信号与系统讲义.ppt
- 格式:ppt
- 大小:436.50 KB
- 文档页数:10
信号与系统(郑君⾥)第⼆版讲义第⼆章第⼆章连续时间系统的时域分析第⼀讲微分⽅程的建⽴与求解⼀、微分⽅程的建⽴与求解对电路系统建⽴微分⽅程,其各⽀路的电流、电压将为两种约束所⽀配: 1.来⾃连接⽅式的约束:KVL 和KIL ,与元件的性质⽆关。
2.来⾃元件伏安关系的约束:与元件的连接⽅式⽆关。
例2-1 如图2-1所⽰电路,激励信号为,求输出信号。
电路起始电压为零。
图2-1解以输出电压为响应变量,列回路电压⽅程:所以齐次解为:。
因激励信号为,若,则,将其代⼊微分⽅程:所以,从⽽求得完全解:由于电路起始电压为零并且输⼊不是冲激信号,所以电容两端电压不会发⽣跳变,,从⽽若,则特解为,将其代⼊微分⽅程,并利⽤起始条件求出系数,从⽽得到:⼆、起始条件的跳变——从到1.系统的状态(起始与初始状态)(1)系统的状态:系统在某⼀时刻的状态是⼀组必须知道的最少量的数据,利⽤这组数据和系统的模型以及该时刻接⼊的激励信号,就能够完全确定系统任何时刻的响应。
由于激励信号的接⼊,系统响应及其各阶导数可能在t=0时刻发⽣跳变,所以以表⽰激励接⼊之前的瞬时,⽽以表⽰激励接⼊以后的瞬时。
(2)起始状态:,它决定了零输⼊响应,在激励接⼊之前的瞬时t=系统的状态,它总结了计算未来响应所需要的过去的全部信息。
(3)初始状态:跳变量,它决定了零状态响应,在激励接⼊之后的瞬时系统的状态。
(4)初始条件:它决定了完全响应。
这三个量的关系是:。
2.初始条件的确定(换路定律)电容电压和电感电流在换路(电路接通、断开、接线突变、电路参数突变、电源突变)瞬间前后不能发⽣突变,即是连续的。
时不变:时变:例电路如图2-2所⽰,t=0以前开关位于"1"已进⼊稳态,t=0时刻,开关⾃"1"转⾄"2"。
(1)试从物理概念判断、和、。
(2)写出t>0时间内描述系统的微分⽅程式,求的完全响应。
图2-2解(1)换路前电路处于稳态电感相当于短路,电感电流,电容相当于开路= 0,= = 0。