FLUENT求解器设置
- 格式:doc
- 大小:27.00 KB
- 文档页数:1
FLUENT参数设置1.网格设置:网格是影响仿真结果的重要因素,所以正确的网格设置非常重要。
(a)边界条件:首先,根据你的仿真模型,设置边界条件。
例如,如果你仿真的是空气流动在一个封闭空间中的问题,那么你需要设置墙壁、入口和出口的边界条件。
确保边界条件被准确地定义。
(b)网格划分:在网格划分中,你需要考虑网格精度和计算时间的平衡。
较精细的网格可以提供更准确的结果,但也会增加计算时间和内存需求。
所以要在增加精度和处理时间之间进行权衡。
(c)边界层网格:根据流场的特性,添加适当的边界层网格来更精确地捕捉均流条件。
(d)网格独立性:进行网格独立性分析,即通过在不同的网格细度上进行仿真,来判断模型结果是否收敛并保持一致。
2.物理模型设置:选择适当的物理模型是实现精确仿真的关键。
(a)流体模型:根据实际情况选择合适的流体模型。
例如,对于气体流动问题,可以选择标准的理想气体模型。
(b) 物理现象:考虑你希望研究或模拟的物理现象,并选择相应的模型。
例如,如果你希望研究湍流流动,可以选择湍流模型如k-epsilon模型。
(c)进一步模型设置:根据具体问题的特点,可以选择开启其他模型参数。
例如,对于多相流问题,需要开启相应的多相流模型。
3.数值设置:数值设置对于FLUENT的结果准确性和收敛性都有很大的影响。
(a)时间步长:根据仿真的时间尺度,选择适当的时间步长。
过大的时间步长可能导致不准确的结果,而过小的时间步长会增加计算时间。
(b)收敛准则:选择合适的收敛准则,例如残差的阈值。
一般来说,残差在迭代过程中应达到稳定状态,并且误差足够小。
(c)迭代方案:选择合适的求解器和预处理器。
FLUENT提供了多种求解器和预处理器的选择,根据具体问题进行设置。
4.结果输出:为了更好地理解仿真结果,合理的结果输出设置是必要的。
(a)监控参数:选择与你的研究目的相关的参数,如速度、温度、压力等,并设置相应的监控点。
(b)数值图表:选择合适的结果图表,如速度矢量图、压力分布图等,以更直观地观察结果。
FLUENT设置(1)读入网格,file→read→case;(2)检查网格,确保最小体积为正,grid→check;(3)缩放网格,grid→scale;(4)光顺/交换网格,grid→smooth/swap,直至number swapped为0;(5)求解器设置,define→models→solver,都是默认值(设置为分离求解器、隐式算法、三维空间、稳态流动、绝对速度、压力梯度为单元压力梯度计算);(6)设置计算模型,define→models→viscous,选用标准k-ε模型或RNG k-ε,其他保持默认设置;(7)设置运行环境,define→operating condition,参考压力选用默认值,不计重力,位置选在泵进口边;首先display→grid观察来流方向(对于叶轮要运用右手准则)然后将grid→scale中来流方向的值复制给define→operating condition(8)设置转速单位,define→units,改为rpm;(9)定义材料,define→materials,选择water-liquid即清水(若Fluent Fluid Materials中没有water-liquid,则点击Fluent Database在Fluent Fluid Materials中选择water-liquid);(10)设置交界面,define→grid interface;(11)定义边界条件,define→boundary conditions;如图部分典型边界条件设置蜗壳叶轮叶轮壁面蜗壳壁面进口出口(12)设置求解参数,solve→controls→solution,选择SIMPLE算法;(13)监视残差,solve→monitors→residual,修改收敛精度为10-5,并显示残差,solve→monitors→surface,同时监测进出口面上的总压;(14)初始化流场,solve→initialize→initialize,在Solution initialization选项中的reference frame中选择relative to cell zone,all zones;(15)保存case文件,file→write→case;(16)开始迭代计算,solve→iterate。
