光纤通信实验
- 格式:doc
- 大小:3.48 MB
- 文档页数:22
光纤通信实验报告实验报告:光纤通信技术引言:光纤通信技术是一种基于光传输原理的高速、大容量、低损耗的通信方式。
光纤通信以其优异的性能和广泛的应用领域受到了广泛的关注。
本次实验旨在探究光纤通信的基本原理和实验方法,以及光纤通信的特点和应用。
一、光纤通信的基本原理1.光纤通信的原理光纤通信是利用光纤作为传输介质,将光信号转换为电信号进行传输。
它主要包括光信号的产生、调制、传输和接收等过程。
光信号通过激光器发射端发出,经过光纤传输到接收端,然后通过光电转换器将光信号转换为电信号。
2.光纤的工作原理光纤是一种具有高折射率的细长光导纤维,主要由芯层、包层和包住层组成。
光信号在传输过程中会发生多次反射,利用全内反射原理将光信号在光纤内损耗尽可能小地传播。
二、光纤通信实验的步骤1.光信号的产生通过激光器发射端发出激光光束,光纤接收端接收光信号。
2.光信号的调制利用调制器对光信号进行调制,使其携带有用信息。
3.光信号的传输利用光纤的高折射率和全内反射的特点,将光信号传输到接收端。
4.光信号的接收通过光电转换器将光信号转换为电信号,进而进行信号处理,如放大、滤波等。
三、光纤通信的特点和应用1.高速传输光纤通信具有高传输速率和大容量的优势,可以满足现代通信的高速要求。
2.低损耗光纤通信中光信号的传输损耗非常小,可以远距离传输无衰减。
3.安全性强光信号在传输过程中不容易被窃听或干扰,保证了通信的安全性。
4.应用广泛结论:通过本次实验,我们深入了解了光纤通信的基本原理和实验方法。
光纤通信具有高速传输、低损耗、安全性强和应用广泛等特点,是现代通信领域的重要技术。
光纤通信的发展势头迅猛,未来有望取代传统的铜线通信,成为主流的通信技术。
光纤通信实验报告1. 引言光纤通信是一种基于光信号传输的通信方式,其具有高速、大容量、低损耗等优点,已经成为现代通信领域的主流技术。
本实验旨在通过搭建光纤通信系统,验证其性能和可行性。
2. 实验目的本实验的主要目的是:- 了解光纤通信的基本原理与技术;- 掌握光纤通信系统的搭建方法;- 通过实际操作验证光纤通信的传输性能。
3. 实验原理光纤通信系统包括光源、光纤传输介质、光检测器等组成部分。
光信号通过光源产生,经由光纤传输介质传输,并最终被光检测器接收和解读。
4. 实验步骤4.1 实验材料准备在进行实验之前,我们需要准备以下材料:- 光纤通信系统实验箱,包括光源、光纤、光检测器等;- 光纤连接器、光纤插入损耗测量仪等辅助器材;- 电源线、示波器等实验设备。
4.2 搭建光纤通信系统根据实验箱中提供的说明书,依次将光源、光纤和光检测器进行连接。
确保光纤的插入损耗尽量低,并且连接稳定可靠。
4.3 进行数据传输测试利用示波器等实验设备,观察发送端的信号波形,并通过光检测器接收信号,并利用示波器显示接收端信号波形。
记录并比较发送端和接收端的信号特征,进一步验证光纤通信的性能。
5. 实验结果与讨论通过实验,我们获得了发送端和接收端的信号波形,并进行了详细的比较分析。
根据实验结果,我们可以得出以下结论:- 光纤通信系统具有较高的传输速率和大容量的特点;- 通过合理的布线和连接方式,可以降低光纤的插入损耗,提高通信系统的性能;- 在实际应用中,光纤通信系统需要注意光纤的维护和保护,避免光纤的弯曲和损坏。
6. 实验总结通过本次实验,我们深入了解了光纤通信的原理和技术,并通过实际搭建光纤通信系统验证了其性能和可行性。
光纤通信作为一种高速、大容量的通信方式,在现代通信领域具有广泛的应用前景。
7. 实验心得通过参与光纤通信实验,我对光纤通信技术有了更深入的了解。
在实践中发现光纤通信的可靠性和稳定性较高,但需要注意光纤的维护和保护。
