矩阵同时上三角化和同时对角化-精品文档资料(精品文档)_共3页
- 格式:pdf
- 大小:238.75 KB
- 文档页数:3
矩阵交换性的应用(二):同时对角化矩阵交换性的应用(二)1.设和都是维线性空间的线性变换,如果的个特征值互异,则的充要条件是的特征向量也是的特征向量.证明:充分性:若的特征向量也是的特征向量.那么取一组基使得:在这组基下的矩阵为对角阵,由于前提,所以在这组基下的矩阵也是对角阵,因此,所以可交换.必要性:由于的特征值互异,因此可对角化,设其在某一组基下的矩阵式是角阵,记在这组基下的矩阵为,因此有:但是由于的个特征值互异,我们将具体写出来和相乘,简单验证就会发现必须是对角阵,因此结论得证.2.设,且,且都可对角化,证明存在可逆矩阵使得同时为对角阵.证明:由于可对角化,因此存在可逆矩阵使得:而由于可对角化,因此它的所有初等因子都是一阶的,因此存在可逆阵使得,令为:所以:这时取:可逆,且:故可同时对角化!推论:设均为阶实对称阵. 证明:有阶正交阵 , 使与同时为对角矩阵的充分必要条件是 .练习1:设与是实正定矩阵,证明: 是正定矩阵的充要条件时.练习2:若都是复数域上的阶方阵,且(k为某个正整数),则存在可逆矩阵使得,同时为对角阵.习题训练:目录●数分训练(一)解答及(二)预告●每日一题:数分训练(二):上下极限●数分训练(三):一道三角函数题目●数分训练(四):数列与级数训练●数分训练(五):定积分定义处理问题●数分训练(六):一道中值定理的渐进形态●高代训练(一):有限不覆盖定理●数分训练(八):一道积分不等式●数分训练(九):反正切函数的裂项●(十):高代训练:迹的基本应用●(十一):高代训练:正定矩阵习题●高代训练:矩阵交换性的应用(一)●Problem13:一道矩阵方程与特征多项式的关系。
矩阵对角化方法矩阵对角化方法摘要:本文给出了一种不同于传统方法的矩阵对角化方法,利用矩阵的初等变换,先求出矩阵的特征根与特征向量,接着再判断矩阵是否可对角化。
关键词:矩阵特征根特征向量对角化The Methods of the Diagonalization of the MatrixgAbstract: In this paper, the method of the diagonalization of the matrix is given, which is different from the traditional methods. According to using the elementary transformation of the matrix, first of all, The author obtains the characteristic roots and the characteristic vectors, then judge the diagonalization of the matrix.Key words: Matrix; Characteristic roots; Characteristic vectors; Diagonalization1、引言对角化后的矩阵在计算和应用等方面比一般矩阵更具优越性,而矩阵对角化方法有很多,如对于对称矩阵可以将其看成二次型所对应的矩阵,通过配方法将其化为标准形从而实现矩阵的对角化,再如通过求解特征根和特征向量方法,首先求解0||=-A E λ得特征根i λ,然后对每一个i λ,解方程组0)(=-X A E i λ得特征向量,即寻找一个可逆矩阵T ,使得Λ=-AT T 1,其中Λ为对角阵,于是可得1-Λ=T T A ,从而1-Λ=T T A n n , 在这个对角化过程中,Λ中的元素即为矩阵A 的特征根,T 中每个列向量即为矩阵A 的属于每个特征根的特征向量。
