a' 1, n 1
a' 1, n i
a' 1,n m
设
B 1
a' k ,n1
a' k ,ni
a' k ,n m
a
'
m
,n
1
a' m,ni
a
' m,nm
b b1, b2 , , (bk bk ), bm T
为保证最优解的基变量 不发生变化 , 必须满足
XB
B b b 0 1
注意:若碰到原问题和对偶问题均为非可行解时, 就需要引进人工变量后重新求解。
线性规划问题的灵敏度分析
最优解/最优值的变化情况; (2)分析线性规划相关参数和条件在什么范围内变化,其最优
基/最优解/最优值不变。
灵敏度分析内容:
(1)参数 Cj,bi,aij的影响分析;
(2) 增加约束或变量的影响分析;
线性规划问题的灵敏度分析
2
5.2 灵敏度分析工具与原理
(1)灵敏度分析工具
Pj’ =B-1Pj
b’=B-1b
– 已知 c6=4, p6=(2,4,5)
– 计算 x6 的检验数可知生产是否
有利
线性规划问题的灵敏度分析
18
5.7 技术系数aij的变化
约束矩阵A随之变化
若xj在最终表中为非基变量,其约束条件中系数 aij的变化分析步骤参考增加一个变量时的情形
若xj在最终表中为基变量,则aij的变化将使相应 的基矩阵B和B-1发生变化,可能出现原问题和对 偶问题均为非可行解的情况,需引进人工变量将 原问题化为可行解,再用单纯形法
σj =Cj-CBB-1Pj=Cj-CBPj’