ArcGIS 第7章 坡面地形因子提取
- 格式:pptx
- 大小:9.25 MB
- 文档页数:38
DEM坡面地形因子提取1.背景作为地形特征线的山脊线、山谷线对地形、地貌具有一定的控制作用。
它们与山顶点、谷底点以及鞍部点等一起构成了地形及其起伏变化的骨架结构。
同时由于山脊线具有分水性,山谷线具有合水性特征使得它们在工程应用方面具有特殊的意义。
因此在数字地形分析中,山脊线和山谷线的提取和分析是具有很大应用价值的。
2.目的了解基于DEM坡面地形因子提取的原理;掌握坡度、坡向、坡面曲率因子的提取方法及坡度分级图的制作;能够利用坡面地形因子与其它空间分析方法相结合以解决实际应用问题。
3.要求(1)技术流程正确,可视化准确、直观、形象;(2)画出实现的技术流程图,对构建关键技术点的目的和意义给出简要说明。
4.数据一幅25m分辨率的黄土地貌DEM数据,区域面积大约有140 km2。
5.实验内容(1)坡度a.添加Dem数据并激活它,打开spatial analyst工具。
b.从【Surface Analysis】菜单中选择【Slope】命令。
c.生成新的坡度主题slope of dem。
d.双击左边的图例,重新调整坡度分级。
(2)坡向a.在视图目录表中添加DEM并激活它,打开spatial analyst工具。
b.从【Surface Analysis】菜单中选择【Aspect】命令。
c.显示并激活生成的坡向主题Aspect of dem。
(3)坡面曲率因子平面曲率:a.激活坡向数据。
b.从【Surface Analysis】菜单中选择【Slope】命令。
c.生成平面曲率层面Slope of Aspect。
剖面曲率:a.激活坡度数据。
b.从【Surface Analysis】菜单中选择【Slope】命令。
c.显示并激活生成的剖面曲率层面Slope of Slope。
6.关键技术:提取平面曲率中消除北坡的误差1)提取DEM层的坡向主题,再对此坡向主题提取坡度,得到的主题记为A;2)在【Analysis】菜单下使用【Calculator】命令,公式为[[DEM-H]*(-1)],提取DEM层的负地形;3)提取负地形的坡向的坡度,记为B;4)在【Analysis】菜单下使用【Calculator】命令,公式为[[[A+B]-[A-B].abs.]/2],即可求出没有误差的DEM的平面曲率。
实验二地形因子的提取与三维可视化一、实验目的掌握三维分析中的表面分析(地形因子的提取及各种指标的量算)及在ArcScene 中进行数据的三维可视化。
二、实验准备PC、ArcGIS软件三、实验内容1、地形因子的提取:坡度、坡向、坡长、变坡率、地形粗糙度、起伏度、高程变异系数等。
2、表面积体积计算、断面分析、表面阴影显示;3、三维可视化及飞行漫游。
四、实验步骤地形因子的提取1.坡度(坡向)的提取在Spatial Analyst下拉菜单中选择表面分析, 在弹出的下一级菜单中点击坡度(坡向),出现坡度(坡向)对话框,完成坡度提取(坡向)坡度坡向2,计算坡度与坡向变率对坡度和坡向分别再求取坡度坡度变率坡向变率3,平面曲率、剖面曲率的提取平面曲率、剖面曲率的提取过程为:打开ArcGIS的Toolbox,在Spatial Analyst Tools底下选择表面分析,在表面分析的下一级菜单中选择曲率。
打开曲率对话框,完成平面及剖面曲率的提取平面曲率剖面曲率4,提取地形剖面1,在ArcMap中添加数据,然后在3D Analyst工具条上选择该数据。
2,使用线插值工具创建线,以确定剖面线的起终点。
3. 使用创建剖面图工具生成剖面图。
4,在生成的剖面图标题栏上点击右键,选择属性(Properties)项,进行布局调整与编辑。
5,提取表面阴影与DEM叠加显示6,三维阴影显示在ArcScene三维场景中,设置栅格表面自身的高程值为其基准高程后,在属性对话框的渲染选项卡中,选中相对于光照位置显示阴影复选框,使表面具有阴影显示。
同时可以使用光滑阴影工具使阴影表面更光滑7,使用动画旋转激活之后,可以使用场景漫游工具(Navigate)将场景左右拖动之后,即可开始进行旋转,旋转的速度决定于鼠标释放前的速度,在旋转的过程中也可以通过键盘的Page Up键和Page Down键进行调节速度。
点击场景即可停止其转动。
改变其背景色、照明度等属性,再次观察其显示效果。