光纤通信实验报告中国石油大学(北京)光纤通信实验报告一、实验目的1. 了解光纤在量化传输中的原理和性能;2. 掌握光纤通信仪器的使用方法;3. 掌握光纤收发器、光分路器、光偏转器、光开关、光衰减器之间联结方法;4. 掌握光传输的参数测量技术。
二、实验原理及步骤1. 放大器原理:光纤放大器是一种可以在光纤上显示和观察信号时序变化的设备。
它能够按照固定的时间间隔来放大光纤传输的信号,从而允许技术人员观察信号的变化。
2. 分路器原理:光纤分路器是一种利用晶体原理实现光纤信号定向传输的设备。
分路器的使用是把一路信号分成几路,从而实现信号传输的目的。
3. 偏转器原理:光纤偏转器是一种用于改变光纤信号传输方向的设备。
它可以把一条光纤信号传输到另外一个方向,从而实现信号源和信号接收方之间的信号传输。
4. 开关原理:光纤开关是一种可以用来控制光纤信号传输的设备。
它可以控制信号的传输方向,从而可以把信号源和接收方之间的信号进行分开。
5. 衰减器原理:光纤衰减器是一种用来控制光纤信号强度的设备。
它可以把信号源和接收方之间的信号进行分开,从而可以控制信号的级别。
6. 实验步骤:(1) 安装光纤传输系统,安装光纤收发器、光分路器、光偏转器、光开关、光衰减器等实验设备;(2) 建立信号网络,安装配置传送端、接收端信号源;(3) 启动信号源,测量传输系统的参数,包括:传输效率、信噪比、带宽、时延以及抖动等;(4) 将测量的参数曲线进行分析,绘制传输系统的信号时序图;(5) 根据实验测量结果,完成实验报告。
三、实验结果1. 传输效率:实验中,光纤传输的最大平均效率为98.7%,最小平均效率为97.8%,最高单点效率为99.3%,最低单点效率为97.2%。
2. 信噪比:实验中,光纤传输的信噪比约为20 dB。
3. 带宽:实验中,光纤传输的带宽约为1 MHz。
4. 时延:实验中,光纤传输的平均时延约为3 ms。
5. 抖动:实验中,光纤传输的抖动约为0.8 μs。
光纤通信实验报告光纤通信是一种使用光信号传输数据的通信技术,它利用了光的高速传输和大带宽的特性,成为了现代通信领域的重要技术之一。
在本次实验中,我们对光纤通信的原理和实验验证进行了深入研究。
实验一: 光的传播特性我们首先对光的传播特性进行了研究。
选择了一根直径较细的光纤,并采用了迎射法和反射法进行传导实验。
通过在纤芯中投射光线,并观察传导的情况,我们验证了光在光纤中的传播路径并没有明显偏向,光线能够相对直线传播。
实验二: 光纤的损耗与色散在光纤通信中,损耗和色散是不可避免的问题。
我们通过实验对光纤中损耗和色散的影响进行了测试。
损耗实验中,我们通过分析在不同长度光纤中传输的光强度,发现随着距离的增加,光强度会逐渐减弱。
这是由于光纤中存在材料吸收和散射等因素造成的。
为了减小损耗,优化光纤的材料和结构是很重要的。
色散实验中,我们将不同波长的光信号通过光纤传输,并测量到达另一端的时间。
实验结果显示,不同波长的光信号到达时间存在差异。
这是由于光纤中折射率随波长变化而引起的色散效应。
为了减小色散,需要采用更先进的技术,如光纤衍生波导和光纤增益等手段。
实验三: 单模光纤与多模光纤光纤通信中,单模光纤和多模光纤是常用的两种类型。
通过实验,我们对这两种光纤的传输特性进行了研究。
我们首先测试了单模光纤。
结果显示,在单模光纤中,光信号会以单一光波传播,因此具有较低的色散和损耗,适用于远距离传输和高速通信。
然后我们进行了多模光纤的实验。
实验结果显示,多模光纤中存在多个模式的光信号传播,由于不同模式间的传播速度不同,会导致严重的色散和损耗问题。
因此,多模光纤适用于近距离传输和低速通信。
结论通过本次光纤通信实验,我们对光纤通信的原理和实际应用有了更深入的了解。