两个矩阵同时对角化的条件陈现平,王文省Ξ(聊城大学数学科学学院,山东聊城 252059)[摘 要]给出两个矩阵同时合同对角化与同时相似对角化的一些条件.[关键词]矩阵;实对称矩阵;正定矩阵;同时对角化[中图分类号]O151.21 [文献标识码]A [文章编号]1004-7077(2005)02-0011-03 在高等代数或线性代数中,矩阵对角化占有重要地位.在矩阵理论、二次型及线性变换等问题上有广泛的应用.单个矩阵对角化的问题已在高等代数或线性代数教材中有系统的讨论.然而,经常遇到两个矩阵同时相似对角化或同时合同对角化的问题.本文主要给出两个矩阵同时合同对角化与同时相似对角化的充分或充要条件.这些对于深化高等代数或线性代数的学习及问题的解决是非常有益的.1 两个矩阵同时合同对角化对于两个实对称矩阵,可有如下的同时合同对角化的条件.定理1[5] 设A ,B 为n 阶实对称方阵,且A 正定,则存在实可逆矩阵P ,使P TA P =E ,P TB P =diag (λ1,…,λn )其中λi ∈R ,i =1,…n.定理2[1] 设A ,B 为n 阶实对称半正定方阵,则存在n 阶实可逆矩阵P ,使P T A P 与P T B P 同时为对角矩阵.定理3 设A ,B 为n 阶实对称方阵,且B 可逆,B -1A 有n 个互异的特征根,则存在可逆阵P ,使P TA P 与P TB P 同时为对角矩阵.证明 设λ1,…,λn 为B -1A 的n 个互异的特征根,对应的特征向量为α1,…,αn ,即B-1A αi =λi αi ,i =1,…,n.由于α1,…,αn 线性无关,故P =(α1,…,αn )可逆,且B -1A P =Pdiag (λ1,…,λn ),即A P =B Pdiag (λ1,…,λn )上式两端左乘P T 得P TA P =P TB Pdiag (λ1,…,λn )而P T A P 为对称的,故P TB Pdiag (λ1,…,λn )=diag (λ1,…,λn )P TB P又λ1,…,λn 互异,不防设P T B P =diag (b 1,…,b n ),于是有P TA P =diag (b 1,…,b n )diag (λ1,…,λn )=diag (b 1λ1,…,b n λn )可得结论成立.定理4 设A ,B 为n 阶实对称矩阵,则存在正交矩阵Q ,使Q T AQ 与Q T BQ 同为对角矩阵·11·Ξ[收稿日期]2004-12-20[作者简介]陈现平(1976-),男,山东临朐人,聊城大学数学科学学院讲师,主要从事最优化理论与算法研究.2005年4月第22卷 第2期枣庄学院学报JOURNA L OF Z AOZHUANG UNIVERSITY Apr.2005V ol.22NO.2的充要条件为AB =BA.证明 必要性.设Q T AQ =diag (λ1,…,λn ),Q TBQ =diag (μ1,…,μn ),则有Q T ABQ =diag (λ1μ1,…,λn μn )=Q TBAQ由Q 为正交矩阵有AB =BA.充分性.由A 为实对称矩阵,则存在正交矩阵P ,使得P T A P =diag (λ1E n 1,λ2E n 2,…,λs E n s)其中λ1,…,λs 互异,n 1+…+n s =n.由AB =BA 有(P TA P )(P TB P )=(P T B P )(P TA P ),故P TB P =diag (B n 1,B n 2,…,B n s)其中B n i 为n i 阶实对称方阵.而B 为实对称矩阵,可对角化.故B n i 也可对角化,即存在正交矩阵R n i 使得R Tn i B n i R n i (i =1,…,s )为对角矩阵.令Q =Pdiag (R n 1,R n 2,…,R n s)则Q 为正交矩阵,且使得Q T AQ 与Q T BQ 同为对角矩阵.2 两个矩阵同时相似对角化对于一般的两个矩阵,若A ,B 可交换且满足一定条件,则A ,B 可同时相似对角化.定理5[6] 设矩阵A ,B ∈F n ×n ,A ,B 均可相似对角化,且A 的特征值相等,则A ,B 可同时相似对角化.定理6 设A ,B ∈F n ×n ,且A 在F 中有n 个不同的特征值,AB =BA ,则存在可逆矩阵P ∈F n ×n ,使P -1A P ,P -1B P 同时为对角阵.证明 由A 在F 中有n 个不同的特征值,则存在可逆矩阵P ,使得P -1A P =diag (λ1,…,λn ).