压电陶瓷简介
- 格式:ppt
- 大小:1.77 MB
- 文档页数:33
简述压电陶瓷压电陶瓷是一种能够将机械能和电能互相转换的功能陶瓷材料,属于无机非金属材料,是一种具有压电效应的陶瓷材料。
与压电单晶材料相比,具有机电耦合系数高,压电性能可调节性好,化学性质稳定,易于制备且能制得各种形状、尺寸和任意极化方向的产品、价格低廉等优点。
它具有压电效应。
所谓压电效应是正电压效应和负电压效应。
前者是指由应力诱导出极化或电场的现象,后者则是由电场诱导出应力或应变的现象,二者统称为压电效应。
目前为止,压电陶瓷的这种压电效应已被广泛应用于与人们生活息息相关的许多领域,遍及卫星广播、电子设备、生物、航空航天、医疗卫生、日常生活等等。
由此可见压电陶瓷的应用十分广泛,研究意义非常重大。
一些材料在机械应力作用下,引起内部正负电荷中心相对位移而发生极化,导致材料两端表面出现符号相反的束缚电荷的现象,称为压电效应。
具有这种性能的陶瓷称为压电陶瓷,它的表面电荷的密度与所受的机械应力成正比。
反之,当这类材料在外电场作用下,其内部正负电荷中心移位,又可导致材料发生机械变形,形变的大小与电场强度成正比。
常用的压电陶瓷有钛酸钡系、锆钛酸铅二元系及在二元系中添加第三种ABO3(A表示二价金属离子,B表示四价金属离子或几种离子总和为正四价)型化合物,如:Pb(Mn1/3Nb2/3)O3和Pb(Co1/3Nb2/3)O3等组成的三元系。
如果在三元系统上再加入第四种或更多的化合物,可组成四元系或多元系压电陶瓷。
此外,还有一种偏铌酸盐系压电陶瓷,如偏铌酸钾钠(Na0.5·K0.5·NbO3)和偏铌酸锶钡(Ba x·Sr1-x·Nb2O5)等,它们不含有毒的铅,对环境保护有利。
目前,我国所使用的压电陶瓷体系主要是铅基压电陶瓷,材料其中含铅化合物PbO(或Pb3O4)约占原料总质量的百分之七十左右。
由于含铅化合物在高温时具有挥发性,这些材料在生产、使用、废弃过程中都会对人类健康和生态环境造成很大的危害。
压电陶瓷压电陶瓷历史压电陶瓷是一能够将机械能和电能互相转换的功能陶瓷材料。
压电效应是指某些介质在受到机械压力时,哪怕这种压力微小得像声波振动那样小,都会产生压缩或伸长等形状变化,引起介质表面带电,这是正压电效应。
反之,施加激励电场,介质将产生机械变形,称逆压电效应。
1880年法国人居里兄弟发现了"压电效应"。
1942年,第一个压电陶瓷材料--钛酸钡先后在美国、前苏联和日本制成。
1947年,钛酸钡拾音器--第一个压电陶瓷器件诞生了。
50年代初,又一种性能大大优于钛酸钡的压电陶瓷材料--锆钛酸铅研制成功。
从此,压电陶瓷的发展进入了新的阶段。
60年代到70年代,压电陶瓷不断改进,逐趋完美。
如用多种元素改进的锆钛酸铅二元系压电陶瓷,以锆钛酸铅为基础的三元系、四元系压电陶瓷也都应运而生。
这些材料性能优异,制造简单,成本低廉,应用广泛。
80年代后期至今,人们研制出驰豫铁电体陶瓷材料,在此基础上有成功研制出驰豫铁电体单晶材料,为三维超声波成像奠定了基础。
目前,人们将纳米技术应用到压电材料的制作工艺上已取得新的突破。
目前,世界各国正在大力研制开发无铅压电陶瓷,以保护环境和追求健康,预计2008后形成产业化生产。
压电陶瓷应用利用压电陶瓷将外力转换成电能的特性,可以制造出压电点火器、移动X光电源、炮弹引爆装置。
用两个直径3毫米、高5毫米的压电陶瓷柱取代普通的火石,可以制成一种可连续打火几万次的气体电子打火机。
用压电陶瓷把电能转换成超声振动,可以用来探寻水下鱼群的位置和形状,对金属进行无损探伤,以及超声清洗、超声医疗,还可以做成各种超声切割器、焊接装置及烙铁,对塑料甚至金属进行加工。