基于GIS的坡面地形因子提取与分析作者:王娜娜徐珍陈伟华来源:《安徽农学通报》2017年第12期摘要:该文基于GIS软件和DEM数据,提取并分析一阶、二阶及复合坡面地形因子中的坡度、坡向、剖面曲率、地表粗糙度、高程变异系数5种地形因子。
结果表明:榆中县坡度变幅为0°~70.7213°;坡向分析中阳坡占总面积的45.04%,阴坡占53.87%;剖面曲率在0~4.90379范围内变化;地表粗糙度的变幅为1~4.39377;地形高程变异系数在0~0.0912272范围内变化。
通过对该区域坡面地形因子的提取,分析在这些地形因子的作用下该区域水土流失与土壤侵蚀的趋势,为榆中县进行水土保持定量研究提供科学依据。
关键词:地形因子;GIS;坡面;DEM中图分类号 S157 文献标识码 A 文章编号 1007-7731(2017)12-0165-03Absrtact:Based on the GIS and DEM data,five terrain factors,including slope,the slope direction,section curvature,surface roughness and coefficient of variation,are extracted and analyzed for the first order,two order and composite slope terrain factors. The results showed that the gradient of Yuzhong County was 0°~70.7213°,the sunny slope was 45.04% of the total area,the shade slope was 53.87%,the section curvature changed in 0~4.90379,the variation of surface roughness was 1~4.39377,the coefficient of variation varied within 0~0.0912272. Through the extraction of topographic factors in the area,the trend of water loss and soil erosion under the action of these terrain factors is analyzed,which provided scientific basis for the quantitative study of Yuzhong County soil and water conservation.Key words:Terrain factors;GIS;Slope;DEM地形分析是认知地形环境的重要方式,地形因子的提取对水土流失、土地利用及生态评价研究具有重要作用,不同研究尺度下研究的地形因子不一。
基于GIS的区域坡度坡长因子提取算法张宏鸣;杨勤科;刘晴蕊;郭伟玲;王春梅【摘要】为提高基于地理信息系统的区域土壤侵蚀研究、水土保持环境效应评价、流域水文分析等的应用效率,设计新的坡度坡长(LS)因子算法,利用正向-反向遍历算法取代原累积坡长算法,以获取区域尺度下的LS因子.实验结果表明,在计算精度允许的范围内,新算法使计算机运行效率有较大幅度的提高.【期刊名称】《计算机工程》【年(卷),期】2010(036)009【总页数】3页(P246-248)【关键词】地理信息系统;数字高程模型;ARC宏语言;坡度坡长;中国土壤流失方程【作者】张宏鸣;杨勤科;刘晴蕊;郭伟玲;王春梅【作者单位】西北农林科技大学信息工程学院,杨凌,712100;西北大学城市与资源学系,西安,710069;西北农林科技大学信息工程学院,杨凌,712100;中科院水土保持研究所,杨凌,712100;中科院水土保持研究所,杨凌,712100【正文语种】中文【中图分类】TP301.61 概述自20世纪90年代以来,随着人们对全球环境问题的日益关注和地理信息系统(Geographic Information System,GIS)技术与土壤侵蚀模型的结合,USLE(Universal Soil Loss Equation)[1]和RUSLE(Revised Universal Soil Loss Equation)[2]被应用于区域尺度土壤侵蚀评价和制图中[3]。