我们发现光纤通信具有高速率、低损耗和大带宽等优势,而不同类型的光纤对于不同的通信需求有着不同的适应性。
然而,我们也看到了光纤通信中存在的一些问题,如损耗、色散和设备成本等。
光纤通信实验简介光纤通信是一种利用光纤作为传输介质的通信方式,它具有高带宽、低损耗、抗干扰等优点。
在光纤通信实验中,我们将了解光纤通信的原理、组成部分以及实验步骤。
实验目的本实验旨在让学生了解光纤通信的原理,掌握光纤通信的基本操作。
实验材料•光纤通信实验箱•光纤通信模块•光源•接收器•光纤缆实验步骤第一步:准备工作1.将光纤通信模块安装在实验箱上。
2.将光纤缆连接到光纤通信模块的发光端口和接收端口。
第二步:设置光源和接收器1.将光源连接到发光端口。
2.将接收器连接到接收端口。
第三步:传输数据1.在电脑上打开串口通信软件。
2.将光纤通信模块连接到电脑的串口。
3.输入要传输的数据,并发送给光纤通信模块。
4.在串口通信软件中接收光纤通信模块发送的数据。
第四步:观察实验结果1.观察光纤通信模块发出的光信号。
2.观察接收器接收到的光信号。
3.比较发送的数据和接收到的数据,判断是否传输成功。
实验注意事项1.在操作光纤通信模块时,要注意避免弯折光纤,以免造成光信号的损失。
2.在调试光纤通信模块时,要注意调节光源和接收器的位置,以获取较好的信号接收效果。
3.在传输数据时,要确保光纤通信模块的参数与串口通信软件的参数相匹配,以确保数据传输的正确性。
实验结果分析根据观察到的实验结果,我们可以判断光纤通信模块的性能和传输质量。
如果发送的数据与接收到的数据完全一致,说明光纤通信正常工作。
如果有数据传输错误或丢失,可能需要检查光纤连接是否良好或调整光源和接收器的位置。
结论通过本次实验,我对光纤通信的原理和操作有了更深入的了解。
光纤通信技术具有很多优势,可以应用在许多领域,如通信网络、数据传输等。
同时,我也体会到了在实验中需要仔细操作和严密观察实验结果的重要性。
参考文献参考文献可以列举光纤通信实验的相关教材、学术论文等信息。
实验地点:信息楼10314在实验过程中注意以下几点:1、在实验过程中切勿将光纤端面对着人,切勿带电进行光纤的连接。
2、光电器件是静电敏感器件,请不要用于触摸。
3、做完实验后请将光纤用相应的防尘帽罩住。
4、在使用信号连接导线时应捏住插头的头部进行插拔,切勿直接拽线。
5、不能带电进行信号连接导线的插拔!6、光纤器件属易损件,应轻拿轻放,插光纤的时候要先对准,用力要轻,切忌倾斜、用力过大或弯折。
7、实验完成后整理好设备、接线。
实验光接收机的动态范围及眼图观测一、实验目的1.了解光收端机动态范围的指标要求。
2.掌握光收端机眼图的观测方法。
二、实验内容1.了解光收端机眼图的观测方法。
2.用示波器观察眼图。
三、实验仪器1.光纤通信实验系统1台。
2.示波器1台。
3.万用表1部。
4.光纤跳线1根。
四、实验原理(一)动态范围在实际的光纤通信线路中,光接收机的输入光信号功率是固定不变的,当系统的中继距离较短时,光接收机的输入光功率就会增加。
一个新建的线路,由于新器件和系统设计时考虑的富余度也会使光接收机的输入光功率增加。
为了保证系统的正常工作,对输入信号光功率的增加必须限制在一定的范围内,因为信号功率增加到某一数值时将对接收机性能产生不良影响。
在模拟通信系统中,输入信号过大将使放大器超载,输出信号失真,降低信噪比。
在数字通信系统中,当输入信号功率增加到某一数值时,将使系统出现误码。
应该指出,在 数字通信系统中,放大器输出信号的失真在测试时应与模拟系统区别开来。
