煤基直接还原炼铁技术及非高炉炼铁能耗分析
- 格式:doc
- 大小:172.05 KB
- 文档页数:9
非高炉炼铁法简介非高炉炼铁法以不用焦煤为主要特征,按其工艺特征、产品类型及用途分为直接还原法和熔融还原法两大类。
直接还原法以气体、液体燃料及非焦煤为能源,在铁矿石或含铁团块呈固态的软化温度下进行还原获得直接还原铁(DRI)或海绵铁,其产品低密度多孔呈海绵状结构,含碳低,未排除脉石杂质。
熔融还原法则以非焦煤为能源,产品类似高炉的铁水。
目前,非高炉炼铁法以直接还原工艺为主,该方法对铁原料要求高,TFe>66%,酸性脉石含量(SiO2+Al23)<5.5%(但不宜过低),一般S含量<0.03%,P<0.02%,其它有害元素尽可能低,各种工艺对原料粒度要求不一。
铁原料和煤灰分的软化温度决定了直接还原工艺的作业温度。
在燃料方面,当前各种工艺中,以使用天然气为主,能量利用率高、生产率高,但我国天然气资源缺乏。
国内直接还原厂以使用非焦煤(褐煤、烟煤、无烟煤)为主,现在世界各国也以发展煤基直接还原为主。
直接还原工艺的主要方法有:1. 回转窑直接还原法:回转窑结构是一个可转动的筒形高温反应器。
含铁原料与还原煤从窑尾连续加入,排料端设置主燃烧喷嘴和还原煤喷入装置,沿窑身长度方向装有若干供风管或燃料喷嘴,随窑体转动,固体物料在翻滚移动过程中,被高温气流加热,进行物料的干燥、预热、碳酸盐的分解、铁氧化物还原及渗碳反应从而得到DRI。
比较有代表的是SL-RN 法、DRC法、Krupp-Codir法等。
2. 竖炉直接还原法:竖炉法目前占直接还原铁产量的90%左右,其中以Midrex和MYL为主,工艺成熟,占直接还原工艺的主导地位。
竖炉的反应条件与高炉上部间接还原区相似,不出现熔化现象的还原冶炼过程,使用单一矿石料,没有造渣过程。
以前竖炉的燃料和还原剂是天然气,近年出现了煤制气以及使用焦炉煤气竖炉直接还原工艺,这扩大了竖炉工艺的使用范围,但目前煤基竖炉工艺还不成熟,生产成本偏高,工艺还需进一步完善。
3. 罐式直接还原法:以HYL为代表,用H2、CO或其混合气将装于移动或固定容器内的铁团还原成DRI的方法。
低能耗的炼铁工艺流程——我国煤基直接还原铁发展现状及前景(一)前言钢铁工业是众所周知的高能耗,高排放的支柱产业。
在今天能源资源短缺环境保护要求日益提高的前提下,对钢铁工艺的各个流程进行节能减排、优化设计、技术改进已经刻不容缓。
直接还原可以说是对原有的焦炭还原的一大突破,然而高炉炼铁在当今仍属主流,不难想象其中存在的诸多技术难题。
其体现出来的低能耗,低污染自不待言,但其产品质量是否稳定却是人们急待了解的。
这也就使得人们对直接还原的关注提升到了一个新的高度。
下面就对低能耗炼铁工艺的一种,煤基直接还原铁做个介绍。
(二)正文直接还原铁是铁矿在固态条件下直接还原为铁,可以用来作为冶炼优质钢、特殊钢的纯净原料,也可作为铸造、铁合金、粉末冶金等工艺的含铁原料。这种工艺不用焦炭炼铁,原料也是使用冷压球团不用烧结矿,所以是一种优质、低耗、低污染的炼铁新工艺,也是全世界钢铁冶金的前沿技术之一。直接还原炼铁工艺有气基法和煤基法两种,按主体设备可分为竖炉法、回转窑法、转底炉法、反应罐法、罐式炉法和流化床法等。目前,世界上90%以上的直接还原铁是用气基法生产出来的。但是天然气资源有限、价高,使生产量增长不快。用煤作还原剂在技术上也已过关,可以用块矿、球团矿或粉矿作铁原料(如竖炉、流化床、转底炉和回转窑等。但是,因为要求原燃料条件高(矿石含铁品位要大于66%,含Si02+A1203杂质要小于3%,煤中灰分要低等),规模小,设备寿命低,生产成本高和某些技术问题等原因,致使直接还原铁生产在全世界没有得到迅速发展。因此,高炉炼铁生产工艺在较长时间内仍将占有主导地位。我国天然气缺乏,但煤炭资源丰富的特点,决定了煤基直接还原技术是我国发展直接还原铁的首选工艺。