在这种应用中,最关键的环节被认为是基于 GIS实现区域尺度坡度坡长(slope Length and slope Steepness,LS)因子专题层的计算[4]。
文献[5-8]先后设计了相应流程及算法,但在洼地填充、初始坡长、边界检测、LS算法等方面都存在问题。
本文在van Remortel C++代码的基础上引进了文献[9-10]根据中国侵蚀地形提出的陡坡地LS因子算法,设计开发了区域尺度LS因子计算工具,并在典型地区进行了计算实验。
ArcGIS实验操作(八)地形特征信息提取数据:在data/Ex8/文件下·dem:分辨率为5米的栅格DEM数据。
·Result文件夹:·shanji:提取的山脊线栅格数据;·shangu:提取的山谷线栅格数据;·hillshade:地形晕渲图。
要求:利用所给区域DEM数据,提取该区域山脊线、山谷线栅格数据层。
操作步骤:1.加载DEM数据,设置默认存储路径,使用空间分析模块下拉箭头中的表面分析工具,选择坡向工具(Aspect),提取DEM的坡向数据层,命名为A。
该DEM的坡向数据如下图所示:提取A的坡度数据层,命名为SOA1。
3.求取原始DEM数据层的最大高程值,记为H:由此可见该最大高程值H为1153.79 使用栅格计算器,公式为(H-DEM),求反地形DEM数据如下:反地形DEM数据层calculation如下(可与原始DEM相比较):4.基于反地形DEM数据求算坡向值反地形DEM数据层calculation的坡向数据如下:5.提取反地形DEM坡向数据的坡度数据,记为SOA2,即利用SOA方法求算反地形的坡向变率。
6.使用空间分析工具集中的栅格计算器,求没有误差的DEM的坡向变率SOA,公式为SOA=(([SOA1]+[SOA2])-Abs([SOA1] -[SOA2]))/2其中,Abs为求算绝对值,可点击右下侧将其查找出来。
没有误差的DEM的坡向变率SOA如下图所示:7.再次点击初始DEM数据,使用空间分析工具集中的栅格邻域计算工具(NerghborhoodStatistics);设置统计类型为平均值(mean)邻域的类型为矩形(也可以为圆),邻域的大小为11×11(这个值也可以根据自己的需要进行改变),则可得到一个邻域为11×11的矩形的平均值数据层,记为B。
8.使用空间分析工具集中的栅格计算器,求算正负地形分布区域,公式为C = [DEM]-[B]。
地形因子LS制图过程DEM (1:5万)填充后生产河流流向图填充后生成坡度图90m格网DEM 非累计流量分析生成坡度图S=10.8sin B+0.036 0<5 °S=16.8sin 0-0.5 5 °«90S=21.9sin 0-0.96 0 祀°m=0.2 0<1 °m=0.3 1 °冬3 m=0.4 3 °V5 m=0.5 0蓉°坡度因子S图坡长因子L图根据上图及公示生成坡度因子图自L*r*rc-@ EE3■° - J.WSWTWcon( [Slope] < 5,10.8 * Sin( [Slope]) + 0.036,c on ([Slope] < 10,16.8 Sin ([Slope]) - 0.5,21.9 * Sin ([Slope]) - 0.96))计算坡度因子过程图con( [Slope] < 5,10.8 * Sin([Slope] * 3.1415926 / 180) +0.036,con([Slope] >= 10,21.9 * Sin([Slope] * 3.1415926 / 180)-0.96,16.8 * Sin([Slope] * 3.1415926 / 180) - 0.5))•P轧/»和畑Icfftlir.hJi缶1ASn ICbi I Jl&l ITtfi■XT”-□ #i3 iSSMtlW - 9 -jr^S&gJI] 巾他因曲・用WTE2SS口23 MCKtt ■列珂聲8?■胸M SHU1U4J 和5L/H9L3W3Fi]].a»qua 时.三 O *3-tVhU U2T«iW- .IL*■■Mild二盟KUHW- - 3 ]»»TII■W JJWFW -弭■■ ■MBTH - KI 33EKMB■ti UBIK4 - P KM 咖■专.HVIX1M " >M KWIIW!■ ewscmw - 9El FilL_dmiiO丄丄|oW|融P H•:耳悯』叶[I八卄卜创叶:h II.叭・加吟M H攀13 ■-1KQ□KK -! w■ 0* ! »-・a3I□ DinvILKZ— -■骨I■•暮nmvusL n t - 3宦£!