第一步:网格1、读入网格(File→Read→Case)2、检查网格(Grid→Check)3、平滑网格(Grid→Smooth/Swap)4、更改网格的长度单位(Grid→Scale)5、显示网格(Display→Grid)第二步:建立求解模型1、保持求解器的默认设置不变(定常)2、开启标准K-ε湍流模型和标准壁面函数Define→Models→Viscous第三步:设置流体的物理属性ari→Density→viscosity→第四步:设置边界条件对outflow、velocity-inlet、wall 采用默认值第五步:求解1、Solv→Controls→Solution中,Discretitation→Pressure→standardPressure→Momentum→2、Solution Initialization→all zone3、Residual Monitors→Plot第六步:迭代第七步:进行后处理第八步:1、Define→Model→Evlerian2、在Vissous Model→K-epsilon Multiphase Model→Mixture 第九步:在Define Phase Model→Discrete phase ModelInteraction↓选中→Interaction With Continuous PhaseNomber of Continuous PhaseInteractions per DPM Interaction第十步:设置物理属性第十一步:Define→Operating →重力加速度Define→Boondary Conditionsflvid→Mixture→选中Sovrce Terms 其他默认Phase-1→选中Sovrce Terms 其他默认Phase-2→选中Sovrce Terms 其他默认inflow→Mixture→全部默认Phase-1→全部默认Phase-2→Multiphase→Volume Fraction→其他默认outflow→Mixture→默认Phase-1→默认Phase-2→默认wall→Mixture→全部默认Phase-1→默认Phase-2默认第十二步:Slove→Controls→Slution Controls→Pressure→Momentum→其余默认第十三步:千万不能再使用初始化第十四步:进行迭代计算截Z轴上的图:在Surface→iso↓Surface of constant↓Grid↓然后选x、y、z轴(根据具体情况而定)↓在Iso-Values→选取位置C的设置在New Surface Name中输入新各字→点创建然后在Display→Grid→Edge type→Feature→选中刚创建的那个面,然后Display查看刚才那面是否创建对最后在Display→Contours→Options→Filled→Surface→选中面,然后Display。
典型的Fluent计算步骤设置1.导入mesh文件; file/rade/case (mesh文件是事先用Gambit或其他软件画好的网格文件)2.设置交界面;define/grid interfaces (如果模型中没有交界面,略去此步骤)3.调整网格尺寸; grid/scale (Gambit采用的是mm单位,Fluent采用的是m单位,需要转化一下)4.检查网格; grid/check5.加载UDF; define/user-difined/functions/interperted (如果没有使用UDF自定义边界条件或物性参数,略去此步骤)6.设置计算模型6-1 求解器;difine/models/solver6-2 能量方程;define/models/energy6-3 粘性条件;define/models/visous (计算无粘流体时,略去此步骤)7.设置物性条件;define/materials8.设置运行参数;define/operating conditions9.设置边界条件;define/boundary conditions10.设置解算器;solve/controls/solution11.初始化;solve/initialize/initialize12.设置监控12-1 残差监控;solve/monitors/residual12-2 某个面处参数监控;solve/monitors/surface13.设置自动保存;file/write/atuo save (最好设置每隔一定计算步自动保存,以免突然停电了导致计算的东西付之东流)14.设置动画保存;solve/animate15.保存case;file/write/cases16.迭代计算;solve/iterate。
FLUENT常用TUI命令Fluent是一种流行的开源计算流体动力学(CFD)软件,用于模拟流体流动和热传递等问题。
为了方便用户操作,Fluent提供了一套命令行工具(TUI),使用户能够在终端界面中进行交互式的模拟操作。
本文将介绍Fluent TUI的常用命令,帮助用户更好地利用命令行进行模拟和分析。
1. 启动Fluent TUI在终端中启动Fluent TUI的命令为:bashfluent 3d -tui这将启动Fluent的文本用户界面,用户可以通过键盘输入进行交互。
