高斯投影高斯坐标系与大地坐标系的关系
- 格式:ppt
- 大小:5.61 MB
- 文档页数:28
空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系本篇学习了空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系。
这个个坐标系有时很容易弄混淆!(一)空间直角坐标系空间直角坐标系的坐标原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面与赤道的交点,Y轴位于赤道面上切按右手系于X轴呈90度夹角,某点中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。
空间直角坐标系可用如下图所示:(二)大地坐标系大地坐标系是采用大地纬度、经度和大地高程来描述空间位置的。
纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高程是空间的点沿着参考椭球的法线方向到参考椭球面的距离。
地面点的高程和国家高程基准(1)绝对高程。
地面点沿垂线方向至大地水准面的距离称为绝对高程或称海拔。
过去我国采用青岛验潮站(tide gauge station)1950~1956年观测成果求得的黄海平均海水面作为高程的零点,称为“1956年黄海高程系”(Huanghai height system 1956水准原点高程为72.289m)。
后经复查,发现该高程系的验潮资料时间过短,准确性较差,改用青岛验潮站1950~1979年的观测资料重新推算,并命名为“1985年国家高程基准”(Chinese height datum 1985)。
国家水准原点(leveling origin高程为72.260m)设于青岛市观象山附近,作为我国高程测量的依据。
它的高程值是以“1985年国家高程基准”所确定的平均海水面为零点测算而得。
在使用原“1956年黄海高程系”的高程成果时,应注意将其换算为新的高程基准系统。
(2)相对高程。
地面点沿铅垂线方向至任意假定的水准面的距离称为该点的相对高程,亦称假定高程。
在图l—5中,地面点A和B的相对高程分别为H'A 和H'B 。
高斯坐标和大地坐标的转换高斯坐标和大地坐标是地理学和测量学中常用的两种坐标系统。
它们之间的转换对于地理信息系统(GIS)和测绘工作非常重要。
本文将详细阐述高斯坐标和大地坐标的转换过程及其在实际应用中的意义。
首先,我们来了解一下高斯坐标和大地坐标的定义及特点。
高斯坐标,也称为平面直角坐标,是一种二维坐标系统,用于描述平面上的点的位置。
它的基准面通常选取为椭球体的切面,通过将地球表面投影到平面上而得到。
高斯坐标的优点是计算简单、精度高,适用于小范围区域的测量。
大地坐标,也称为地理坐标,是一种三维坐标系统,用于描述地球上的点的位置。
它的基准面选取为椭球体的表面,通过经纬度来表示点的位置。
大地坐标的优点是能够全面反映地球上各点的位置关系,适用于大范围区域的测量。
在实际应用中,由于高斯投影和地球椭球体的差异,高斯坐标和大地坐标之间存在一定的偏差。
因此,需要进行坐标转换来保证数据的准确性和一致性。
下面我们将介绍两种常用的坐标转换方法。
一种方法是从高斯坐标转换到大地坐标。
这个过程涉及到投影反算和大地测量的计算。
首先,根据高斯投影的参数,将高斯坐标反算为平面上的点的地理坐标。
然后,根据大地测量的原理,通过计算经纬度和大地方位角,将点的地理坐标转换为大地坐标。
另一种方法是从大地坐标转换到高斯坐标。
这个过程涉及到大地测量的计算和投影正算。
首先,根据大地测量的原理,通过计算大地方位角和距离,将点的大地坐标转换为经纬度。
然后,根据高斯投影的参数,将经纬度正算为平面上的点的高斯坐标。
这两种转换方法在实际应用中都有广泛的应用。
比如,在地图制作中,通过高斯坐标和大地坐标的转换,可以将不同坐标系统表示的点进行统一,使得地图的绘制更加准确。
在地理信息系统中,将不同坐标系统表示的数据进行转换,可以实现数据的叠加和分析,提供更多有用的信息。
不仅如此,高斯坐标和大地坐标的转换还在工程测量、导航定位、地质勘探等领域具有重要的应用价值。
比如,在工程测量中,通过高斯坐标和大地坐标的转换,可以实现工程设计和实际施工之间的无缝衔接;在导航定位中,通过高斯坐标和大地坐标的转换,可以准确计算航行的航向和距离;在地质勘探中,通过高斯坐标和大地坐标的转换,可以精确定位地下资源的位置和分布。
地理坐标系与投影坐标系1、地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。
很明显,Geographic coordinate system是球面坐标系统。
我们要将地球上的数字化信息存放到球面坐标系统上,如何进行艹作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。
这样的椭球体具有特点:可以量化计算的。
具有长半轴,短半轴,偏心率。
