神经、内分泌与免疫调节网络
- 格式:pptx
- 大小:8.65 MB
- 文档页数:90
神经系统与免疫系统的相互关系研究在近几年得到了越来越多的关注。
这两个系统之间的联系一直以来都被认为是相对独立的,然而,科学家们发现,神经系统和免疫系统之间存在着微妙的相互作用。
这篇文章将会探索这两个系统之间的相互作用,解释为什么它们之间的联系对于人体的健康至关重要。
在过去,很多人认为神经系统和免疫系统彼此独立,然而,随着科学的发展,人们发现这两个系统之间存在着复杂的交互作用。
具体来说,神经系统和免疫系统之间存在着三种主要的交互方式,分别是:神经系统通过神经内分泌激素调节免疫系统;免疫系统通过细胞因子影响神经系统;神经系统和免疫系统之间通过神经-免疫调节网络交互作用。
在神经系统中,神经内分泌激素,如肾上腺素和去甲肾上腺素,可以通过血液和淋巴管进入免疫系统中。
这些激素可以直接作用于免疫细胞,如T细胞和B细胞,从而影响它们的活性和分化。
此外,神经内分泌激素还能影响抗原呈递,生长和分化因子的产生,从而改变免疫系统的反应模式。
在免疫系统中,细胞因子可以影响神经系统的活动。
免疫细胞分泌的细胞因子可以通过巨噬细胞向网状内皮细胞传递,进而激活神经元并影响其活动。
这些细胞因子还可以通过作用于血脑屏障和血脊髓液屏障上的内皮细胞和星形胶质细胞,直接影响中枢神经系统。
最后,神经-免疫调节网络是神经系统和免疫系统之间的重要调控网络。
这种网络涉及到神经元和免疫细胞之间的交流,以及在免疫细胞中发现的神经递质分子和受体的表达。
神经-免疫调节网络的存在意味着神经系统和免疫系统之间的相互作用并不仅仅是单向的。
神经系统和免疫系统之间的相互作用可对人体健康产生深远的影响。
研究表明,神经系统和免疫系统的不健康状态可能导致多种疾病的发生或发展。
抑郁症、焦虑症、自闭症等精神障碍与免疫系统异常有关。
自身免疫疾病如类风湿性关节炎、多发性硬化、系统性红斑狼疮等疾病与神经内分泌、激素免疫异常有关。
不仅如此,神经系统和免疫系统之间的相互作用也可以影响身体对各种外界刺激的反应。
神经系统对免疫功能的调节机制研究免疫功能是机体对各类病原体的防御能力,而神经系统作为人体重要的调节系统之一,在免疫功能方面发挥着至关重要的作用。
近年来,越来越多的研究表明神经系统通过多种途径对免疫功能产生调节作用,从而影响身体的健康状况。
本文将探讨神经系统对免疫功能的调节机制。
1. 神经内分泌网络的作用神经内分泌网络是神经系统和免疫系统之间重要的连接桥梁。
免疫功能的调节主要通过神经内分泌系统传递的信号来实现。
例如,垂体-肾上腺轴通过释放肾上腺素和皮质类固醇等激素,调节免疫细胞的分化和功能。
神经内分泌网络的畸变可能导致免疫功能紊乱,从而引发免疫相关疾病。
2. 神经免疫调节途径神经系统通过交感神经和副交感神经对免疫功能进行调节。
交感神经可通过释放去甲肾上腺素和诱导免疫细胞产生炎症介质,影响炎症反应的发生和强度。
副交感神经则具有镇静和抑制免疫反应的作用。
这两个神经途径的平衡和调节是维持免疫功能正常水平的关键。
3. 神经递质的作用神经系统中的神经递质也对免疫功能具有重要影响。
例如,去甲肾上腺素的释放能够抑制免疫细胞的活化和炎症反应,从而调节免疫功能。
多巴胺则能够通过激活免疫细胞上的多巴胺受体,影响免疫反应的途径和结果。
神经递质的平衡和调控是维持免疫功能稳定的关键因素。
4. 神经调节的免疫相关疾病神经系统对免疫功能的调节紊乱可能导致免疫相关疾病的发生。
多种自身免疫性疾病和过敏反应与神经系统的异常活动密切相关。
例如,自身免疫性疾病如类风湿性关节炎和系统性红斑狼疮,可能与神经内分泌网络的紊乱有关。
了解神经调节在这些疾病中的作用有助于寻找新的治疗策略。
综上所述,神经系统通过神经内分泌网络、神经免疫调节途径以及神经递质等多个方面对免疫功能进行调节。
这种调节机制对身体的健康状况和免疫相关疾病的发生都具有重要的影响。
进一步研究神经系统与免疫系统之间的相互作用,有助于揭示免疫功能的调节机制,并为治疗免疫性疾病提供新的思路和策略。