其中λ1,…,λn 为A 的n 个不同的特征值.由AB =BA 有(P -1A P )(P -1B P )=(P -1B P )(P -1A P )从而P -1B P 为对角阵,即结论成立.定理7 设A ,B ∈F n ×n ,且A ,B 均相似于对角矩阵,则存在可逆矩阵P ∈F n ×n ,使P -1A P ,P -1B P 同时为对角阵的充要条件为AB =BA.证明 与定理4类似.由矩阵相似于对角矩阵与初等因子,最小多项式的关系,有如下推论.推论1 设A ,B ∈F n ×n ,且AB =BA ,A ,B 的初等因子全为一次的,则A ,B 可同时相似于对角阵.推论2 设A ,B ∈F n ×n ,且AB =BA ,A ,B 的最小多项式无重根,则A ,B 可同时相似于对角阵.由于幂等矩阵,对合矩阵可相似对角化,故推论3 设A ,B ∈F n ×n ,且A 2=A ,B 2=B ,AB =BA ,则A ,B 可同时相似于对角阵.推论4 设A ,B ∈F n ×n ,且A 2=B 2=E ,AB =BA ,则A ,B 可同时相似于对角阵.推论5 设A ,B ∈C n ×n ,且A k =B k =E ,AB =BA ,其中k 为正整数,则A ,B 可同时相似于对角阵.推论6 设A ∈F n ×n ,且A 可对角化,A 3表示A 的伴随矩阵,则A ,A 3可同时相似于对角阵.证明 设存在可逆矩阵P ,使得P -1A P =diag (λ1,…,λn ),利用(AB )3=B 3A3有P 3A3(P -1)3=diag (λ1,…,λn )3又AA 3=A 3A ,故由定理7,结论成立.推论7 设A ∈F n ×n ,且A ±B =AB ,A ,B 相似于对角阵,则A ,B 可同时相似于对角阵.证明 只证A +B =AB 时结论成立,对A -B =AB 类似可证.由A +B =AB 有AB -A -B +E =E ,即(A -E )(B -E )=E ,故(A -E )-1=B - E.·21·枣庄学院学报2005年第2期于是E =(B -E )(A -E )=BA -B -A +E由此可得BA =A +B ,故AB =BA ,由定理7可证.对于一般的可交换的两个矩阵A ,B ,则有如下结论.定理8 设A ,B ∈F n ×n ,且A ,B 的特征值都在F 中,AB =BA ,则存在可逆矩阵T ∈F n ×n ,使得T -1A T ,T -1B T 同时为上三角阵.证明 对矩阵阶数n 用数学归纳法.当n =1时,结论显然成立.假设结论对n -1阶矩阵成立.由于AB =BA ,故A ,B 有公共的特征向量([4]),设为α1,将其扩充为F n 的一组基α1,…,αn ,令Q =(α1,…,αn )则Q 可逆,且Q -1AQ =λ1 α0 A 1,Q -1BQ =μ1 β0 B 1,由AB =BA ,可得A 1B 1=B 1A 1,由归纳假设,存在n -1阶可逆矩阵Q 1,使Q 1-1A 1Q 1,Q 1-1B 1Q 1同时为上三角矩阵,令T =Q1 00 Q 1则T -1A T ,T -1B T 同时为上三角阵.从而结论成立.参考文献[1]张锦川.实与复方阵的相合标准形和同时对角化[J ].泉州师范学院学报,2002,20(2):21-25.[2]徐利治,等.大学数学解题法诠释[M].合肥:安徽教育出版社,1999.[3]王品超.高等代数新方法(下册)[M].徐州:中国矿业大学出版社,2003.[4]北京大学数学系几何与代数教研室代数小组.高等代数(第二版)[M].北京:高等教育出版社,1988.[5]王文省,等.高等代数[M].济南:山东大学出版社,2004.[6]夏璇.二个矩阵同时对角化[J ].南昌航空工业学院学报(自然科学版),2003,17(3):26-32.The Conditions of Simultaneous Diagonalization of Tw o MatricesCHE N X ian -ping ,W ANG Wen -sheng(School of Mathematical Science ,Liaocheng University ,Liaocheng 252059,China )Abstract :The conditions of simultaneous diag onalization of tw o matrices are given.K ey w ords :matrix ;symmetric real matrix ;positive definite matrix ;simultaneous diag onalization·31·陈现平,王文省 两个矩阵同时对角化的条件。