以下几行便是Krasovsky_1940椭球及其相应参数。
Spheroid: Krasovsky_1940Semimajor Axis: 6378245.000000000000000000Semiminor Axis: 6356863.018773047300000000Inverse Flattening(扁率): 298.300000000000010000然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。
在坐标系统描述中,可以看到有这么一行:Datum: D_Beijing_1954表示,大地基准面是D_Beijing_1954。
--------------------------------------------------------------------------------有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用。
完整参数:Alias:Abbreviation:Remarks:Angular Unit: Degree (0.017453292519943299)Prime Meridian(起始经度): Greenwich (0.000000000000000000) Datum(大地基准面): D_Beijing_1954Spheroid(参考椭球体): Krasovsky_1940Semimajor Axis: 6378245.000000000000000000Semiminor Axis: 6356863.018773047300000000Inverse Flattening: 298.3000000000000100002、接下来便是Projection coordinate system(投影坐标系统),首先看看投影坐标系统中的一些参数。
我国三大常用坐标系区别(北京54、西安80和WGS-84)我国三大常用坐标系区别(北京54、西安80和WGS-84)1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。
西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.257221013、WGS-84坐标系WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。
坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。
本篇学习了空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系。
这个个坐标系有时很容易弄混淆!(一)空间直角坐标系空间直角坐标系的坐标原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面与赤道的交点,Y轴位于赤道面上切按右手系于X轴呈90度夹角,某点中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。
空间直角坐标系可用如下图所示:(二)大地坐标系大地坐标系是采用大地纬度、经度和大地高程来描述空间位置的。
纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高程是空间的点沿着参考椭球的法线方向到参考椭球面的距离。
地面点的高程和国家高程基准(1)绝对高程。
地面点沿垂线方向至大地水准面的距离称为绝对高程或称海拔。
过去我国采用青岛验潮站(tide gauge station)1950~1956年观测成果求得的黄海平均海水面作为高程的零点,称为“1956年黄海高程系”(Huanghai height system 1956水准原点高程为72.289m)。
后经复查,发现该高程系的验潮资料时间过短,准确性较差,改用青岛验潮站1950~1979年的观测资料重新推算,并命名为“1985年国家高程基准”(Chinese height datum 1985)。
国家水准原点(leveling origin高程为72.260m)设于青岛市观象山附近,作为我国高程测量的依据。
它的高程值是以“1985年国家高程基准”所确定的平均海水面为零点测算而得。
在使用原“1956年黄海高程系”的高程成果时,应注意将其换算为新的高程基准系统。
(2)相对高程。
地面点沿铅垂线方向至任意假定的水准面的距离称为该点的相对高程,亦称假定高程。
在图l—5中,地面点A和B的相对高程分别为H'A 和H'B。
(3)高差。
地面上任意两点的高程(绝对高程或相对高程)之差称为高差。
地理坐标系和投影坐标系是地图制图中常用的两种坐标系。
地理坐标系是用经度和纬度来表示地球上任意一点的位置,而投影坐标系则是将地球上的三维空间投影到平面上去,以便在地图上展示。
在地图制图过程中,常常需要将地理坐标系转换为投影坐标系,以便更好地展示地图信息。