神经系统与免疫系统、内分泌系统的关系人教2019版高中生物学选择性必修一说,内环境稳态是神经—体液—免疫调节网络共同作用的结果:神经调节和体液调节紧密联系,密切配合:那么,神经系统与免疫系统、内分泌系统有什么样的关系呢?神经系统与免疫系统、内分泌系统的相互关系是一个重要的生理学问题。
这个问题不只是关系到生理学,而且与心理学、医学有关,这也是心身医学的基本问题。
神经系统与免疫系统有什么关系呢?先来考察一个实验:小鼠被多次注射抑制淋巴细胞活动的化学药物。
在每一次注射时都让这些小鼠嗅到樟脑的气味,樟脑原本对免疫系统没有影响。
经过一段时间的训练后,只让小鼠嗅到樟脑气味,不注射抑制淋巴细胞活动的化学药物,再检查小鼠淋巴细胞的机能。
研究者发现樟脑气味已经抑制淋巴细胞的活性,如同抑制淋巴细胞活动的化学药物一样。
这是建立了一个条件反射,条件刺激是樟脑气味,非条件刺激是抑制淋巴细胞活动的化学药物。
虽然目前对这种条件反射的路径还很不清楚,但用无关动因可以建立抑制免疫活动的条件反射,说明动物的高级神经活动与免疫系统的密切关系。
现在知道神经系统、免疫系统和内分泌系统这三个系统有几方面的关系:(1)有共同的信号分子及其受体。
免疫细胞可分泌激素,非免疫细胞可产生白细胞细胞因子。
例如,白细胞分泌促甲状腺激素(TSH)、促肾上腺皮质激素(ACTH)、生长激素、催乳素以及下丘脑促肾上腺皮质激素释放激素(CRH)。
激素和细胞因子的受体在多种组织上发现。
脑中的神经元有免疫细胞产生的细胞因子受体;天然杀伤细胞有阿片受体和β肾上腺素能受体。
看来神经系统、内分泌系统和免疫系统共同具有化学信号分子和它们的受体。
(2)激素和神经肽能改变免疫细胞的机能。
多年来已经知道不同的应激刺激(包括过冷、过热、中毒、感染、创伤、发热、缺氧、疼痛、疲劳、恐惧等)都可激活下丘脑-垂体-肾上腺系统,引起血液中肾上腺皮质激素含量升高,抑制免疫机能,如抑制淋巴细胞增殖,减少抗体生产,降低天然杀伤细胞的活性等。
中枢神经在神经-内分泌-免疫网络中的调节作用研究进展机体是一个统一而复杂的整体,体内各个系统虽然有各自独特的生理功能,但其生理活动及对外界的反应不是各自孤立进行的,它们都受神经、内分泌系统的支配。
大量研究已证实,神经纤维通过其网络投射到机体各个器官,参与监测内、外环境,控制内、外分泌腺的分泌,从而对机体的功能和代谢进行整体协调。
神经系统还通过其广泛的外周神经突触及其分泌的神经递质和众多的内分泌激素,甚至还有神经细胞分泌的细胞因子,共同调控着免疫系统的功能;而免疫系统通过免疫细胞产生的多种细胞因子和激素样物质反馈作用于神经、内分泌系统。
这种双向的复杂作用使各系统内或系统之间得以相互作用或调节,形成一个完整的调节回路,被称为/神经-内分泌-免疫网络。
神经系统作用广泛、迅速而灵敏,内分泌系统与免疫系统作用相对局限、缓慢而持久。
外周神经可感受局部环境因素的变化,并以非连续性、闪电式的方式将信息传递到中枢神经系统,中枢神经系统通过对外周神经传来的信息进行分析、归纳、整合,再向外周发出信号,从而引起体温、呼吸、体内激素水平改变、免疫细胞活化、炎症介质产生等一系列变化。
因此在神经-内分泌-免疫网络参与对外周炎症反应的调节中,神经系统占据主导地位,而中枢神经系统又起最主要的作用,是应激反应的调控中心。
本文就近年来有关中枢神经对神经-内分泌-免疫网络调节的研究进展作一简要介绍。
1 下丘脑-垂体-肾上腺轴(hypothalamic pituitary adrenal,HPA)的调节下丘脑-垂体-肾上腺轴对机体的应激具有重要调控作用,同时也是中枢神经系统参与调控外周炎症的主要传出通路。
在严重烧伤、休克、感染等损伤因素的刺激下,机体内环境将发生一系列变化,表现为神经内分泌改变和免疫系统激活。
这些应激引起的免疫内分泌改变是由糖皮质激素介导的观点在神经-内分泌-免疫网络研究领域一直占主导地位;而临床上广泛使用糖皮质激素进行免疫抑制治疗,更强化了这一观点,即应激是中枢神经系统通过HPA 轴依赖途径进行调节的。