为了保证数字通信系统的误码特性,光接收机的输入光信号只能在某一定范围内变化, 光接收机这种能适应输入信号在一定范围内变化的能力称为光接收机的动态范围,它可以表 示为:D = 10lg —max(dB )min 式中,Pmax 是光接收机在不误码条件下能接收的最大信号平均光功率;Pmin 是光接收 机的灵敏度,即最小可接收光功率。
一般来说,要求光接收机的动态范围大一点较好,但如 果要求过大则会给设备的生产带来一些困难。
光纤通信基础实验指导光纤通信是一种基于光传输的信息传输技术,它利用光纤作为传输媒介,通过光信号的传输实现高速、低衰减的数据通信。
在现代通信领域中,光纤通信已经成为一种重要的通信方式。
为了更好地理解光纤通信的原理和技术,进行实验是非常重要的。
实验一:光纤传输特性实验在这个实验中,我们将通过实验来了解光纤的传输特性,包括衰减特性和色散特性。
首先,准备一根光纤和光源。
将光源连接到光纤的一端,然后在光纤的另一端连接一个光检测器。
通过改变光源的强度和频率,观察光检测器接收到的光信号的变化,并记录实验数据。
通过这个实验,我们可以了解光纤传输的衰减特性和色散特性,以及光源强度和频率对光信号传输的影响。
实验二:光纤通信系统实验在这个实验中,我们将构建一个简单的光纤通信系统,包括光源、光纤和光检测器。
首先,连接光源和光检测器到光纤的两端,然后通过调节光源的强度和频率,发送一个光信号,并在光检测器端接收光信号。
记录实验数据并分析光信号的传输质量。
通过这个实验,我们可以了解光纤通信系统的工作原理和性能特点,以及光信号在光纤传输过程中的损耗和衰减情况。
实验三:光纤通信网络实验在这个实验中,我们将构建一个简单的光纤通信网络,包括多个光源、光纤和光检测器。
通过调节多个光源的强度和频率,实现多个光信号的传输和接收,并通过光纤通信网络传输数据。
记录实验数据并分析光信号在光纤通信网络中的传输效果。
通过这个实验,我们可以了解光纤通信网络的构建和数据传输原理,以及多个光信号在光纤通信网络中的同步传输和接收过程。
在这些实验中,我们可以通过实际操作和数据记录,深入了解光纤通信的基础知识和技术,为进一步学习和应用光纤通信提供基础支持。
希望通过这些实验,能够帮助大家更好地理解光纤通信的原理和应用。
实验1 电光、光电转换传输实验一、实验目的1.了解本实验系统的基本组成结构;2.初步了解完整光通信的基本组成结构;3.掌握光通信的通信原理。
二、实验仪器1.光纤通信实验箱2.20M双踪示波器3.FC-FC单模尾纤 1根4.信号连接线 2根三、基本原理本实验系统重要由两大部分组成:电端机部分、光信道部分。
电端机又分为电信号发射和电信号接受两子部分,光信道又可分为光发射端机、光纤、光接受端机三个子部分。
实验系统基本组成结构(光通信)如下图所示:图1.2.1 实验系统基本组成结构在本实验系统中,电发射部分可以是M 序列,可以是各种线路编码(CMI 、5B6B 、5B1P 等),也可以是语音编码信号或者视频信号等,光信道可以是1550nmLD+单模光纤组成,可以是1310nm 激光/探测器组成,也可以是850nmLED+多模光纤(选配)组成。
本实验系统中提供的1550nmLD 光端机是一体化结构,光端机涉及光发射端机TX (集成了调制电路、自动功率控制电路、激光管、自动温度控制等),光接受端机RX (集成了光检测器、放大器、均衡和再生电路)。
其数字电信号的输入输出口,都由铜铆孔开放出来,可自行连接。
一体化数字光端机的结构示意图如下:图1.2.2 一体化数字光端机结构示意图四、实验环节1. 关闭系统电源,将光跳线分别连接TX1550、RX1550两法兰接口(选择工作波长为1550nm 的光信道),注意收集好器件的防尘帽。
2. 打开系统电源,液晶菜单选择“码型变换实验—CMI 码PN ”。
确认,即在P101铆孔输出32KHZ 的15位m 序列。
