热能和热流等热学过程。
5. 控制理论:微积分用于描述系统的响应、稳定性和控制性能等。
总结:导数和微积分是数学中重要的概念和工具,它们在各个领域都有广泛应用。
导数与微分的区别与联系
(1)起源(定义)不同:导数起源是函数值随自变量增量的变化率,即厶y/ △ x的极限•微分起源于微量分析,如厶y可分解成A A x与0( △ x)两部分之和,其线性主部称微分•当△ x很小时,△ y的数值大小主要由微分A A x 决定,而0( △ x)对其大小的影响是很小的.
⑵几何意义不同:导数的值是该点处切线的斜率,微分的值是沿切线方向上纵坐标的增量,而厶y则是沿曲线方向上纵坐标的增量.可参考任何一本教材的图形理解.
⑶联系:导数是微分之商(微商)y' =dy/dx,微分dy=f(x)dx,这里公式本身也体现了它们的区别.
(4)关系:对一元函数而言,可导必可微,可微必可导.
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等
等
打造全网一站式需求。
二元函数连续、偏导数和全微分之间的关系通过证明或反例说明二元函数连续、偏导数,全微分之间的关系。
标签:二元函数;连续;偏导数;全微分对于一元函数来讲,连续、导数和微分之间的关系比较简单:可导与可微是等价的,可导一定连续,但连续不一定可导。
但对于二元函数来讲,连续、偏导数和全微分之间的关系要相对复杂一些,本文通过证明或反例来说明三者之间的关系。
1 连续和偏导数之间的关系1.1 已知偏导数存在,但不一定连续例1 函数在点处的两个偏导数都存在:但是在点却不连续,事实上,令点沿趋向点,有:1.2 已知连续,但偏导数不一定存在例2 函数,显然:故在点处连续,而由:知不存在,所以在点处不是可偏导的。
2 偏导数和全微分之间的关系2.1 若可微,则偏导数一定存在证明:由于在点处可微,于是在点的某一邻域内有:其中。
特别地,当时,上式变为:在该式两端各除以,再令,则得:从而偏导数存在,且;同样可证存在,且。
2.2 已知偏导数存在,但不一定可微例3 函数在点处的两个偏导数都存在:但是在点却不可微,事实上:令沿趋向,则:这说明当时,并不是的高阶无穷小,所以在点处不可微。
3 连续和全微分之间的关系3.1 若可微,则一定连续证明:由于在點处可微,即有:其中。
于是,即有,从而,即在点处连续。
3.2 已知连续,但不一定可微在例2中,函数在点处连续,在点处不是可偏导的。
由偏导和可微之间的关系,知在点处不可微。
综上,二元函数连续、偏导数和全微分之间的关系:函数在一点的连续性和函数在该点的偏导数的存在性之间没有任何关系;函数在一点的偏导数存在是函数在该点可微的一个必要非充分条件,函数在一点可微是函数在该点的偏导数存在的一个充分非必要条件;函数在一点连续是函数在该点可微的一个必要非充分条件,函数在一点可微是函数在该点连续的一个充分非必要条件。
参考文献:[1]大连理工大学城市学院基础教学部.应用微积分(下册)[M].大连理工大学出版社,2013.[2]大连理工大学城市学院基础教学部.应用微积分同步辅导[M].大连理工大学出版社,2013.[3]同济大学数学教研室.高等数学(下册)[M].高等教育出版社,1998.作者简介:张宇红(1979-),女,辽宁锦州人,硕士研究生,教授,研究方向:数学。
导数与微分的运算法则在微积分学中,导数与微分是两个重要的概念,它们与函数的变化率密切相关。
在本文中,我们将介绍导数与微分的运算法则,以便更好地理解它们的性质和应用。
一、导数的基本定义导数表示函数在某一点处的变化率。
设函数y=f(x),若在点x处函数y=f(x)的变化率存在有限的极限值,那么这个极限值就是函数y=f(x)在点x处的导数,记作f'(x)或dy/dx。
二、基本的导数运算法则在计算导数时,我们可以借助一些基本的运算法则,这些法则可以简化计算过程。
下面是常见的导数运算法则:1. 常数规则:对于常数c,它的导数为0,即d/dx(c) = 0。
2. 基本导数规则:a) 幂函数:对于幂函数y=x^n (n为常数),其导数为d/dx(x^n) = nx^(n-1)。
b) 指数函数:对于指数函数y=a^x (a>0且a≠1),其导数为d/dx(a^x) = a^x * ln(a)。