压电陶瓷对外力的敏感使它甚至可以感应到十几米外飞虫拍打翅膀对空气的扰动,并将极其微弱的机械振动转换成电信号。
利用压电陶瓷的这一特性,可应用于声纳系统、气象探测、遥测环境保护、家用电器等方面。
在潜入深海的潜艇上,都装有人称水下侦察兵的声纳系统。
压电陶瓷压电陶瓷(Piezoelectric ceramics)是一种特殊的陶瓷材料,具有压电效应。
它具有压电效应,能够在外界施加压力或扭转时产生电荷,同时在外加电场下也能产生机械变形。
因此,压电陶瓷广泛应用于传感器、换能器、储能器、振动器等领域。
本文将介绍压电陶瓷的原理、特性以及应用领域。
首先,我们来了解一下压电陶瓷的原理。
压电现象最早是由法国物理学家庞丁(Pierre Curie)和雅克(Jacques Curie)在1880年发现的。
他们发现某些晶体,如石英和长石,在外界施加压力时会产生电荷。
这被称为正压电效应。
而如果在外加电场的作用下,这些晶体会发生机械变形,这被称为反压电效应。
接下来,我们来探讨一下压电陶瓷的特性。
压电陶瓷具有几个主要的特性。
首先,它们具有良好的压电和逆压电效应。
这使得它们成为制造传感器和换能器的理想材料。
其次,压电陶瓷还具有良好的机械强度和稳定性。
它们可以承受高压力和机械应力,并且能够在广泛的温度范围内工作。
此外,压电陶瓷具有较宽的频率范围和较高的输出功率。
这使得它们成为制造振动器和储能器的理想选择。
压电陶瓷具有广泛的应用领域。
其中一个主要应用是在传感器领域。
压电陶瓷可以用于制造压力传感器、加速度传感器、力传感器等。
这些传感器可以广泛应用于自动化、工业控制、医疗设备等领域,实现对压力、加速度、力等参数的测量和监控。
另一个主要应用是在换能器领域。
压电陶瓷可以用于制造超声换能器、声波清洗器、喇叭等。
这些换能器可以将电能转化为机械能,实现声音的放大和传播。
此外,压电陶瓷还可以应用于振动器、储能器、精密电机等领域。
总之,压电陶瓷是一种独特的陶瓷材料,具有压电效应。
它具有压电和逆压电效应、良好的机械强度和稳定性、较宽的频率范围和高输出功率等特性。
压电陶瓷在传感器、换能器、储能器、振动器等领域有广泛的应用。
它们在实际生活中发挥着重要的作用,促进了科技的发展和进步。
希望随着科技的不断发展,压电陶瓷能够在更多领域发挥重要作用,为人们的生活带来更多便利和创新。
压电陶瓷最大输出位移1. 引言1.1 压电陶瓷概述压电陶瓷是一种具有压电效应的陶瓷材料,具有压电效应的陶瓷材料称为压电陶瓷。
压电效应是指某些晶体在受到机械应力或电场刺激时会发生形变或电极化现象。
压电陶瓷具有较高的机械强度、良好的化学稳定性和优良的压电性能,因此被广泛应用于传感器、马达、换能器等领域。
压电陶瓷具有多种规格和型号,可以根据具体的应用需求选择不同的压电陶瓷材料。
在工程领域中,压电陶瓷扮演着重要的角色,其在传感、控制、信号处理等方面都有广泛的应用。
随着科技的不断进步,压电陶瓷的性能和应用领域也在不断扩展和提升。
压电陶瓷是一种具有特殊性能和广泛应用前景的陶瓷材料,其在现代工程中具有重要地位,对于促进科技进步和社会发展具有重要意义。
1.2 压电效应简介压电效应是指在受到外力作用时,物质会产生电荷的分离或聚集,并在晶格结构内部产生电场的现象。
这种效应是由于压电材料的晶格结构具有非中心对称性,因此在受到应力变化时会产生极化现象。
压电效应是压电陶瓷的重要特性之一,也是其广泛应用的基础。
当外界施加压力或扭曲时,压电陶瓷会发生极化现象,即产生正负电荷的分离。