2. 基本操作2.1 文件操作导入案例文件:bash/file/read-case-data case_file.cas保存案例文件:bash/file/write-case-data case_file.cas2.2 网格操作导入网格文件:bash/file/read-case-mesh mesh_file.msh保存网格文件:bash/file/write-case-mesh mesh_file.msh2.3 求解器设置选择求解器:bash/define/models/solver/choose-flow设置迭代次数:bash/solve/iterate 1003. 模拟操作3.1 边界条件设置设置速度入口边界条件:bash/define/boundary-conditions/velocity-inlet velocity_inlet_name设置压力出口边界条件:bash/define/boundary-conditions/pressure-outlet pressure_outlet_name 3.2 物理模型设置开启湍流模型:bash/define/models/turbulence/k-epsilon设置离散方法:bash/define/models/discrete-ordinates4. 结果输出4.1 输出场变量设置输出压力场:bash/solve/monitors/residuals/pressure设置输出速度场:bash/solve/monitors/residuals/velocity4.2 结果文件输出场变量到文件:bash/file/write-data field_data_file.txt导入场变量文件:bash/file/read-data field_data_file.txt5. 后处理5.1 图形输出生成速度场图形:bash/display/contour velocity-magnitude生成压力场图形:bash/display/contour pressure5.2 报告生成生成报告文件:bash/file/write-report report_file.txt查看报告:bash/file/read-report report_file.txt6. 模拟控制6.1 开始计算启动计算:bash/solve/initialize/initialize-flow/solve/iterate 1006.2 结束计算停止计算:bash/solve/kill-process7. 注意事项与常见问题命令大小写敏感:在Fluent TUI中,命令是大小写敏感的,确保输入命令时使用正确的大小写。
FLUENT求解器的结构以及使用方法FLUENT是一种流体动力学仿真软件,由ANSYS公司开发的。
它被广泛应用于工程领域,用于模拟、分析和优化涉及流体运动的问题。
FLUENT的结构主要包括以下几个方面:网格预处理、求解器设置、模型和边界条件、求解计算、后处理和结果分析等。
首先是网格预处理,网格是模拟流体运动的基础。
FLUENT支持多种网格类型,包括结构化网格和非结构化网格。
用户可以使用FLUENT的网格生成工具或其他第三方软件来生成网格。
在网格预处理过程中,用户需要检查网格质量,包括网格的网格精度和网格的规则性,以确保获得准确和可靠的模拟结果。
接下来是求解器设置。
FLUENT提供了多种不同的求解器选项,包括湍流模型、物理模型和辐射模型等。
用户可以根据需要选择适合的求解器。
此外,用户还可以定义计算的边界条件和其他设置参数,以便获得准确和可靠的模拟结果。
然后是模型和边界条件。
用户可以根据具体问题设置模型和边界条件。
例如,如果用户需要模拟流过一个管道的流体运动,他们可以设置管道的结构以及流体的流速、温度和其他属性等。
FLUENT提供了广泛的模型和边界条件选项,以满足不同问题的需求。
求解计算是FLUENT的核心部分。
FLUENT使用迭代方法来求解流体力学方程组。
用户可以选择不同的求解算法和计算参数,以控制求解的精度和速度。
FLUENT还提供了并行计算功能,用户可以利用多个处理器或计算机来加快求解速度。
完成求解计算后,用户可以进行后处理和结果分析。
FLUENT提供了丰富的后处理工具,可以用于可视化模拟结果、生成流线图、计算各种流体参数的统计值等。
用户可以根据需要选择并使用这些工具,以进一步分析和理解模拟结果。
使用FLUENT的方法如下所述:1.网格生成:使用FLUENT的网格生成工具或其他第三方软件生成适当的网格。
2.FLUENT软件的启动:打开FLUENT软件,加载所需的网格文件。
3.求解器设置:选择适当的求解器选项,设置相应的模型和边界条件。