c) 对数函数:对于自然对数函数y=ln(x),其导数为d/dx(ln(x)) = 1/x。
d) 三角函数:对于三角函数y=sin(x),y=cos(x),y=tan(x)等,它们的导数可以参考导数表进行推导。
3. 和差法则:设函数y=f(x)和g(x)均可导,那么它们的和、差的导数为d/dx(f(x) ± g(x)) = f'(x) ± g'(x)。
4. 积法则:设函数y=f(x)和g(x)均可导,那么它们的乘积的导数为d/dx(f(x) * g(x)) = f'(x) * g(x) + f(x) * g'(x)。
5. 商法则:设函数y=f(x)和g(x)均可导,且g(x)不等于0,那么它们的商的导数为d/dx(f(x) / g(x)) = [f'(x) * g(x) - f(x) * g'(x)] / [g(x)]^2。
6. 复合函数求导法则:若y=f(u)和u=g(x)均可导,那么复合函数y=f(g(x))的导数为d/dx[f(g(x))] = f'(g(x)) * g'(x)。
函数的导数与微分函数的导数与微分是微积分中非常重要的概念。
它们给出了函数曲线上各点的斜率以及函数的极小值和极大值所在的位置。
本文将介绍导数和微分的定义、计算方法和应用。
一、导数的定义与计算方法在微积分中,函数f(x)在某一点x处的导数,用f'(x)表示,定义为函数曲线在该点处的切线的斜率。
导数可以告诉我们函数在某一点上的变化率或增长率。
导数的计算方法有以下几种:1. 使用导数的基本公式:根据不同的函数类型,可以利用基本导数公式推导出具体函数的导数。
例如,对于常数函数f(x) = c,c为常数,其导数为0;对于幂函数f(x) = x^n,其中n为整数,其导数为f'(x) =nx^(n-1);对于指数函数f(x) = a^x,其中a为常数,其导数为f'(x) =a^x * ln(a),等等。
2. 使用导数的定义式:导数的定义式是通过极限的方法来计算的。
即f'(x) = lim(h→0) [f(x+h) - f(x)] / h,其中h为一个趋近于0的实数。
这种方法通常适用于无法直接应用基本导数公式的函数。
3. 使用导数的性质和运算法则:导数具有许多重要的性质和运算法则,如导数的和、差、乘积和商的法则,链式法则等。
对于复杂的函数,可以利用这些性质和法则简化计算过程。
二、微分的定义与计算方法微分是导数的一个应用,它可以用来近似计算函数在某一点附近的变化情况。
函数f(x)在点x处的微分,用df表示,定义为函数f(x)在该点处的导数f'(x)与自变量的增量dx的乘积,即df = f'(x)dx。
微分可以用来估计函数值的变化量,并且在数值计算和优化问题中有广泛的应用。
计算微分的方法与计算导数的方法类似,可以利用定义式、基本微分公式和微分的运算法则进行计算。
三、导数与函数的性质和应用导数具有许多重要的性质和应用,以下是其中的一些:1. 导数与函数的图像:函数的导数可以帮助我们了解函数曲线的形状和特征。
二元函数连续偏导数和全微分之间的关系我们先来了解一下二元函数的连续偏导数和全微分的概念。
对于一个二元函数 f(x, y),如果它在某个点 (a, b) 处的偏导数存在且连续,那么我们称 f(x, y) 在该点处具有连续偏导数。
具体来说,如果函数 f(x, y) 在点 (a, b) 处可微,那么它的偏导数 f_x(a, b) 和 f_y(a, b) 存在且连续。
全微分,即函数的微分,可以理解为在某一点处的近似线性化。
假设函数 f(x, y) 在点 (a, b) 处可微,那么它在该点的全微分 df(a, b) 可以表示为:df(a, b) = f_x(a, b) * dx + f_y(a, b) * dydx 和 dy 是自变量 x 和 y 在点 (a, b) 处的微小变化量。
全微分相当于函数在某一点处的线性近似,它将函数在该点附近的变化量分解成了在 x 轴和 y 轴的变化量的线性组合。
根据全微分的定义,我们可以将其进一步拆分成 dx 和 dy 两部分:当 dx 和 dy 很小时,可以认为 df(a, b) 和 dx, dy 之间存在着近似的线性关系。
也就是说,当 dx 和 dy 趋近于 0 时,全微分 df(a, b) 与 dx, dy 之间的差异可以忽略不计。