1、煤基直接还原铁生产现状煤基直接还原是指直接以煤作还原剂的工艺,是相对于气基直接还原工艺而言。
目前世界直接还原铁生产中,主要分为气基法和煤基法,表1为2003~200 7年世界几种直接还原工艺的产量构成。
非高炉炼铁一、非高炉炼铁的发展高炉炼铁是炼铁生产的主题,经过长期的发展,它的技术已经非常成熟。
但它也存在固有的不足,即对冶金焦的强烈依赖。
但随着焦煤资源的日渐贫乏,冶金焦价格越来越高。
因此,使炼铁生产摆脱对冶金焦的依赖是开发非高炉炼铁的原动力。
经过数百年的发展,至今已形成了以直接还原和熔融还原为主的现代化非高炉炼铁工业体系。
现代化钢铁工艺流程主体由四部分构成,焦炉、造块设备(例如烧结机)、高炉和转炉。
高炉使用冶金焦为主题能源,他是由焦煤经炼焦得到。
高炉的产品是液态生铁,它经转炉冶炼成转炉钢。
熔融还原的产品相当于高炉铁水。
高炉使用冶金焦,熔融反应则使用非焦煤。
这样就使炼铁摆脱了对冶金焦的依赖。
直接还原的产品是在熔点以下还原得到固态金属铁,称为直接还原铁(DRI),又称海绵铁。
直接还原的流程可分为煤基直接还原、气基直接还原和电热直接还原三大类。
煤基直接还原以煤为主要能源,主要是使用回转炉为主体设备的流程。
气基直接还原以天然气为主题能源。
包括竖炉、反应罐和流化床流程。
电热直接还原以电力为主要能源,是使用电热竖炉直接还原流程。
熔融还原的主体能源主要分为三种:非焦煤,焦炭和电力。
熔炼设备是熔融还原流程的精华。
还原设备决定了适用原料的性质。
例如流化床可直接处理粉料,竖炉则适用于处理块状炉料。
二、重点设备分析直接还原的核心装置是一个还原单元。
占有重要地位的还原设备有竖炉,反应罐,回转炉和流化床。
熔融还原的核心装置时一个还。
原单元和一个熔炼造气单元。
最受重视的还原设备是竖炉和流化床,最重要的熔炼造气设备是煤炭流化床和铁浴炉。
竖炉是一种成熟的还原设备。
除了产量在海绵铁工业中高居榜首外,熔融还原也将它作为还原单元最实际的选择。
目前唯一的工业化二步法熔融还原流程COREX即使用竖炉还原单元。
作为还原设备,流化床的地位非常微妙。
海绵铁工业中流化床的生产能力并不大。
但他具有一个竖炉无法比拟的优点:可直接使用粉矿。
这个特点使流化床成为熔融还原中最受青睐的还原设备。
6非高炉炼铁6.l概述非高炉炼铁法是高炉炼铁法之外,不用焦炭炼铁的各种工艺方法的总称。
按工艺特征,产品类型和用途,主要分为直接还原法和熔融还原法两大类。
6.1.1直接还原法与熔融还原法直接还原(DirectReduction)法是指不用高炉而将铁矿石炼制成海绵铁的生产过程。
直接还原铁是一种低温下固态还原的金属铁。
它未经熔化而仍保持矿石外形,但由于还原失氧形成大量气孔,在显微镜下观察形似海绵,因此也称海绵铁。
直接还原铁的含碳量低(〈2%),不含硅锰等元素,还保存了矿石中的脉石。
因此不能大规模用于转炉炼钢,只适于代替废钢作为电炉炼钢的原料。
熔融还原(SmeltingReduction)法指在熔融状态下把铁矿石还原成融态铁水的非高炉炼铁法。