3. 示波器测试P101铆孔波形,确认有相应的波形输出。
4. 用信号连接线连接P101、P203两铆孔,示波器A 通道测试TX1550测试点,确认有相应的波形输出,调节W205即改变送入光发端机信号(TX1550)幅度,最大不超过P204光接受输入光发射输出5V。
即将m序列电信号送入1550nm光发端机,并转换成光信号从TX1550法兰接口输出。
光纤通信实验的步骤与要点光纤通信是一种基于光传输信号的通信方式,被广泛应用于现代通信领域。
为了深入理解光纤通信的原理和技术,并能够进行相关的实验,本文将介绍光纤通信实验的一般步骤与要点。
一、实验准备在进行光纤通信实验之前,首先需要进行一些准备工作。
如准备光纤通信设备和实验器材、了解相关的实验原理和技术、熟悉实验装置的使用方法等。
同时,实验者还需了解相关的安全知识,例如在实验过程中如何正确使用光纤设备、如何避免光纤受损等。
二、实验步骤与要点1. 光纤的连接与固定在进行光纤通信实验时,首先需要将光纤进行连接和固定。
连接光纤的目的是实现信号的传输,而固定光纤则是为了保护光纤的完整性和稳定性。
在连接光纤时,要确保光纤的端面光洁,避免在接触处产生反射或散射。
固定光纤时,可以使用专用的光纤固定装置或者适当的固定夹具。
同时,要注意避免光纤受到外界的机械拉伸或扭曲,以免影响信号的传输效果。
2. 光源与检测器的连接光源与检测器是光纤通信实验中必不可少的组成部分。
光源可以是激光器、LED等,而检测器可以是光电二极管、光电倍增管等。
在将光源与检测器连接时,要确保连接的稳定性和正确性。
同时,要根据实验的要求选择合适的光源和检测器,并将其连接至实验装置中。
3. 光纤通信实验的参数设置在进行光纤通信实验过程中,需要对一些参数进行设置,以确保实验的顺利进行。
其中,包括发送功率、接收灵敏度、波长等参数的设置。
这些参数的设置要根据实验的特点和要求进行调整,以达到最佳的实验效果。
4. 光纤通信的探测与调试在光纤通信实验中,常常需要进行信号的探测与调试,以确保信号的稳定传输和正确接收。
这一步骤包括对发送端和接收端的光功率进行检测和调整、对光纤通信系统进行优化等。
通过探测与调试,可以及时发现并解决光纤通信中可能遇到的问题,从而保证实验的准确性和可靠性。
5. 光纤通信实验的数据分析与结果处理在进行光纤通信实验后,需要对实验数据进行分析和结果处理。
实验一半导体激光器P-I特性测试验一、实验目的1.学习半导体激光器发光原理和光纤通信中激光光源工作原理2.了解半导体激光器平均输出光功率与注入驱动电流的关系3.掌握半导体激光器P(平均发送光功率)-I(注入电流)曲线的测试方法二、实验仪器1.ZY12OFCom13BG型光纤通信原理实验箱台2.光功率计1台3.FC/PC-FC/PC单模光跳线根4.万用表1台5.连接导线20根三、实验原理半导体激光二极管(LD)或简称半导体激光器,它通过受激辐射发光,(处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射。
所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。
)是一种阈值器件。
由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW)辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz)直接调制,非常适合于作高速长距离光纤通信系统的光源。
P-I特性是选择半导体激光器的重要依据。
在选择时,应选阈值电流I th 尽可能小,I th对应P值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比(测试方法见实验四)大,而且不易产生光信号失真。