这就是说在微积分中的一个重要结论——全微分等于二元函数的连续偏导数与自变量微小变化量的乘积之和。
这个结论只在函数的偏导数连续的条件下成立。
如果函数的偏导数在某个点不连续,那么全微分与偏导数之间的关系是不存在的。
总结一下,二元函数的连续偏导数和全微分之间存在着密切的关系。
全微分可以通过函数的连续偏导数与自变量微小变化量的乘积之和来表示。
在微积分中,这个关系是非常有用的,它可以帮助我们理解函数在某一点附近的变化情况,并进一步推导出函数的各种性质和定理。
导数和微分的关系
导数微分积分三者关系:导数是函数图像在某一点处的斜率;积分是微分的逆运算,即知道了函数的导函数,反求原函数。
微分是指函数图像在某一点处的切线在横坐标取得增量Δx以后,纵坐标取得的增量,一般表示为dy。
1、导数也叫导函数值,又名微商,是微积分学中重要的基础概念,是函数的局部性质。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。
若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。
然而,可导的函数一定连续;不连续的函数一定不可导。
2、微分虽然看起来和导数很像,但微分本质上和导数是不同的。
举个例子,设y=x^2那么有Δy=2xΔx+(Δx)^2,由于(Δx)^2是Δx的高阶无穷小,那么原函数就可微,线性主部也就是导数就是2x。
所以对于高中只会出现的一元函数你可以简单理解为导数就是微分的线性主部。
3、积分是微积分学与数学分析里的一个核心概念。
通常分为定积分和不定积分两种。
直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值。
导数与微分引 言导数与微分是数学分析的基本概念之一。
导数与微分都是建立在函数极限的基础之上的。
导数的概念在于刻划瞬时变化率。
微分的概念在于刻划瞬时改变量。
求导数的运算被称为微分运算,是微分学的基本运算,也是积分的重要组成部分。
本章主要内容如下: 1. 以速度问题为背景引入导数的概念,介绍导数的几何意义; 2. 给出求导法则、公式,继而引进微分的概念;3. 讨论高阶导数、高阶微分以与参数方程所确定函数的求导法。
4. 可导与连续,可导与微分的关系。
§1 导数的概念教学内容:导数的定义、几何意义,单侧导数,导函数,可导与连续的关系,函数的极值。
教学目的:深刻理解导数的概念,能准确表达其定义;明确其实际背景并给出物理、几何解释;能够从定义出发求某些函数的导数;知道导数与导函数的相互联系和区别;明确导数与单侧导数、可导与连 续的关系;能利用导数概念解决一些涉与函数变化率的实际应用问题;会求曲线上一点处的切线 方程;清楚函数极值的概念,并会判断简单函数的极值。
教学重点:导数的概念,几何意义与可导与连续的关系。
教学难点:导数的概念。
教学方法:讲授与练习。
学习学时:3学时。
一、导数的定义:1.引入(背景):导数的概念和其它的数学概念一样是源于人类的实践。
导数的思想最初是由法国数学家费马(Fermat )为研究极值问题而引入的,后来英国数学家牛顿(Newton )在研究物理问题变速运动物体的瞬时速度,德国数学家莱布尼兹(Leibuiz )在研究几何问题曲线切线的斜率问题中,都采用了相同的研究思想。
这个思想归结到数学上来,就是我们将要学习的导数。
在引入导数的定义前,先看两个与导数概念有关的实际问题。
问题1。
直线运动质点的瞬时速度:设一质点作直线变速运动,其运动规律为)(t s s =,若0t 为某一确定时刻,求质点在此时刻时的瞬时速度。
取临近于0t 时刻的某一时刻t ,则质点在[]t t ,0或[]0,t t 时间段的平均速度为:00)()(t t t s t s v --=,当t 越接近于0t ,平均速度就越接近于0t 时刻的瞬时速度,于是瞬时速度:0)()(lim 0t t t s t s v t t --=→。
导数与微分的关系
宁小青
我们知道一个函数在某点可导和可微是等价的,大部分高等数学、经济数学和数学分析课本中都是先引进导数的概念,再引进微分的概念,到底导数和微分这两个概念,哪个概念产生在前、哪个概念产生在后呢?