第一步:网格1、读入网格(File→Read→Case)2、检查网格(Grid→Check)3、平滑网格(Grid→Smooth/Swap)4、更改网格的长度单位(Grid→Scale)5、显示网格(Display→Grid)第二步:建立求解模型1、保持求解器的默认设置不变(定常)2、开启标准K-ε湍流模型和标准壁面函数Define→Models→Viscous第三步:设置流体的物理属性ari→Density→viscosity→第四步:设置边界条件对outflow、velocity-inlet、wall 采用默认值第五步:求解1、Solv→Controls→Solution中,Discretitation→Pressure→standardPressure→ Momentum→2、Solution Initialization→ all zone3、Residual Monitors→Plot第六步:迭代第七步:进行后处理第八步:1、Define→Model→Evlerian2、在Vissous Model→K-epsilon Multiphase Model→Mixture 第九步:在Define Phase Model→Discrete phase ModelInteraction↓选中→Interaction With Continuous PhaseNomber of Continuous PhaseInteractions per DPM Interaction第十步:设置物理属性第十一步:Define→Operating →重力加速度Define→Boondary Conditionsflvid→Mixture→选中Sovrce Terms 其他默认Phase-1→选中Sovrce Terms 其他默认Phase-2→选中Sovrce Terms 其他默认inflow→Mixture→全部默认Phase-1→全部默认Phase-2→Multiphase→Volume Fraction→其他默认outflow→Mixture→默认Phase-1→默认Phase-2→默认wall→Mixture→全部默认Phase-1→默认Phase-2默认第十二步:Slove→Controls→Slution Controls→Pressure→ Momentum→其余默认第十三步:千万不能再使用初始化第十四步:进行迭代计算截Z轴上的图:在Surface→iso↓Surface of constant↓Grid↓然后选x、y、z轴(根据具体情况而定)↓在Iso-Values→选取位置C的设置在New Surface Name中输入新各字→点创建然后在Display→Grid→Edge type→Feature→选中刚创建的那个面,然后Display查看刚才那面是否创建对最后在Display→Contours→Options→Filled→Surface→选中面,然后Display。
F l u e n t求解参数设置求解参数设置(Solution Methods/Solution Controls):在设置完计算模型和边界条件后,即可开始求解计算了,因为常会出现求解不收敛或者收敛速度很慢的情况,所以就要根据具体的模型制定具体的求解策略,主要通过修改求解参数来完成。
在求解参数中主要设置求解的控制方程、选择压力速度耦合方法、松弛因子、离散格式等。
在VOF模型中,PISO比较适合于不复杂的流体,SIMPLE和SIMPLEC适合于可压缩的流体或者处于封闭域中的流体。
• 求解的控制方程:在求解参数设置中,可以选择所需要求解的控制方程。
可选择的方程包括Flow(流动方程)、Turbulence(湍流方程)、Energy(能量方程)、VolumeFraction(体积分数方程)等。
在求解过程中,有时为了得到收敛的解,先关闭一些方程,等一些简单的方程收敛后,再开启复杂的方程一起计算。
• 选择压力速度耦合方法:在基于压力求解器中,FLUENT提供了压力速度耦合的4种方法,即SIMPLE、SIMPLEC(SIMPLE.Consistent)、PISO以及Coupled。
定常状态计算一般使用SIMPLE或者SIMPLEC方法,对于过渡计算推荐使用PISO方法。
PISO方法还可以用于高度倾斜网格的定常状态计算和过渡计算。
需要注意的是压力速度耦合只用于分离求解器,在耦合求解器中不可以使用。
在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC算法,默认是SIMPLE算法,但对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松弛迭代时。
对于相对简单的问题(如没有附加模型激活的层流流动),其收敛性可以被压力速度耦合所限制,用户通常可以使用SIMPLEC算法很快得到收敛解。