本文将对2000国家大地坐标系对应的投影坐标系进行介绍和分析。
1. 2000国家大地坐标系2000国家大地坐标系是我国国家测绘局于2000年发布的新一代大地坐标系,取代了1980年国际椭球大地坐标系。
该坐标系以WGS-84坐标系为基准,通过对我国国土进行大范围的GPS观测数据进行了调查和研究,是我国国土测绘工作的重要成果之一。
2. 投影坐标系在地图制图中,为了更好地表达三维地理空间信息,常常需要将地球表面上的点投影到平面上,这就要用到投影坐标系。
在国际上常用的投影方法有墨卡托投影、兰伯特投影、正投影等多种,每种投影方法都有其适用的范围和特点。
3. 2000国家大地坐标系的投影坐标系2000国家大地坐标系对应的投影坐标系是高斯—克吕格投影。
高斯—克吕格投影是一种圆柱投影,它将地球椭球面投影到圆柱面上,再展开成平面图,以实现地图的绘制和测绘。
4. 高斯—克吕格投影的特点高斯—克吕格投影是一种等积投影,它保持了地图上面积的准确性,适用于世界各地的大范围测绘。
它还具有等角性,能够保持地图上角度的准确性,使得地图具有更好的可视效果。
另外,高斯—克吕格投影还能够减小纬度的变形,使得地图在不同纬度上的变形更加均匀。
5. 应用范围2000国家大地坐标系对应的高斯—克吕格投影在我国国土测绘中得到了广泛的应用。
它适用于各种比例尺的地图制图,包括区域地图、城市地图、乡镇地图等。
高斯—克吕格投影也适用于地图投影的大规模生产,比如数字地图的生产和更新、卫星影像的变形配准等。
6. 结语2000国家大地坐标系对应的高斯—克吕格投影是我国国土测绘领域的重要成果,它为我国地图制图和地理信息系统的发展提供了重要的支持。
国家2000坐标系和高斯坐标系1. 介绍国家2000坐标系和高斯坐标系国家2000坐标系和高斯坐标系是地图测绘中常用的两种坐标系统,它们分别在不同的地理信息领域有着广泛的应用。
国家2000坐标系通常用于大范围的地图制图和测绘,而高斯坐标系则更多地应用于局部地图的绘制和测量。
2. 国家2000坐标系国家2000坐标系是我国国家测绘局在2000年发布的新一代大地坐标系统。
它采用了高度精确的大地测量数据和新的坐标变换模型,适用于全国范围内的地图测绘和地理信息数据处理。
国家2000坐标系通过椭球体参数和坐标变换模型的改进,大大提高了地图的精度和一致性,为地理信息领域的发展提供了可靠的坐标基准。
3. 高斯坐标系高斯坐标系是一种采用高斯投影的平面坐标系统,适用于局部地图的绘制和测量。
它利用平行圈和经线的等距排列,将大范围的地理区域用平面坐标系表示,方便进行地图制图和测量。
高斯坐标系通常用于城市规划、土地管理以及地形图的绘制等领域,能够满足较高精度的地图制作需求。
4. 两种坐标系的应用国家2000坐标系和高斯坐标系在不同的地理信息领域有着各自的应用优势。
国家2000坐标系适用于大范围地图的绘制和地理信息数据的处理,能够提供高精度和一致性的地图基准。
而高斯坐标系则更适用于局部地图的测绘和制图,能够满足地图制作的高精度需求。
5. 个人观点和理解在我的看来,国家2000坐标系和高斯坐标系作为地图测绘中常用的两种坐标系统,各自具有独特的优势和适用范围。
这两种坐标系的使用能够为地理信息领域的发展提供可靠的地图基准和精确的地理信息数据,对于国家的规划、土地管理以及资源调查等领域都有着重要的意义。
6. 总结国家2000坐标系和高斯坐标系在地图测绘和地理信息领域有着广泛的应用,它们分别适用于不同范围的地图制图和测量。
国家2000坐标系通过椭球体参数和坐标变换模型的改进,提高了地图的精度和一致性,适用于大范围的地理信息数据处理;而高斯坐标系则更适用于局部地图的绘制和测量,能够满足地图制作的高精度需求。
投影坐标与大地坐标的转换方法与公式引言:地理信息系统(GIS)在现代社会中发挥着越来越重要的作用。
无论是城市规划、地图制作还是农业管理等,都需要精确而可靠的坐标转换方法。
在GIS中,常用的两种坐标系统是投影坐标和大地坐标。
本文将介绍投影坐标与大地坐标之间的转换方法和公式。
一、什么是投影坐标和大地坐标?投影坐标是指通过某种数学方法将地球的曲面进行投影变换,将地球表面上的点映射到平面上的坐标系统。
在投影坐标系统中,点的位置通过X和Y值来确定。
常用的投影坐标系统有UTM(通用横轴墨卡托投影)和高斯-克吕格投影等。
大地坐标,则是以地球椭球体上的经度和纬度来表示地球上的点位置。
在GIS 中,经度用度(°)、分(′)和秒(″)来表示,而纬度则用正负数来表示。
大地坐标系统常用的有WGS84(世界大地坐标系统)和GCJ-02(中国国家大地坐标系统)等。
二、投影坐标与大地坐标之间的转换方法在实际应用中,我们常常需要将大地坐标转换为投影坐标或反之。
以下是常用的转换方法和公式。
1.大地坐标转换为投影坐标:首先,将大地坐标转换为地心直角坐标。
利用WGS84椭球体参数,可以通过以下公式计算:X = (N+H)*cosφ*cosλY = (N+H)*cosφ*sinλZ = (N*(1-e²)+H)*sinφ其中,N为子午线曲率半径,H为大地水准面上的高程,φ为纬度,λ为经度。