这种极化效应会导致压电陶瓷内部产生电场,从而使其表现出压电性质。
压电效应不仅可以实现电能到机械能的转换,还可以实现相反的机械到电的能量转换。
这种双向转换能力使得压电陶瓷在传感器、执行器等领域具有广泛的应用前景。
压电效应是压电陶瓷材料独特的物理现象之一,其在实际应用中能够为工程领域提供稳定可靠的解决方案,具有重要的意义和价值。
压电效应的简介将有助于深入了解压电陶瓷的特性和应用前景。
2. 正文2.1 压电陶瓷的结构和工作原理压电陶瓷是一种具有压电效应的材料,其结构和工作原理对于理解其性能和应用至关重要。
压电陶瓷通常由铅锆钛酸钠、铅镁铌酸、铅钛锆酸钡等材料构成,具有特殊的晶体结构。
在外加电场的作用下,压电陶瓷会发生形变,从而产生电荷,实现能量的转化与传递。
压电陶瓷材料在我们的生活中随处可见的物质,材料的发展深深的影响着人们的生活质量,同时也是我们人类社会进步和文明的重要标志。
随着社会的进步和发展,电子陶瓷材料在信息技术中占有非常重要的作用,常常被用来制作一些重要的电子元器件如:传感器、电容器、超声换能器。
因此,高性能的电子陶瓷材料是信息技术发展和研究的重要方向。
压电陶瓷是一种具有压电性能的多晶体,是信息功能陶瓷的重要组成部分。
其具有机电耦合系数高(压电振子在振动过程中,将机械能转变为电能,或将电能转变为机械能的效率)、价格便宜、易于批量生产等优点,已被广泛应用于社会生产的各个领域,尤其是在超声领域及电子科学技术领域中,压电陶瓷材料已逐渐处于绝对的支配地位,如医学及工业超声检测、水声探测、压电换能器、超声马达、显示器件、电控多色滤波器等。
1.压电陶瓷性能1.1压电性压电陶瓷最大的特性是具有正压电性和逆压电性。
正压电性是指某些电介质在机械外力作用下,介质内部正负电荷中心发生相对位移而引起极化,从而导致电介质两端表面内出现符号相反的束缚电荷。
反之,当给具有压电性的电介质加上外电场时,电介质内部正负电荷中心不但发生相对位移而被极化,同时由于此位移而导致电介质发生形变,这种效应称之为逆压电性。
1.2介电性能材料在电场作用下,表现出对静电能的储蓄和损耗的性质,通常用介电常数(ε r )和介质损耗(tanδ)来表示。
当在两平板之间插入一种介质(材料)时,电容C将增加,此时电容 C与真空介质时该电容器的电容量 C0的比即为相对介电常数k:k=C/C= (εA/d)/(ε0A/d)=ε/ε(ε—真空介电常数:8.854×10-12F/m)当一个正弦交变电场V=Vexpiωt施加于一介电体上时,电荷随时间而变化而产生了电流Ic, Ic在无损耗时比 V 超前90°。
但实际是有损耗的。
有损耗时,总电流超前电压不再是90°而是90°-δ。
pzt压电陶瓷晶体结构
摘要:
1.PZT压电陶瓷简介
2.PZT压电陶瓷的晶体结构
3.PZT压电陶瓷的性能与应用
4.我国在PZT压电陶瓷领域的研究进展
正文:
一、PZT压电陶瓷简介
PZT(lead zirconate titanate,铅锌钛酸盐)压电陶瓷是一种具有优良压电性能的陶瓷材料。
在自然界中,PZT矿物稀少,因此,科学家们通过研究和合成,成功制备出了具有高精度、高性能的PZT压电陶瓷。
二、PZT压电陶瓷的晶体结构
PZT压电陶瓷的晶体结构属于四方对称结构,其化学式为PbZrO3-PbTiO3。
在这种结构中,钛酸铅(PbTiO3)和锆酸铅(PbZrO3)以固溶体的形式存在,共同赋予了PZT压电陶瓷优异的性能。
三、PZT压电陶瓷的性能与应用
1.压电性能:PZT压电陶瓷具有较高的压电常数、较低的介电常数和良好的疲劳稳定性,使其在声学、振动和能量转换等领域具有广泛的应用。