■a・Ki 3K -3■» 4■» ££J » . -_ H -二.X 35 ; D _■祐 suhT:¥f x t s■H9-9-Ss Ful —do£lJ■ B ^. -sb*亍亍-•,□■ K £-- r&EI E E -H H S H --• •r _・・n ^T £L1 17匕・cniRTWT!r=?・wTt-d v T ..r ■ K E Y S E S r _v f x -»f £ =EI ・r ・r f巨 LIEJCMlJMLy "I_L ■-£F^B-H E -i T・・11"■r L .U J> M .a L t o CWJb-iTImlF s z ^ V -=E ■p A r b c i * 仲 -・V 7E ?% FE&>-r I L-a -e—*r .B rr m>Fin- U A V .&-V -\n E f t - F "E J E v »r i r t - 督 F 31- F --T -^f f -31 J B -4+』g-H-FA豐Fj 占血I £_令■ E p •--V-V +二▼亍・H暮J - VhsgrFlzr・・・iJ-- V r A ^-S M--V M -w on -・&・・|0■v F ni m•el -Z E -S・ Q E i ES 3 S S 4J Hconasope;lo.2bonas-ope;3o3conas-ope〕A 5040.5)))c F 3a _-aI 3J fluWO ER -L :■F■中I s■K.4Hgll・■ Ln- - 0M - SJ S B />»£H-Ish s x-■:旳KXu 刃! B N -2.H UMKK1T ■ 's ^£1■ ILS a s . ■a s s -u - □ w U S 25E ・ s L s f i J - — - > c *-L T M - I B 三LTM-■ F 7--EHJ r u 4K 7«£ff-f u v .H "HA A M U .r4-kLvn-xr• -^^3? Jfth-•*!=■■mBnT<<-•・ilu4wT.M1E.r »F b i £-E 4 EmLeT r «r -"-F »-?L - F rir-• XP.TA^IrrillnLT .M F-L + 直・KM2(T5a.■J4-巴易%f E>H l y r wr w l -V -3-1 u £c~、ff d -1 £<■V v u -x f _.>y ■%-?L4rllA4L M E L UEF L g■l p =m l"=-iM i u J l fnv a -s uEarM r t K-£ M r i -n x r»Li'-・■ l L m ・--・■ u2Taa_ Tr・E .3言 5*riEL3 ■: □ 诅强《2V^uHijjK asY^u.Hi#.:金餉■洛 Q m-Cd ; nla'i^.■o -1 ■s* ■ssifi'm■氐 RZKZJE* zin 口 li k^lCliH- ZJ I5< 12KA51E-■皱*1.1畑 ■曲 1M7IHJ(i 也HMITII 1MM«E I 弓J3a 机巒] i« iswm Z3 IllLTWil 曲细価 •MKhxaSMi T2 EC«5«II «3dnLi4<itiLL al-vr«LL求得流向图,为了算是否为根二con( [flowdir] == 2 | [flowdir] == 8 | [flowdir] == 32 | [flowdir]==128,1.414,1)■ L4nhffi!i - ]Calnla'.i^t^H-iK I 4H■ L H tlnljr«£.E ■:Xw_n> ■I0.T ■ D.3 ■ M■-□ Cklrjlkii-Md¥d.u■,由吐.0 £Is■E HF - Q W■Zalriiilhl itfi¥d.u_ »>**. 19 ms ■1 0妙■D - s. msEim■ 2. SMEITS! - E> BEEHZ2IT ■ L VS ^22I $ - ■ M订咖祸-jEi.l]u9L53l Oft UI0I5®亠14诡碾丹 ■ H LHfiCTB -血 4LLL7MIPow(90 * [xiu] / (Cos([Slope] * 3.1415926 / 180)* 22.1),[mfac])Silk t 屈蹈 Ik- I. fl ■ In>^ilUUC :< ■ I■i kUDUBi - i nim 拈WE 謝曲con( [slope] < 5,10.8 * Sin([slope] * 3.1415926 / 180) +0.036,con([slope] >= 10,21.9 * Sin([slope] * 3.1415926 / 180)-0.96,16.8 * Sin ([slope]* 3.1415926 / 180) - 0.5))T-U.W■ IF□Sa 4 □ 3同詁!*^W- ■血 4i*-P EJfJalii Tdw一』屮 皿亞耳 I I。