在SIMPLEC算法中,压力校正亚松弛因子通常设为1.0,它有助于收敛,但是,在有些问题中,将压力校正松弛因子增加到1.0可能会导致流动不稳定,对于这种情况,则需要使用更为保守的亚松弛或者使用SIMPLE算法。
8.4 室内通风问题的计算实例293图8-81 FLUENT网格信息图8-82 网格的图形显示(特征)3.设置求解器参数(1)选择项目树Setup→General选项,在出现的General面板中进行求解器的设置。
(2)单击General面板中的Units按钮,打开单位设置对话框,如图8-83所示。
将默认的温度单位改为摄氏度。
从Quantities列表中选择temperature,从Units列表中选择c,单击Close按钮关闭Set Units对话框。
图8-83 单位设置(3)全局设置。
打开General面板,在面板中选中Pressure-Based和Steady单选按钮,即选择基于压力的求解器进行稳态求解。
勾选Gravity复选框,设置重力加速度为−Y方向,大小为9.81m/s²,如图8-84所示。
之所以要考虑重力加速度,是因为流动的主要部分受自然对流驱动。
(4)激活能量方程。
选择项目树Setup→Models选项,打开Models面板。
双击Models列表中的Energy-Off 选项,打开Energy对话框,在Energy Equation前面打勾,激活能量方程,单击OK按钮确认。
(5)湍流模型选择。
预期流动是湍流的,因此需要合适的湍流模型。
①双击Models列表中的Viscous-Laminar选项,打开Viscous Model对话框。
②从Model列表中选择k-epsilon(2 eqn)选项。
③在k-epsilon Model列表中选择RNG选项。
④在Options列表中选中Full Buoyancy Effects复选框,如图8-85所示。
FLUENT操作过程及全参数选择
1、安装Fluent
2、必要的设置
(1)打开Fluent,选择
“Tools”>“Options”>“Meshing”>“Mesh Defaults”,在这里设置网格的参数,其中包括网格分辨率、积分时间步长和绘制时间步长等,以获得较高精度的结果。
(2)点击“Solution”>“Solution Settings”,进行必要的求解器参数设置。
(3)点击“Solution”>“Initialize”,选择初始解(initial solution)类型,设置初始值和内容,以及数值方法及参数等。
3、模型网格划分
(1)网格划分有两种方式:手动划分网格和使用自动划分网格。
(2)手动划分网格时,可以使用Meshing工具来实现,其中可以选择划分网格的拓扑结构,选择具体的网格类型(包括六面体网格、四面体网格、十二面体网格等),以及设置网格的大小和分辨率等。
(3)使用自动划分网格时,可以使用自动网格划分工具,在设置完网格的拓扑结构和具体的网格类型后(与手动划分网格相同),会自动根据预设的参数和分辨率来进行网格的划分。
4、求解。
求解参数设置(Solution Methods/Solution Controls):在设置完计算模型和边界条件后,即可开始求解计算了,因为常会出现求解不收敛或者收敛速度很慢的情况,所以就要根据具体的模型制定具体的求解策略,主要通过修改求解参数来完成。
在求解参数中主要设置求解的控制方程、选择压力速度耦合方法、松弛因子、离散格式等。
在VOF模型中,PISO比较适合于不复杂的流体,SIMPLE和SIMPLEC适合于可压缩的流体或者处于封闭域中的流体。
• 求解的控制方程:在求解参数设置中,可以选择所需要求解的控制方程。
可选择的方程包括Flow(流动方程)、Turbulence(湍流方程)、Energy(能量方程)、Volume Fraction(体积分数方程)等。
在求解过程中,有时为了得到收敛的解,先关闭一些方程,等一些简单的方程收敛后,再开启复杂的方程一起计算。
• 选择压力速度耦合方法:在基于压力求解器中,FLUENT提供了压力速度耦合的4种方法,即SIMPLE、SIMPLEC(SIMPLE.Consistent)、PISO以及Coupled。
定常状态计算一般使用SIMPLE或者SIMPLEC方法,对于过渡计算推荐使用PISO方法。
PISO方法还可以用于高度倾斜网格的定常状态计算和过渡计算。
需要注意的是压力速度耦合只用于分离求解器,在耦合求解器中不可以使用。
在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC算法,默认是SIMPLE算法,但对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松弛迭代时。
对于相对简单的问题(如没有附加模型激活的层流流动),其收敛性可以被压力速度耦合所限制,用户通常可以使用SIMPLEC算法很快得到收敛解。