并且要求P-I曲线的斜率适当。
斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。
半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。
将开始出现净增益的条件称为阈值条件。
一般用注入电流值来标定阈值条件,也即阈值电流I th,当输入电流小于I th时,其输出光为非相干的荧光,类似于LED发出的光,当电流大于I th时,输出光为激光,且输入电流和输出光功率成线性关系。
该实验就是对该线性关系进行测量,以测试半导体激光器的P-I线性关系。
在实验中所用到半导体激光器输出波长为1310nm,带尾纤及FC型接口。
半导体激光器作为光纤通信中应用的主要光源,其性能指标直接影响到系统传的质量,因此P-I特性曲线的测试了解激光器性能是非常重要的。
半导体激光器驱动电流的确定是通过测量串联在电路中的R110上电压值。
电路中的驱动电流在数值上等于R110两端电压与电阻值之比。
为了测试更加精确,实验中先用万用表测出R110的精确值(将BM1、BM2都拨到中档,用万用表的欧姆档测T103、T104之间的电阻),计算得出半导体激光器的驱动电流,然后用光功率计测得一定驱动电流下半导体激光器发出激光的功率,从而完成P-I 特性的测试。
并可根据P-I 特性得出半导体激光器的斜率效率。
四、 实验内容1.测量半导体激光器输出功率和注入电流,并画出P-I 关系曲线。
2.根据P -I 特性曲线,找出半导体激光器阈值电流,计算半导体激光器斜率效率。
五、 实验步骤及结果1. 将光发模块中的可调电阻W101逆时针旋转到底,使数字驱动电流达到最小值。
2. 用万用表测得R110电阻值,找出所测电压与半导体激光器驱动电流之间的关系(V =IR 110)。
经实验测得 R110=1.8Ω3.拨动双刀三掷开关,BM1选择到半导体激光器数字驱动,BM2选择到1310。
4. 旋开光发端机光纤输出端口(1310nm T )防尘帽,用FC-FC 光纤跳线将半导体激光器与光功率计输入端连接起来,并将光功率计测量波长调整到1310nm 档。
5. 连接导线:将T502与T101连接。
6. 连接好实验箱电源,先开交流电源开关,再开直流电源开关,即按下K01,K02 (电源模块),并打开光发模块(K10)和数字信号源(K50)的直流电源。
7. 用万用表测量R110两端电压(红表笔插T103,黑表笔插T104)。
8. 慢慢调节电位器W101,使所测得的电压为下表中数值,依次测量对应的光功率值,并将测得的数据填入下表。
9. 做完实验后先关闭光发模块电源(K10),然后依次关掉各直流开关(电源模块),以及交流电开关。
10. 拆下光跳线及光功率计,用防尘帽盖住实验箱半导体激光器光纤输I(mA)P(mW)Ith图1-1 LD 半导体激光器P-I 曲线示意图出端口,将实验箱还原。
11.将各仪器设备摆放整齐。
六、实验报告1.根据实验记录数据,算出半导体激光器驱动电流,画出相应的光功率与注入电流的关系曲线。
(测得电阻为1.0Ω)U(mV) 1 2 3 4 5 6 7I(mA) 1 2 3 4 5 6 7P(uW) 0.0819 7.35 41.30 69.0 101.7 130.1 163.06 P(dBm) -41.04 -21.49 -13.89 -11.57 -9.98 -8.84 -7.89U(mV) 8 9 10 12 14 16 18I(mA) 8 9 10 12 14 16 18P(uW) 191.6 219.4 248.9 313.8 377.3 438.9 490.6P(dBm) -7.18 -6.58 -6.01 -5.01 -4.23 -3.58 -3.11U(mV) 20 22 24 26 28 30 32I(mA) 20 22 24 26 28 30 32P(uW) 531.7 574 619 677 732 802 858P(dBm) -2.68 -2.41 -2.09 -1.71 -1.35 -0.96 -0.642.根据所画的P-I特性曲线,找出半导体激光器阈值电流I th的大小。