2.铁电性能:PZT压电陶瓷具有较高的铁电储能密度,使其在电磁屏蔽、存储器和传感器等领域具有重要应用。
3.机电转换性能:PZT压电陶瓷具有良好的机电转换效率,广泛应用于超
声波换能器、马达、致动器和机器人等领域。
4.我国在PZT压电陶瓷领域的研究进展:近年来,我国在PZT压电陶瓷材料的研究取得了显著成果,包括制备工艺的优化、性能的提高和新材料的研发。
这些成果为我国在压电陶瓷领域的创新发展奠定了基础。
综上所述,PZT压电陶瓷作为一种高性能的陶瓷材料,在多个领域具有广泛的应用。
01 of 03Version 2010/rfq 有些压晶体管可以烧结为多晶体陶瓷,虽然每个细晶体的压电陶瓷有自发极化的,但从整体来看都互相抵销了,而显示没有压电现像。
但是,当高直流电压施载于这类陶瓷,自发极化的方向被引导到一P的方向和实现铁电现象的陶瓷。
添加某些添加剂,材料显现非常Ã定的频率,温度,和老化特性,正被德键电子应用于陶瓷滤波器。
相对于单晶,压电陶瓷的多样的优势特点如下:1. 利于大规模量产,降低生产成本。
2. 可以形成任何理想的形状。
3. 很容易实现极化方向。
4. 化学和物理性质稳定。
5. 容易加工制造。
陶瓷谐振器应用压电陶瓷的机械共振。
振荡模式各有不同的谐振频率。
在右侧的表格显示了这种关系。
作为谐振器,石英晶体是众所周知的。
RC 振荡电路和 LC 振荡电路也被用来产生电力共振。
以下是压电陶瓷特点。
02 of 03Version 2010/rfq 1. 高稳性的振荡频率稳定度是介于石英晶体和 LC 或 RC 振荡电路之间。
石英晶体的最大温度系数 10–6/°C,而 LC 或 RC 振荡电路约 10–3 到 10–4/°C。
与这相比,陶瓷谐振器是 10–5/°C 于 -20°C 至 +80°C。
2. 陶瓷谐振器的配置小,重量轻,只有石英晶体一半的体积。
3. 低价格,不需调整,压电陶瓷可以大规模生产,因此成本低,稳定性高。
不像 RC 或 LC 电路,陶瓷谐振器使用的是机械共振。
也就是说陶瓷谐振器 基本上没有受到外部电路或电源电压波动的影响。
高度Ã定的振荡电路,因此没有必要再调整。
[Note] : show the direction of vibration03 of 03Version 2010什么是压电陶瓷 陶瓷谐振器振动有哪些模式/rfq TOKEN返回首頁 - 什麼是壓電陶瓷。
1简介压电陶瓷是一类具有压电特性的电子陶瓷材料。
与典型的不包含铁电成分的压电石英晶体的主要区别是:构成其主要成分的晶相都是具有铁电性的晶粒。
由于陶瓷是晶粒随机取向的多晶聚集体,因此其中各个铁电晶粒的自发极化矢量也是混乱取向的。
为了使陶瓷能表现出宏观的压电特性,就必须在压电陶瓷烧成并于端面被复电极之后,将其置于强直流电场下进行极化处理,以使原来混乱取向的各自发极化矢量沿电场方向择优取向。
经过极化处理后的压电陶瓷,在电场取消之后,会保留一定的宏观剩余极化强度,从而使陶瓷具有了一定的压电性质。
2物质组成常用的压电陶瓷有钛酸钡系、锆钛酸铅二元系及在二元系中添加第三种ABO3(A 表示二价金属离子,B表示四价金属离子或几种离子总和为正四价)型化合物,如:Pb(Mn1/3Nb2/3)O3和Pb(Co1/3Nb2/3)O3等组成的三元系。
如果在三元系统上再加入第四种或更多的化合物,可组成四元系或多元系压电陶瓷。
此外,还有一种偏铌酸盐系压电陶瓷,如偏铌酸钾钠(Na0.5·K0.5·NbO3)和偏铌酸锶钡(Bax·Sr1-x·Nb2O5)等,它们不含有毒的铅,对环境保护有利。