它以非焦煤为能源,得到的产品是一种与高炉铁水相似的高碳生铁。
适合于作氧气转炉炼钢的原料。
近年来,非高炉炼铁法发展比较快,其原因是:(1)不用焦炭炼铁。
高炉冶炼需要高质量冶金焦,而从世界矿物燃料的总储量来看,煤炭占92%左右,而焦煤只占煤炭总储量的5%,且日渐短缺,价格越来越高。
非高炉炼铁可以使用非炼焦煤和天然气作燃料与还原剂,对缺少焦煤资源的国家和地区提供了发展钢铁工业的巨大空间。
(2)高炉炼铁要求强度好的焦炭和块状铁料。
必须有炼焦和铁矿粉造块等工艺配套,工艺环节多,经济规模大,需要大的原料基地和巨额投资。
非高炉炼铁法使用非焦煤或天然气,可使用矿块或直接使用粉矿,市场适应性强。
(3)科学技术的进步,对钢材质量和品种提出了更高的要求。
现代电炉炼钢技术为优质钢的生产提供了有效手段,但由于废钢的循环使用,杂质逐渐富集,而一些杂质元素在炼钢过程又很难去除,无法保证钢的质量,并限制了电炉法冶炼优质钢种的优势。
非高炉炼铁法能为炼钢提供成分稳定、质量纯净的优质原料,为炼钢设备潜能的发挥,提高企业的经济效益,提供了有力的支持。
(4)随着钢铁工业的发展,氧气转炉和电炉炼钢逐渐取代平炉,废钢消耗量迅速增加,废钢供用量日感紧张,非高炉生产的海绵铁、粒铁等是废钢的极好替代品。
高炉炼铁过程中的能源消耗与管理一、前言与背景高炉炼铁作为现代钢铁工业的基础,自19世纪末以来,一直是铁钢生产的主要方法。
高炉炼铁技术的出现和发展,对社会、经济和科技产生了深远影响。
它使得钢铁生产实现了规模化、低成本,极大地促进了工业革命和现代工业社会的形成。
同时,高炉炼铁过程也伴随着能源的消耗,据统计,能源消耗占到了高炉炼铁成本的很大一部分。
因此,研究和分析高炉炼铁过程中的能源消耗和管理,对于提高我国钢铁工业的能源利用效率,降低生产成本,提升竞争力具有重要意义。
二、高炉炼铁行业/领域的核心概念与分类高炉炼铁的概念高炉炼铁是一种利用焦炭和氧气反应产生的高温,将铁矿石还原成铁的过程。
其基本原理是在高温下,铁矿石中的氧化铁与一氧化碳反应,生成铁和二氧化碳。
高炉炼铁过程中,能源主要用于提供热能和动力能,其中热能主要用于维持高炉内的温度,动力能主要用于推动炉内物质的流动和完成各项机械作业。
高炉炼铁的分类高炉炼铁可以根据炉型、操作方式、燃料种类等不同标准进行分类。
按炉型可分为小型高炉、中型高炉和大型高炉;按操作方式可分为连续操作高炉和间歇操作高炉;按燃料种类可分为焦炭高炉和煤气高炉。
高炉炼铁的特征与应用领域高炉炼铁具有生产规模大、原料利用率高、产品品质好、能耗高等特征。
其应用领域广泛,几乎涵盖了所有钢铁生产领域。
高炉炼铁与其他领域的交叉与融合随着科技的发展,高炉炼铁技术与自动化、信息化、环保等领域日益交叉与融合。
例如,高炉炼铁过程的自动化控制,使得生产过程更加稳定,效率更高;信息化技术的应用,使得高炉炼铁过程的监测和控制更加精细;环保技术的应用,则有助于降低高炉炼铁过程中的污染排放。
三、关键技术或性能原理剖析高炉炼铁的关键技术高炉炼铁的关键技术主要包括燃料燃烧技术、还原反应技术、热量交换技术、原料处理技术等。
其中,燃料燃烧技术是高炉炼铁过程中能源消耗的主要部分,其效率的高低直接影响到高炉炼铁的能耗。
高炉炼铁的最新技术突破与创新成果近年来,高炉炼铁技术取得了许多重要突破和创新成果,如低焦比炼铁技术、高风温技术、煤气净化技术等。
非高炉炼铁技术概述摘要:随着焦煤资源日益减少,高炉炼铁技术发展受到限制,非高炉炼铁成为了日益关注的冶炼技术。