然后,将地心直角坐标转换为投影坐标。
这里以UTM投影为例,可以通过以下公式计算:X' = k0*(X-X0)+500000Y' = k0*(Y-Y0)其中,k0为比例因子,X0和Y0为投影坐标原点的地心直角坐标。
2.投影坐标转换为大地坐标:首先,将投影坐标转换为地心直角坐标。
依然以UTM投影为例,可以通过以下公式计算:X = (X'-500000)/k0+X0Y = Y'/k0+Y0然后,将地心直角坐标转换为大地坐标。
高斯经纬度到平面坐标的转换高斯经纬度坐标系统是一种常用的地理坐标系统,常用于测量和定位地球上的点。
在实际应用中,为了更方便地进行计算和测量,我们通常需要将高斯经纬度坐标转换为平面坐标。
本文将从浅入深,逐步探讨高斯经纬度到平面坐标的转换方法和相关知识。
1. 高斯经纬度坐标系统简介高斯经纬度坐标系统是一种基于地球形状和结构的坐标系统。
它以地球质心为基准,并以特定的椭球体或大地水准面作为参考。
在该坐标系统中,经度表示地球上某一点与本初子午线的角度,纬度表示地球上某一点与赤道的角度。
2. 平面坐标系与高斯投影与高斯经纬度坐标系统相对应的是平面坐标系。
平面坐标系将地球表面投影到二维平面上,使得地图等可视化工具更易于理解和使用。
高斯投影是一种常用的平面坐标系投影方法,通过将地球表面切割成多个小区域,并分别进行投影,实现了高斯经纬度到平面坐标的转换。
3. 高斯投影中的参数和公式在高斯投影中,为了实现不同地区的精确测量,我们需要确定一些参数,例如中央子午线经度、纬度原点、投影面的圆锥或圆柱形状等。
还需要利用一些数学公式来进行坐标转换。
4. 高斯投影的具体计算方法高斯投影的计算方法比较复杂,通常需要借助专业的地理信息系统软件或编程语言进行实现。
在实际计算中,需要考虑大地测量学中的各种误差和修正,并结合坐标转换公式进行计算。
5. 高斯经纬度到平面坐标的应用高斯经纬度到平面坐标的转换在很多领域都有广泛的应用。
在地图制作和分析中,平面坐标可以用于测量距离和面积、定位地理要素等。
在导航系统中,高斯经纬度和平面坐标之间的转换可以帮助用户准确地确定位置和路径。
总结回顾:通过本文的介绍,我们了解了高斯经纬度坐标系统和平面坐标系的基本概念,以及高斯投影的原理和计算方法。
高斯经纬度到平面坐标的转换是一个复杂且关键的过程,在实际应用中需要考虑各种因素和误差。
通过将地球表面投影到二维平面上,我们可以更方便地进行测量和定位,为地理信息科学和相关领域的发展提供支持。
地理坐标系转换公式以下是几种常用的地理坐标系转换公式:1.地球椭球体转平面:地球椭球体转平面是将地球椭球体上的点的经纬度坐标转换为平面坐标的过程。
常用的公式有墨卡托投影、高斯-克吕格投影等。
-墨卡托投影:墨卡托投影是一种等角圆柱投影,其转换公式如下:x = R * lony = R * log(tan(π/4 + lat/2))其中,R为地球半径,lon为经度,lat为纬度,x和y为平面坐标。
-高斯-克吕格投影:高斯-克吕格投影是一种正轴等角圆锥投影,其转换公式如下:λs=λ-λ0B = 1 / sqrt(1 - e² * sin²(φ))ρ = a * B * tan(π/4 + φ/2) / (1 / sqrt(e² * cos²(φ0 - B * λs)^2))E = E0 + k0 * ρ * sin(B * λs)N = N0 + k0 * [ρ * cos(B * λs) - a * B]其中,λ为经度,φ为纬度,λ0和φ0为中央经线和纬度原点,a 为长半轴,e为椭球体偏心率,E和N为平面坐标,E0和N0为偏移量,k0为比例因子。
2.平面转地球椭球体:平面转地球椭球体是将平面坐标转换为经纬度坐标的过程。
常用的公式有逆墨卡托投影、逆高斯-克吕格投影等。
-逆墨卡托投影:逆墨卡托投影是墨卡托投影的逆过程,其转换公式如下:lat = 2 * atan(exp(y / R)) - π/2lon = x / R其中,R为地球半径,x和y为平面坐标,lat和lon为经纬度。
-逆高斯-克吕格投影:逆高斯-克吕格投影是高斯-克吕格投影的逆过程,其转换公式如下:φ1 = atan[(Z / √(Z² + (N0 - N)²))]φ0 = φ1 + ((e² + 1)/ (e² - 1)) * [sin(2φ1) + ((e² / 2) * sin(4φ1)) + ((e⁴ / 8) * sin(6φ1)) + ((e⁶ / 16) * sin(8φ1))]B = 1 / sqrt(1 - e² * sin²(φ1))β=N/(a*B)φ = φ1 - (β / 2) * [sin(2φ1) + ((e² / 2) * sin(4φ1)) + ((e⁴ / 8) * sin(6φ1)) + ((e⁶ / 16) * sin(8φ1))]λ = λ0 + (at an[(E - E0) / (N0 - N)]) / B其中,Z=√((E-E0)²+(N0-N)²),φ1为近似纬度,φ0为中央纬度,B为大地纬度变换系数,β为纬度差异因子,φ和λ为经纬度。