第六节神经-内分泌-免疫调节网络基础巩固1.下列对神经-内分泌-免疫调节网络信号的相关解释,正确的是()。
A.只有神经细胞能产生神经肽B.只有免疫细胞存在细胞因子的受体C.神经肽及相应的受体属于神经-内分泌-免疫调节网络的“通用信号”D.mRNA是通过血液运输在神经-内分泌-免疫调节网络中共用的信号分子答案:C解析:免疫细胞和内分泌细胞也能产生神经肽,A项错误。
神经细胞、内分泌细胞和免疫细胞等都属于细胞因子的靶细胞,都有细胞因子的特异性受体,B项错误。
神经递质、神经肽、激素和细胞因子等信号分子及其相应的受体是神经-内分泌-免疫调节网络的“通用信号”,C项正确。
mRNA存在于细胞内,D项错误。
2.下列关于信号分子的叙述,错误的是()。
A.甲状腺激素能够到达全身B.胰岛素能够到达全身C.细胞因子只能弥散在局部组织发挥作用D.神经递质只能弥散在局部组织发挥作用答案:C解析:细胞因子既可以进入组织液,在局部发挥作用,也可以进入血液循环,远距离作用于包括神经元、内分泌细胞和免疫细胞在内的各种细胞。
3.去甲肾上腺素既可以由肾上腺髓质分泌,又可以由神经元释放。
下列对去甲肾上腺素的叙述,正确的是()。
A.去甲肾上腺素只属于激素分子B.去甲肾上腺素只属于神经递质C.释放去甲肾上腺素的神经可能为交感神经D.去甲肾上腺素就是肾上腺素答案:C解析:去甲肾上腺素既属于神经递质又属于激素,A、B两项错误。
去甲肾上腺素可以由肾上腺髓质分泌,推测其功能可能与肾上腺素类似,即可能具有应激作用,因此去甲肾上腺素可能由交感神经释放,C项正确。
去甲肾上腺素和肾上腺素不是同一种物质,D项错误。
4.下列不属于神经系统控制免疫系统方式的是()。
A.通过自主神经B.通过神经递质C.通过神经肽D.通过DNA答案:D解析:DNA是细胞的遗传物质,不会成为神经系统控制内分泌系统的物质。
5.有个别对玫瑰花粉产生超敏反应的人,即使看到假的玫瑰花也会出现超敏症状,这说明()。
神经-内分泌-免疫网络—神经系统通过其广泛的外周神经突触及其分泌的神经递质和众多的内分泌激素神经-内分泌-免疫网络—神经系统通过其广泛的外周神经突触及其分泌的神经递质和众多的内分泌激素,甚至还有神经细胞分泌的细胞因子,来共同调控着免疫系统的功能;而免疫系统通过免疫细胞产生的多种细胞因子和激素样物质反馈作用于神经内分泌系统。
2个系统的细胞表面都证实有相关受体接受对方传来的各种信息。
这种双向的复杂作用使2个系统内或系统之间得以相互交通和调节,构成神经内分泌免疫调节网络,共同维持着机体的稳态。
学术术语来源---增强大鼠神经干细胞生物活性的黄芪注射液文章亮点:1 不同质量浓度黄芪注射液干预,神经干细胞初期细胞增殖速度加快,而24 h后不同质量浓度黄芪注射液干预的细胞活性逐渐趋于一致。
2 50 g/L黄芪注射液能诱导神经干细胞快速分化,且显示神经元特异性烯醇化酶阳性细胞的数量也明显增加。
关键词:干细胞;干细胞与中医药;干细胞基础实验;中医药;黄芪注射液;神经干细胞;MTT;生物活性;细胞分化;干细胞图片文章摘要背景:黄芪对神经功能缺损疾病治疗及神经再生的作用已受到神经科学和脑科学研究者的密切关注,其对神经干细胞的影响也成为一个新的探索方向。
目的:探索黄芪注射液对大鼠神经干细胞生物活性的影响。
方法:分离、培养Wistar大鼠胚胎神经干细胞。
采用荧光免疫细胞化学法鉴定巢蛋白染色阳性,原代培养细胞传至第2代纯化后,随机分为对照组、50,200,400 g/L黄芪注射液组分别培养6,12,24 h后。
采用MTT法检测细胞活性,通过比较细胞活性,选50 g/L黄芪注射液组诱导分化7 d后用免疫组化法检测神经元特异性烯醇化酶和胶质纤维酸性蛋白的表达。
结果与结论:MTT显示药物作用6 h,50,200,400 g/L黄芪注射液组细胞的活性与对照组相比明显升高 (P < 0.05);但24 h后不同质量浓度的黄芪注射液对细胞活性逐渐趋于一致(P > 0.05)。