文章阐述了非高炉炼铁技术的发展现状、分类,工艺流程及特点,同时展望了其未来的发展前景。
关键词:非高炉炼铁直接还原熔融还原非焦煤一、引言目前,生铁主要来源于高炉冶炼产品,高炉炼铁技术成熟,具有工艺简单,产量高,生产效率大等优点。
但其必须依赖焦煤,而且其流程长,污染大,设备复杂。
因此,世界各国学者逐渐着手研究和改进非高炉炼铁技术。
二、非高炉炼铁工艺非高炉炼铁是指以铁矿石为原料并使用高炉以外的冶炼技术生产铁产品的方法。
在当今焦煤资源缺乏,非焦煤资源丰富的情况下,非高炉炼铁以非焦煤为能源,不但环保,而且省去了烧结、球团等工序,缩短了流程。
因此非高炉炼铁一直被认为是一种环保节能、投资小、生产成本低的生产工艺。
非高炉炼铁可分为直接还原炼铁工艺和熔融还原炼铁工艺两种。
1.直接还原炼铁工艺直接还原炼铁工艺是一种以天然气、煤气、非焦煤粉为能源和还原剂,在铁矿石软化温度下,将铁矿石中铁氧化物还原成铁的生产工艺。
据统计直接还原冶炼工艺多达40余种,大部分已经实现了大规模工业化生产[1]。
目前,直接还原炼铁工艺主要有气基直接还原、煤基直接还原两大类。
1.1气基直接还原气基直接还原是指用CO或H2等还原气体作还原剂还原铁矿石的炼铁方法。
具有生产效率高、容积利用率高、热效率高、能耗低、操作容易等优点,是DRI(directly reduced iron)生产最主要的方法,约占DRI总产量的90%以上[2]。
气基直接还原代表工艺有HYL反应罐法、Midrex-竖炉法、流化床法等[3]。
HYL反应罐法是由墨西哥希尔萨(HojalataYLamina,HYLSA)公司于20世纪50年代初开发的,其工业化标志着现代化直接还原的开始。
HYL反应罐法具有作业稳定,设备可靠等优点,但其作业不连续,还原气利用差,能耗高及产品质量不均匀。
非高炉炼铁--重点设备介绍
非高炉炼铁是指利用非高炉工艺进行炼铁的一种方法。
相比传统高炉炼铁,非高炉炼铁具有投资少、技术先进、环保等优点,因此受到了广泛关注和应用。
在非高炉炼铁的重点设备中,有几个主要的设备需要特别介绍。
首先是直接还原炼铁炉。
直接还原炼铁炉是非高炉炼铁的核心设备,其工作原理是将矿石和还原剂在高温下进行化学反应,最终得到铁水和渣。
这种炉子通常采用旋转式炉体结构,能够高效地进行还原反应,大大提高了炼铁效率。
其次是连续铁水生产系统。
这种系统主要由连续铁水生产装置和相关辅助设备组成,能够实现铁水的连续生产和输送。
相比传统的间歇式炼铁方法,连续铁水生产系统能够更加高效地进行生产,降低能耗和污染物排放。
此外,还有磁选设备。
磁选设备主要用于对原料进行磁选,将其中的铁矿石进行分离。
这些铁矿石经过磁选后可以直接用于炼铁,不需要经过破碎和磨矿等环节,节约了能源和原材料,也减少了对环境的污染。
最后是烧结设备。
烧结设备用于对铁矿石和其他原料进行烧结处理,增加其强度和耐高温性,以便于后续的炼铁过程。
总的来说,非高炉炼铁的重点设备主要包括直接还原炼铁炉、连续铁水生产系统、磁选设备和烧结设备等。
这些设备的运用
使得非高炉炼铁在提高炼铁效率、降低成本、减少环境污染等方面具有显著优势。
随着科技的不断发展,相信非高炉炼铁的设备和工艺会更加完善,为炼铁行业的可持续发展做出更大的贡献。
煤基直接还原炼铁技术及非高炉炼铁能耗分析摘要:非高炉炼铁技术或称非焦炼铁技术是当今钢铁生产工艺中最受关注的技术之一。