一、微分概念的导出背景
当一个函数的自变量有微小的改娈时,它的因变量一般说来也会有一个相应的改变。
微分的原始思想在于去寻找一种方法,当因变量的改变也是很微小的时候,能够简便而又比较精确地估计出这个改变量。
我们来看一个简单的例子:
维持物体围绕地球作永不着地(理论上)的飞行所需要的最低速度称为第一宇宙速度。
在中学里,利用计算向凡加速度的办法已经求出这种速度约为7.9千米/秒,现在我们改用另一种思路去推导它。
设卫星当前时刻在地球表面附近的A点沿着水平方向飞行,假如没有外力影响的话,那么它在一秒种后本应到达B点,但事实上它要受到地球的引力,因而实际到达的并非是B 点,而是C点,BC=4.9米是自由落体在重力加速度的作用下,第一秒中所走过的距离。
容易看出,若C点与地心O的距离与A事点到O的距离是相等的,那么由运动的独立性原理,就可以推断出卫星在沿地球的一个同心圆轨道运行,也就是作环绕地球的飞行了。
因此,卫星应具有最小每秒飞行速度恰好在线段AB的长度。
△OAB是直角三角形,OA和OC可近似的取为地球的平均半径6371千米,也就是6371000米,于是由勾股定理
显然就这样按上式去计算是不可取的——这将导致两个量级的数在直接相减,工作量大不说,在字长较短的计算机上,还可能产生较大的误差。
利用乘法公式
可将上式改为
由于,因此这一项与这一项想比可以忽略不计,于是可以把计算简化为
由此计算出千米。
这就是说,卫星的速度至少要达到每秒7.9千米才能维持其围绕地球的飞行,此即所要求的第一宇宙速度。
上面所计算的,实际上就是函数在处,自变量出现了一个微小的改变量之后,函数值的相应改变量4.9。
然而在计算过程中,我们并没有完全精确地去算
而是抛弃了最后一项对整个计算结果而言可以忽略的量,得到了具有足够精确的计算值。
这样的思想方法和处理过程,恰恰就是微分概念的应用。
二、产生导数的实际背景
从数学的发展历史来看,导数是伴随微分的诞生而顺理成章地产生的,也就是说,人们先是有了微分的概念,随后才发现,对于处理微分问题来说,象
这么一种特定形式的极限,即导数,是一个有力的工具。
说导数是处理微分问题的有力工具,是因为一方面从微分形式来看,在
一点处的微分事实上都必须通过这一点的导数来表达和计算;另一方面,在比较复杂的情况下(比如高阶的微分和导数以及多元函数的微分和导数等),无论是形式地思考还是实际地处理问题,由导数入手都要比由微分入手更容易和简单一些,并且导数有它本身的意义,在数学的理论及其实际应用方面都扮演着重要的角色。