3特性介电性及弹性性质压电陶瓷的介电性是反映陶瓷材料对外电场的响应程度,通常用介电常数ε0来表示。
压电陶瓷的弹性系数是反映陶瓷的形变与作用力之间关系的参数。
压电陶瓷材料同其它弹性体一样,遵循胡克定律。
压电陶瓷的压电性压电陶瓷最大的特性是具有压电性,包括正压电性和逆压电性。
正压电性是指某些电介质在机械外力作用下,介质内部正负电荷中心发生相对位移而引起极化,从而导致电介质两端表面内出现符号相反的束缚电荷。
4制作工艺工艺流程图如下:配料--混合磨细--预烧--二次磨细--造粒--成型--排塑--烧结成瓷--外形加工--被电极--高压极化--老化测试。
压电陶瓷的制造特点是在直流电场下对铁电陶瓷进行极化处理,使之具有压电效应。
一. 概述压电陶瓷是一种具有压电效应的多晶体,由于它的生产工艺与陶瓷的生产工艺相似(原料粉碎、成型、高温烧结)因而得名。
某些各向异性的晶体,在机械力作用下,产生形变,使带电粒子发生相对位移,从而在晶体表面出现正负束缚电荷,这种现象称为压电效应。
晶体的这种性质称为压电性。
压电性是J·居里和P·居里兄弟于1880年发现的。
几个月后他们又用实验验证了逆压电效应、即给晶体施加电压时,晶体会产生几何形变。
1940年以前,只知道有两类铁电体(在某温度范围内不仅具有自发极化,而且自发极化强度的发向能因外场强作用而重新取向的晶体):一类是罗息盐和某些关系密切的酒石酸盐;一类是磷酸二氢钾盐和它的同品型物。
前者在常温下有压电性,技术上有使用价值,但有易溶解的缺点;后者要在低温(低于—14 C)下才有压电性,工程使用价值不大。
1942-1945年间发现钛酸钡(BaTiO)具有异常高的介电常数,不久又发现它具有压电性,BaTi O压电陶瓷的发现是压电材料的一个飞跃。
这以前只有压电单晶材料,此后出现了压电多晶材料——压电陶瓷,并获得广泛应用。
1947年美国用BaTiO陶瓷制造留声机用拾音器,日本比美国晚用两年。
BaTiO存在压电性比罗息盐弱和压电性随温度变化比石英晶体大的缺点。
1954年美国B·贾菲等人发现了压电PbZrO -PbTiO(PZT)固溶体系统,这是一个划时代大事,使在BaTiO时代不能制作的器件成为可能。
此后又研制出PLZT透明压电陶瓷,使压电陶瓷的应用扩展到光学领域。
迄今,压电陶瓷的应用,上至宇宙开发,下至家庭生活极其广泛。
我国对压电陶瓷的研究始于五十年代末期,比国外晚10年左右,目前在压电陶瓷的试制、工业生产等方面都已有相当雄厚力量,有不少材料已达到或接近国际水平。
二. 压电陶瓷压电性的物理机制压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释,晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象、因此压电性与极化,形变等有密切关系。
压电陶瓷材料湖南工学院学院:材料与化学工程专业:无机非金属材料工程学号:09701540130姓名:姜庭燕时间:2012年5月16日压电陶瓷材料—PZT陶瓷一、压电陶瓷材料简介压电陶瓷,一种能够将机械能和电能互相转换的功能陶瓷材料,属于无机非金属材料。
这是一种具有压电效应的材料。
它在工业生产和日常生活中得到了广泛的应用。
由压电陶瓷构成的超高精度、低能耗、控制简便的驱动器,在精密工程中起到了非常重要的作用。
1、压电陶瓷材料的基本原理压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。
如果压力是一种高频震动,则产生的就是高频电流。