依产品的形态不同,非高炉炼铁技术可分为熔融还原与直接还原两种工艺方法。
直接还原是以非焦煤为能源,在不熔化不造渣的条件下,原料保持原有物理形态,铁的氧化物经还原获得以金属铁为主要成分的固态产品的技术方法。
直接还原炼铁工艺分为气基直接还原和煤基直接还原,气基直接还原炼铁工艺是最主要的直接还原炼铁技术,其产量占到直接还原炼铁的90%左右,煤基直接还原炼铁,目前以回转窑为主,也是最主要的煤基直接还原炼铁工艺。
关键词:非高炉炼铁;直接还原;熔融还原;煤基;气基近代高炉已有数百年历史,其工艺已达到相当完善的地步。
高炉反应器的优点是热效率高、技术完善,设备已大型化、长寿化,单座高炉年产铁最高可达400 万t左右,一代炉役的产铁量可达5000万t以上,可以说,没有现代化的大型高炉就没有现代化的钢铁工业大生产。
但是在它日益完善和大型化的同时,也带来了流程长、投资大以及污染环境等问题。
高炉工艺流程存在以下问题:一是高炉必须要用较多焦炭,而炼焦煤越来越少,焦炭越来越贵;二是环境污染严重,特别是焦炉的水污染物粉尘排放烧结的SO2粉尘排放,高炉的CO2排放很高;三是传统炼铁流程长,投资大;四是从铁、烧、焦全系统看重复加热、降温,增碳、脱碳,资源、能源循环使用率低,热能利用不合理。
高炉法虽然仍是当今炼铁生产的主体流程,但非高炉炼铁法已成为炼铁技术发展的方向。
非高炉炼铁技术或称非焦炼铁技术是当今钢铁生产工艺中最受关注的技术之一。
依产品的形态不同,非高炉炼铁技术可分为熔融还原与直接还原两种工艺方法。
随着世界上废钢铁积累日益减少,电炉流程迅速发展,这就要求采用直接还原新工艺,生产出的海绵铁供电炉炼钢。
此外,由于炼焦煤资源日渐短缺,焦炉逐渐老化以及人们对焦炉污染日益关注,八十年代以来,各发达国家纷纷谋求开发另外的无焦炼铁工艺——熔融还原,其中Corex流程已实现工业化生产。
综合起来看,当前炼铁工艺正朝着少焦或无焦炼铁方向发展,而直接还原与熔融还原技术正适合这种发展方向。
所以说我国应适度发展直接还原与熔融还原技术。
直接还原是以非焦煤为能源,在不熔化不造渣的条件下,原料保持原有物理形态,铁的氧化物经还原获得以金属铁为主要成分的固态产品的技术方法。
熔融还原是以非焦煤为能源,铁矿物在高温熔融状态下完成还原过程,获得液态铁水的技术方法。
由于优质废钢资源的短缺,海绵铁作为电炉钢重要的原料之一受到重视与发展。
直接还原炼铁工艺分为气基直接还原和煤基直接还原,气基直接还原炼铁工艺是最主要的直接还原炼铁技术,其产量占到直接还原炼铁的90%左右,气基直接还原炼铁使用天然气重整制备高质量的富氢气体(75%H2~25%CO)作为还原剂,以竖炉作为还原反应器,气固充分接触,还原反应与热量交换好,因此,反应器效率高,吨铁能耗低。
由于我国的天然气资源短缺,难以用于生产海绵铁。
直接还原的产品直接还原铁(DRD是铁氧化物在不熔化、不造渣且在固态下还原生成的金属铁产品。
为提高产品的抗氧化能力和体积密度, DRI热态下挤压成形的产品称为热压块( HBI) , DRI冷态下挤压成形的产品称为DRI压块。
煤基直接还原炼铁,目前以回转窑为主,也是最主要的煤基直接还原炼铁工艺,另外还存在隧道窑直接还原炼铁工艺,近年来,以处理钢铁厂废弃物的转底炉工艺,我国也在尝试变成直接还原炼铁工艺。
1 煤基直接还原炼铁的几种工艺1.1 回转窑工艺目前,在全世界的煤基直接还原炼铁工艺中,回转窑流程约占煤基直接还原炼铁总产量的95%以上。