在SIMPLEC算法中,压力校正亚松弛因子通常设为1.0,它有助于收敛,但是,在有些问题中,将压力校正松弛因子增加到1.0可能会导致流动不稳定,对于这种情况,则需要使用更为保守的亚松弛或者使用SIMPLE算法。
4月1日写给Fluent新手(续)31 数值模拟过程中,什么情况下出现伪扩散的情况?以及对于伪扩散在数值模拟过程中如何避免?假扩散(false diffusion)的含义:基本含义:由于对流—扩散方程中一阶导数项的离散格式的截断误差小于二阶而引起较大数值计算误差的现象。
有的文献中将人工粘性(artificial viscosity)或数值粘性(numerical viscosity)视为它的同义词.拓宽含义:现在通常把以下三种原因引起的数值计算误差都归在假扩散的名称下1.非稳态项或对流项采用一阶截差的格式;2。
流动方向与网格线呈倾斜交叉(多维问题);3。
建立差分格式时没有考虑到非常数的源项的影响。
克服或减轻假扩散的格式或方法,为克服或减轻数值计算中的假扩散(包括流向扩散及交叉扩散)误差,应当:1. 采用截差阶数较高的格式;2。
减轻流线与网格线之间的倾斜交叉现象或在构造格式时考虑到来流方向的影响。
3. 至于非常数源项的问题,目前文献中,还没有为克服这种影响而专门构造的格式,但是高阶格式显然对减轻其影响是有利的。
32 FLUENT轮廓(contour)显示过程中,有时候标准轮廓线显示通常不能精确地显示其细节,特别是对于封闭的3D物体(如柱体),其原因是什么?如何解决?FLUENT等高线(contour)显示过程中,可以通过调节显示的水平等级来调节其显示细节,Levels..。
最大值允许设置为100.对于封闭的3D物体,可以通过建立Surface,监视Surface 上的量来显示计算结果.或者计算之后将结果导入到Tecplot中,作切片图显示。
33 如果采用非稳态计算完毕后,如何才能更形象地显示出动态的效果图?对于非定常计算,可以通过创建动画来形象地显示出动态的效果图。
Solve—>Animate->Define。
.。
,具体操作请参考Fluent用户手册。
34 在FLUENT的学习过程中,通常会涉及几个压力的概念,比如压力是相对值还是绝对值?参考压力有何作用?如何设置和利用它?GAUGE PRESSURE 就是静压。
FLUENT全参数设置FLUENT是一款流体动力学模拟软件,广泛用于研究和分析流体动力学问题。
它提供了丰富的参数设置选项,可以帮助用户完成各种流体模拟任务。
对于新手来说,掌握FLUENT的全参数设置是很重要的,下面我将详细介绍FLUENT的全参数设置。
FLUENT的全参数设置主要分为四个方面:物理模型,数值方法,计算控制和模拟设置。
在进行流体模拟前,你需要首先设置物理模型参数。
物理模型参数包括流体的密度、黏度、热导率、比热容等,你需要根据研究对象的特点设置相应的参数。
另外,FLUENT还提供了多种流动模型,如湍流模型、多相流模型、燃烧模型等,你可以根据需要选择合适的物理模型。
数值方法参数是进行计算的基础,可以影响模拟结果的准确性和计算速度。
数值方法参数包括网格划分、时间步长、离散化格式等。
在进行网格划分时,你可以选择不同的划分方法,如结构化网格划分、非结构化网格划分等。
此外,你还可以设置控制网格尺寸以及边界条件。
在设置时间步长时,你需要根据模拟的时间尺度来调整,过大的时间步长可能导致数值不稳定,过小的时间步长则会增加计算时间。
离散化格式可以影响数值解的精度,你可以选择不同的格式,如有限体积法、有限差分法等。
计算控制参数用于控制计算的过程,包括残差收敛准则、迭代次数、计算输出频率等。
FLUENT提供了多种残差收敛准则选项,你可以根据需要选择相应的准则。
迭代次数用于控制计算的精度,你可以逐步增加迭代次数,直到收敛为止。
计算输出频率可以控制计算结果的输出频率,你可以根据需要进行设置。
模拟设置参数用于指定模拟的类型和目标,包括流体运动类型、边界条件、求解器选择等。
FLUENT支持多种流体运动类型的模拟,如压力驱动流动、自由表面流动、旋转流动等,你需要选择适合自己研究对象的流体运动类型。
边界条件参数用于指定边界条件的类型和数值,你可以设置速度、压力、温度等边界条件。
求解器选择参数用于选择求解方法,FLUENT提供了多种求解方法,如压力修正方法、SIMPLE方法等,你需要根据自己的需求选择合适的求解器。
FLUENT求解器设置FLUENT求解器设置主要包括:1、压力-速度耦合方程格式选择2、对流插值3、梯度插值4、压力插值下面对这几种设置做详细说明。
一、压力-速度耦合方程求解算法FLUENT中主要有四种算法:SIMPLE,SIMPLEC,PISO,FSM(1)SIMPLE(semi-implicit method for pressure-linked equations)半隐式连接压力方程方法,是FLUENT的默认格式。