1、本章主题编号2、本章内容概述(1)概述● 坡面因子的分类及提取方法● 确定坡面因子提取的算法基础● 提取坡面因子的常用分析窗口(2)坡度、坡向● 坡度的提取● 坡向的提取(3)坡形● 宏观坡形因子● 地面曲率因子● 地面变率因子(4)坡长(5)坡位(6)坡面复杂度因子3、本章内容3.1 概述(1)坡面因子的分类及提取方法● 坡面因子的分类按照坡面因子所描述的空间区域范围,可以将坡面因子划分为微观坡面因子与宏观坡面因子两种基本类型。
常用的微观坡面因子主要有:坡度、坡向、坡长、坡度变率、坡向变率、平面曲率、剖面曲率等。
常用的宏观坡面因子主要有:地形粗糙度、地形起伏度、高程变异系数、地表切割深度,以及宏观坡形因子(直线形斜坡、凸形斜坡、凹形斜坡、台阶形斜坡)等。
按照提取坡面因子差分计算的阶数,可以将坡面因子分为一阶坡面因子、二阶坡面因子和高阶坡面因子。
一阶坡面地形因子主要有坡度和坡向因子。
二阶坡面因子主要有坡度变率、坡向变率、平面曲率、剖面曲率等因子。
复合坡面因子有坡长、坡形因子、地形粗糙度、地形起伏度、高程变异系数和地表切割深度等。
按照坡面的形态特征,可将坡面因子进一步划分为:坡面姿态因子,坡形因子,坡位因子,坡长因子以及坡面复杂度因子五大类。
● 提取坡面因子的基本方法首先将坡面的形态特征或各个坡面因子进行定量化描述,完成求导的数学模型,在此基础上,建立其以DEM为基本信息源进行提取的技术路线,并通过软件实现形成一套易于计算机操作的方法。
(2)确定坡面因子提取的算法基础● DEM格网数据的空间矢量表达(如图7.1)图7.1 DEM格网数据的空间矢量模型● 基于空间矢量模型的差分计算算法主要有数值分析方法、局部曲面拟合算法、空间矢量法、快速傅立叶变换等。
其中数值分析方法包含有简单差分算法、二阶差分、三阶差分(带权或不带权)和Frame差分;局部曲面拟合又有线性回归平面、二次曲面和不完全四次曲面(据刘学军,2002)。
arcgis坡长因子计算全文共四篇示例,供读者参考第一篇示例:ArcGIS是一款专业的地理信息系统软件,具有强大的功能和广泛的应用领域。
在地理信息系统中,坡长因子计算是一个重要的内容,用于衡量地表坡度对水文过程的影响。
本文将介绍ArcGIS中如何进行坡长因子计算,并探讨其在地理信息系统中的应用。
一、什么是坡长因子计算坡长因子(LS因子)是地表坡度与坡长的函数关系,用于描述地形对水文过程的影响。
在土壤侵蚀模型中,坡长因子是衡量坡面侵蚀形态的一个重要指标。
坡长因子越大,说明坡面越陡、坡长越长,土壤侵蚀的风险也就越高。
在ArcGIS中,可以通过数字高程模型(DEM)数据来计算坡长因子。
DEM数据是地形表面的数字化表示,可以通过DEM数据来分析地形特征,计算坡长因子等。
二、ArcGIS中的坡长因子计算方法在ArcGIS中,可以通过Spatial Analyst模块进行坡长因子的计算。
下面我们以一个简单的示例来介绍如何在ArcGIS中计算坡长因子。
1. 准备DEM数据首先需要准备DEM数据,可以通过DEM数据源下载或自行采集获取。
在ArcGIS中,打开DEM数据并将其加载到地图中。
2. 计算坡度和坡向使用Spatial Analyst模块中的“坡度”工具可以计算DEM数据中每个像元的坡度值。
通过坡度值可以得到地表坡度的信息,为后续计算坡长因子做准备。
3. 计算坡长在ArcGIS中,可以使用累积坡长工具来计算坡长。
该工具可以根据地表坡度和坡向信息,计算出每个像元点到最下游点的累积坡长。
通过累积坡长可以得到坡长因子的值。
最后利用坡度和累积坡长的数据,可以通过公式计算出坡长因子的值。
坡长因子的计算公式为:LS = Slope/L * (1+ sin(direction))/2。
Slope为坡度,L为累积坡长,direction为坡向。
通过以上步骤,可以在ArcGIS中计算出坡长因子的数值,并将其应用到地理信息系统的分析中。