而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。
也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。
压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。
例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。
二、PZT压电陶瓷的发展压电陶瓷是一种能够将机械能和电能互相转换的信息功能陶瓷材料。
当在某些各向异性的晶体材料上施加机械应力时,在晶体的某些表面上会有电荷出现。
这一效应称为正压电效应,晶体的这一性质,称为压电性。
1880年,居里兄弟最早发现电气石具有压电效应,1881年,居里兄弟实验发现,在晶体上施加电压时,则晶体会产生几何形变。
这一效应被称为逆压电效应,并给出石英相同的正逆压电常数。
1894年沃伊特(Voigt)指出,仅无对称中心的20种点群的晶体才可能具有压电效应。
石英是压电晶体的代表,它一直被广泛应用至今。
利用石英的压电效应可制成振荡器和滤波器等频控元件。
空气用压电陶瓷
空气用压电陶瓷是一种可以将空气中的振动或压力转换成电能的陶瓷材料。
它通常由铅酸锆(PZT)等压电陶瓷材料制成,具有良好的压电性能。
空气用压电陶瓷可以应用于一些特定的领域和场合,例如实时监测环境中的空气质量,测量和监测空气中的声音、振动等。
它可以应用于气体流量计、空气质量监测仪器、声音传感器等设备中,用于收集和转换空气中的信号。
此外,空气用压电陶瓷还可以应用于能量收集和转换领域。
通过将其装置在机械设备或结构的表面,当空气中的振动或压力作用于陶瓷材料时,它能够产生电能,并用于供电或存储。
这种技术可以应用于自供能传感器、智能结构监测等领域。
空气用压电陶瓷在环境感知、能量收集等领域具有广泛的应用前景,但也面临着一些挑战,例如对材料的制备工艺和性能的要求较高,对材料的稳定性和耐久性有一定要求等。
因此,需要不断研究和改进压电陶瓷的制备技术和性能,以满足不同应用需求。
压电陶瓷特点
压电陶瓷是一种特殊的陶瓷材料,具有压电效应,即在施加或取消机械压力时会产生电荷分布的变化。
以下是压电陶瓷的一些特点:
1. 压电效应:压电陶瓷的最显著特点是具有压电效应。
当施加压力或拉伸力时,其晶格结构发生变化,导致正电荷和负电荷在陶瓷内部的分布发生变化,从而产生电荷。
这个电荷分布的变化产生的电场使得压电陶瓷呈现出电荷的极性。
2. 压电材料应用广泛:压电陶瓷广泛应用于传感器、换能器、声波器件等领域。
例如,压电陶瓷可以用于制造压电传感器,用于检测和测量压力、力、温度等物理量。
3. 高频响应:压电陶瓷具有较高的频率响应能力,因此常被应用于声波器件,如扬声器、超声波发生器等。
4. 机械刚性好:压电陶瓷具有较好的机械刚性,可以在较大的压力范围内保持其稳定性,这使得它在一些需要耐高压力环境的应用中具有优势。
5. 温度稳定性:压电陶瓷具有相对较好的温度稳定性,能够在一定温度范围内保持压电效应的稳定性。
6. 易加工:压电陶瓷易于制备和加工,可以通过陶瓷成型和烧结等工艺进行制造,使其形成不同形状和尺寸的器件。
7. 良好的电机械能换能性能:压电陶瓷具有良好的电机械能换能性能,即可以将电能转换为机械能,也可以将机械能转换为电能。
8. 耐腐蚀性:压电陶瓷具有较好的耐腐蚀性,可以在一些特殊环境下使用。
总体而言,压电陶瓷以其独特的压电性能在多个领域有广泛的应用,从传感器到声学器件等,都发挥着重要的作用。