矩阵同时上三角化和同时对角化作者:李凯来源:《学习导刊》2013年第10期摘要:本文介绍了两个矩阵同时上三角化和同时对角化的特殊例子.关键字:矩阵,同时对角化,同时上三角化在高等代数中,我们经常见到单个矩阵的对角化和上三角化.对于两个矩阵同时上三角化和对角化却很陌生,本文给出了几种特殊的例子,以方便大学生对高等代数的学习.定理一若两个阶复方阵可交换,则二者可同时上三角化.证明利用数学归纳法.时,结论显然成立.假设当时结论成立,则考虑时,因二者可交换,则必存在公共向量将扩充为的一组基令,则;.由可交换不难看出可交换.根据归纳假设存在阶可逆矩阵使得,,均为上三角阵.那么取即可,就可得出同时上三角化.推广阶可交换矩阵族可同时上三角化的问题方法与1类似,先证明这族矩阵存在公共特征向量.证明时,可将这族矩阵看成有限个,因为我们将这些矩阵看做某一线性空间中的线性变换矩阵,而的维数有限,再后面用归纳证明上三角化即可.定理二在上定理条件下,若均可对角化,则二者可同时对角化.证明设的个互异的特征值,其重数分别为,则存在可逆矩阵,使.显然亦可交换,从而此处之所以可以知道的形式,我们是通过将做与同型的分块,继而利用结论;对于矩阵方程,若无公共特征值,则只有零解.因可对角化,则可对角化,即存在可逆矩阵,使得為对角阵,则取即可.引理一个矩阵幂零的充要条件为.()证明必要性显然.下证充分性.设的个特征值为,令.由牛顿公式(为初等对称多项式)从而.因此,的特征多项式为所以的特征值全为零;从而幂零.定理三设阶复方阵满足,则可同时上三角化.证明令,则.若,则可交换,因此,可同时上三角化,进而可同时上三角化.若,从而幂零,这样,任取,,则从而也是的不变子空间,将二者限制在上,则必有公共特征向量,再用归纳法不难证明可同时上三角化,进而可同时上三角化.参考文献【1】A.N.柯斯特利金.代数学引论(第二卷)线性代数(第3版).北京:高等教育出版社,2008.1.【2】许以超.线性代数与矩阵论(第二版).北京:高等教育出版社,2008.6.。
两个矩阵同时相似上三角化的MATLAB程序
两矩阵同时上三角化具有较大的应用价值,但是现有的结论也只是Laffey定理:"当秩(AB-BA)≤1时,存在n 阶可逆方阵P ,使得 P-1AP与 P-1BP都是上三角方阵",然而此结论并不理想,例如对于矩阵:
另外容易证明:
如果 n阶方阵 A、B 能够同时相似上三角化,那么AB-BA 是幂零矩阵.
然而此条件是否充分,似乎很难证明.
因此有必要研究使用计算机解决此问题,一方面是使用计算机判定能否同时相似上三角化、并当能时求出重要的变换矩阵
P ,而弥补纯理论的不足;另一方面是以计算机代替人工计算而提高计算效率、甚至完成人工所不能的工作.
1. 算法研究
文献[2]有例题"设 A、B∈Mn(C)且AB=BA ,则A、 B可同时上三角化".其证明方法是对阶数使用数学归纳法,而归纳的关键步骤是:
因为AB=BA ,所以A、 B有公共的特征向量?%Z ,设
A ?%Z=?%d1?%Z,B?%Z=?%e1?%Z,,将 ?%Z扩为C 的一组基?%Z 1,?%Z2,...,?%Zn则有
再由 AB=BA得到An-1Bn-1=Bn-1An-1 ,这样即可使用归纳
假设解决问题.
可见证明的关键是:A 、B 有公共的特征向量, An-1、Bn-1 有公共的特征向量, An-2、 Bn-2有公共的特征向量,……,一直下去,直到降阶至 A1、 B1即可得到结论.因此可得到以下算法.
2. 算法设计
根据上述分析及Matlab的计算功能,设计两个矩阵同时相似上三角化的算法如下:
2.1 主函数。