回转窑工艺有三种,分为一步法、二步法和冷固结球团法。
“一步法”是指把细磨铁精矿造球,在链篦机上经干燥、900 ℃预热,直接送入回转窑进行固结和还原,所有工序在一条流水线上连续完成。
“二步法”是将上述工艺过程分两步来完成,即先把铁精矿造球,经1300℃高温氧化焙烧,制成氧化球团;然后再将氧化球团送入回转窑进行还原;两个工艺可以分别在两地独立进行,故称“二步法”。
冷固结球团法是在磁铁矿精粉中加入少量特制的复合型粘合剂造球,在200℃左右干燥固结,然后送入回转窑进行还原,省去了高温焙烧氧化固结过程。
回转窑法最著名的为SL-RN流程,是由SL流程和RN流程结合而成的。
开发者为加拿大的Steel Co Ltd、德国的Lurgi A. G.、美国的Republic Steel有限公司和National Lead公司,S、L、R、N 即这四个开发者的首字母。
该流程于1954 年开发完成,在1969 年实现工业化,在澳大利亚建成第一座30mSL-RN工业回转窑,之后得到了较快的发展。
1.2 隧道窑工艺隧道窑法是由E·Sieurin于1908年发明的。
它使用外热式反应罐和隧道窑,窑体可分为加热、还原和冷却三个区域。
在还原段装有燃烧器,以液体或气体燃料为能源使还原段温度保持在1200℃左右,还原段高温炉气向加热段流动,对反应罐进行预热,使其温度随着向还原段的逐渐接近而逐步提高。
台车进入还原段后,煤气化反应放出大量CO,使矿粉得到还原,生成海绵铁。
还原完成后,台车进入冷却段,冷却段中有一股由吸入的冷空气形成的气流,在气流中,密封的反应罐逐步冷却至常温。
出窑后,将海绵铁取出,去掉残煤和灰分即可得到产品。
该工艺可用于生产粉末冶金用铁粉和海绵铁。
反应罐的材质多为SiC或黏土,SiC 罐耐用,导热性好,成本较高;黏土罐造价低,但性能较差。
反应罐内矿粉和还原剂分层装入罐内,还原剂采用煤粉,混入石灰石粉作为脱硫剂。
隧道窑生产工艺的特点:(1)原料、还原剂、燃料容易解决;(2)生产工艺易掌握,生产过程易控制;(3)设备运行稳定,产品质量均匀。
窑炉是海绵铁生产的关键设备。
2004 年之前,我国部分海绵铁生产厂家从倒焰窑改为煤烧隧道窑,使还原工段设备档次上升了一个台阶。
但煤烧隧道窑存在环境污染、能耗高等问题,根据国家的环保政策,隧道窑煤气化已势在必行,2005年开始,我国新上的海绵铁项目绝大部分采用了煤气,加之国家行业管理部门提倡鼓励新上长窑、大窑,以形成规模经济、降低能耗和提高经济效益,在这种背景下,新一代大型煤气隧道窑应运而生。
煤基隧道窑还原主要用于生产高纯铁粉,金属化率要求大于95%,因此,造成特殊的布料方式(环行布料),传统煤基隧道窑还原窑内温度控制在1180 ~1200℃,吨铁煤耗高达1500kg,罐材寿命短、冶炼周期长(约40~50 h,包括预热、加热与冷却段)。
1.3 转底炉技术1.3.1 Fastmet 工艺转底炉起源于环形加热炉,原用于轧钢钢坯的加热,近年来被移植用于钢铁厂粉尘的处理,进而演化成炼铁设施。
转底炉可用于生产金属化球团矿,为钢铁公司处理粉尘。
Fastmet 流程主体设备是转底炉。
转底炉呈密封的圆盘状,炉底在运行中以垂线为轴作旋转运动。
两侧炉壁上设有燃烧器为炉内提供所需热量。
利用粉状还原剂和粘结剂与铁精矿混合均匀制成球团,经干燥后送入转底炉,均匀地铺放于旋转的炉底上。
随着炉底的旋转,含碳球团被加热到1250~1350 ℃,经过10~20 min的还原得到海绵铁。