(2)SIMPLEC(SIMPLE-consistent)。
对于简单的问题收敛非常快速,不对压力进行修正,所以压力松弛因子可以设置为1(3)Pressure-Implicit with Splitting of Operators (PISO)。
对非定常流动问题或者包含比平均网格倾斜度更高的网格适用(4)Fractional Step Method (FSM)对非定常流的分步方法。
用于NITA格式,与PISO具有相同的特性。
二、对流插值(动量方程)FLUENT有五种方法:一阶迎风格式、幂率格式、二阶迎风格式、MUSL三阶格式、QUICK格式(1)FLUENT默认采用一阶格式。
容易收敛,但精度较差,主要用于初值计算。
(2)Power Lar.幂率格式,当雷诺数低于5时,计算精度比一阶格式要高。
(3)二阶迎风格式。
二阶迎风格式相对于一阶格式来说,使用更小的截断误差,适用于三角形、四面体网格或流动与网格不在同一直线上;二阶格式收敛可能比较慢。
(4)MUSL(monotone upstream-centered schemes for conservation laws).当地3阶离散格式。
主要用于非结构网格,在预测二次流,漩涡,力等时更精确。
(5)QUICK(Quadratic upwind interpolation)格式。
此格式用于四边形/六面体时具有三阶精度,用于杂交网格或三角形/四面体时只具有二阶精度。
FLUENT求解器设置主要包括:1、压力-速度耦合方程格式选择2、对流插值3、梯度插值4、压力插值
下面对这几种设置做详细说明。
一、压力-速度耦合方程求解算法
FLUENT中主要有四种算法:SIMPLE,SIMPLEC,PISO,FSM
(1)SIMPLE(semi-implicit method for pressure-linked equations)半隐式连接压力方程方法,是FLUENT的默认格式。
(2)SIMPLEC(SIMPLE-consistent)。
对于简单的问题收敛非常快速,不对压力进行修正,所以压力松弛因子可以设置为1
(3)Pressure-Implicit with Splitting of Operators (PISO)。
对非定常流动问题或者包含比平均网格倾斜度更高的网格适用
(4)Fractional Step Method (FSM)对非定常流的分步方法。
用于NITA格式,与PISO具有相同的特性。
二、对流插值(动量方程)
FLUENT有五种方法:一阶迎风格式、幂率格式、二阶迎风格式、MUSL三阶格式、QUICK格式
(1)FLUENT默认采用一阶格式。
容易收敛,但精度较差,主要用于初值计算。
(2)Power Lar.幂率格式,当雷诺数低于5时,计算精度比一阶格式要高。
(3)二阶迎风格式。
二阶迎风格式相对于一阶格式来说,使用更小的截断误差,适用于三角形、四面体网格或流动与网格不在同一直线上;二阶格式收敛可能比较慢。
(4)MUSL(monotone upstream-centered schemes for conservation laws).当地3阶离散格式。
主要用于非结构网格,在预测二次流,漩涡,力等时更精确。
(5)QUICK(Quadratic upwind interpolation)格式。
此格式用于四边形/六面体时具有三阶精度,用于杂交网格或三角形/四面体时只具有二阶精度。
三、梯度插值梯度插值主要是针对扩散项。
FLUENT有三种梯度插值方案:green-gauss cell-based,Green-gauss node-based,least-quares cell based.
(1)格林-高斯基于单元体。
求解方法可能会出现伪扩散。
(2)格林-高斯基于节点。
求解更精确,最小化伪扩散,推荐用于三角形网格上
(3)基于单元体的最小二乘法插值。
推荐用于多面体网格,与基于节点的格林-高斯格式具有相同的精度和格式。
四、压力插值压力基分离求解器主要有五种压力插值算法。
(1)标准格式(Standard)。
为FLUENT缺省格式,对大表妹边界层附近的曲线发现压力梯度流动求解精度会降低(但不能用于流动中压力急剧变化的地方——此时应该使用PRESTO!格式代替)
(2)PRESTO!主要用于高旋流,压力急剧变化流(如多孔介质、风扇模型等),或剧烈弯曲的区域。
(3)Linear(线性格式)。
当其他选项导致收敛困难或出现非物理解时使用此格式。
(4)second order(二阶格式)。
用于可压缩流动,不能用于多孔介质、阶跃、风扇、VOF/MIXTURE多相流。
(5)Body Force Weighted体积力。
当体积力很大时,如高雷诺数自然对流或高回旋流动中采用此格式。