海绵铁通过出料螺旋连续排出炉外,温度约为1000 ℃。
根据需要,可将出炉后的海绵铁热压成块或使用圆筒冷却机冷却,也可热装入熔炼炉处理成铁水(Fastmet和熔炼联合被称为Fastmelt 工艺)。
燃料(天然气、油、煤)和预热空气通过烧嘴进入炉内燃烧(包括还原气相产物CO 的燃烧),产生还原所需的足够温度和热量。
燃烧废气逆向流动,最后从加料口的排气口排出,经二次燃烧、热交换和洗涤除尘后从烟囱排出。
Fastmet 的基本还原原理是将燃烧着的火焰的高温经炉壁通过辐射传给料层,使含碳球团中的铁矿粉在高温下被其中的碳/挥发分还原。
含碳球团的还原过程比较复杂,因为煤不仅作为固体还原剂,而且其挥发分具有气体还原剂的特点。
挥发分中含有的少量H2和CO 可以直接作为还原剂,大部分的碳氢化合物裂解后生成的H2 和C也可作为还原剂。
在研究含碳球团的还原时,重点都集中在碳的还原作用上,往往忽略了挥发分的还原作用。
试验结果证明,随温度的升高,含碳球团的还原过程应该包括三部分:挥发分的热解;铁氧化物被挥发分中CO 和H2以及其裂解产物H2 和C还原;铁氧化物被碳还原。
此方法可应用于以下几个方面。
(1)用铁精粉生产DRI或HBI将铁精粉与煤粉混合压球后加入转底炉,球团在炉内受控的还原气氛中被加热。
当达到反应温度时,铁氧化物被还原为金属铁。
反应所需的热能全部由煤提供。
从转底炉出来的海绵铁带有较多显热,可采用热压块工艺加工为热压块铁,以便运输与存储。
该法生产的热压块铁TFe含量达92%,金属化率高达95%,C含量约4%,脉石含量约2.4%,S含量仅为0.04%,可见其品质纯净,脉石与硫等杂质含量很低,可作为优质废钢的理想替代品。
而且与废钢相比,其质量均匀稳定,波动小,对于炼钢生产极为有利。
(2)回收电炉除尘灰与轧钢铁鳞电炉除尘灰与轧钢铁鳞的特点是含有较多非铁金属的氧化物,如锌、铅、镉等,被美国环保部门定为有害物质,称作KO61。
在干铁法工艺处理过程中,这些非铁氧化物将以气态逸出,并在后续的烟气处理装置中予以收集,此时KO61 已转化为提炼有价值非铁金属的原料。
转底炉中ZnO的脱除率高于95%,生成的海绵铁金属化率高达91%。
转底炉焙烧含锌粉尘时以气态逸出的非铁金属氧化物在尾气处理过程中,由布袋除尘器收集,其成分以ZnO为主,可作为提炼锌的原料使用。
(3)回收传统钢铁厂废弃物传统钢铁厂废弃物包括转炉除尘灰,轧钢铁鳞,热轧污泥,连铸氧化铁皮及高炉粉尘与污泥。
这些物质总体来说碳的含量很高,与电炉除尘灰相比,锌含量较低,而铅、镉等含量极少。
由于原料中的铁与碳含量较高,在经过转底炉焙烧后,生成的海绵铁金属化率高于90%,其尾气收尘富含ZnO,可予以回收提炼,增加收入来源。
1.3.2 ITmk3法ITmk3法这是Midrex 及其母公司神户制钢1996年9月提出的一种第三代炼铁技术。
该技术基于Fastmet工艺,利用粉矿与煤粉制成含碳球团,然后把球团装入转底加热炉内,加热到1300~1500 ℃;球团被还原和熔融,使珠铁与渣分开,珠铁中不含杂质。
冶炼过程仅用10 min,即可生产出高纯珠铁供电炉使用。
ITmk3 技术适用于多种类型的铁矿和煤种,可利用铁粉矿和低品位含铁原料(磁铁矿、赤铁矿或含铁粉尘)一步处理生产出直径10~20 mm 的优质珠铁,取消焦炉和烧结装置,使投资成本降低。
ITmk3法在中试阶段,曾用多种铁氧化物生产出珠铁;可用煤粉、石油焦、焦粉或其他固体的、液体的或气体的还原剂。