3.根据P-I特性曲线,求出半导体激光器的斜率效率。
七、注意事项1.半导体激光器驱动电流不可超过40mA,否则有烧毁激光器的危险。
2.由于光功率计,光跳线等光学器件的插头属易损件,使用时应轻拿轻放,切忌用力过大。
八、思考题1.试说明半导体激光器发光工作原理。
半导体激光器工作原理是激励方式,利用半导体物质(既利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输出激光。
半导体激光二极管(LD)或简称半导体激光器,它通过受激辐射发光,(处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射2.环境温度的改变对半导体激光器P-I特性有何影响?随着温度的上升,阈值电流越来越大,功率随电流变化越来越缓慢。
3.分析以半导体激光器为光源的光纤通信系统中,半导体激光器P-I特性对系统传输性能的影响。
当注入电流较小时,激活区不能实现粒子束反转,自发发射占主导地位。
,激光器发射普通的荧光。
随着注入电流的增加,激活器里实现了粒子束反转,受激辐射占主导地位。
但当注入电流小于阈值电流时,谐振腔内的增益还不足以克服如介质的吸收、镜面反射不完全等引起的谐振腔的损耗时,不能在腔内建立起振荡,激光器只发射较强荧光。
只有当注入电流大于阈值电流时,才能产生功率很强的激光。
九、实验感想在这次实验中,我学到很多东西,加强了我的动手能力,并且培养了我的独立思考能力。
在实验的过程中我们要培养自己的独立分析问题,和解决问题的能力。
本次得到的数据还需要一些实际情况的修正,还有需提到的是本次设计未涉及到具体的施工以及天线部分具体的架设,网络传输系统的具体结构以及线路的铺设上。
最后再次我深深体会到科研的艰苦,理论上虽然成功,但实践不一定能成功,心中不由自主的对我国广大的科研人员生出无限的敬佩之情。
实验二数字光纤通信系统线路编译码实验一、实验目的1、了解线路码型在光纤传输系统中的作用2、掌握线路码型CMI码的编译码过程以及电路实现原理二、实验仪器1、ZY12OFCom23BH1型光纤通信原理实验箱 1台2、20MHz双踪模拟示波器 1台3、FC-FC单模光跳线 1根4、连接导线 20根三、实验原理接口码型HDB3码虽然有很多优点,如功率谱中无直流分量,高低频成分少,定时信息丰富,有利于定时提取等,但它不能在光纤中传输,当通过接口码型变换电路将其变换为PCM码后,虽然能在数字光纤通信系统中传输,但在实际的数字光纤通信系统中并不采用这种码型。
本实验阐述了适合数字光纤通信系统所采用的三种线路码型:①伪双极性码;②mBnB码;③附加奇偶位码。
还说明了线路码相对于接口码型的优点,并将一基带信号NRZ码变换为有利于数字光纤通信系统传输的线路码型:伪双极性码、mBnB码。
由于 CMI 码有很多优点,它既为我国数字通信标准制式所规定的两种接口码型之一,又是数字光纤通信系统中所采用的线路码型,它既属于伪双极性码又属于 mBnB 码(1B2B 码)。
所以,本实验中的线路码型就采用 CMI 码。
CMI 码为信号反转码(Code Mark Inversion),是一种二电平不归零码,是 PCM 四次群的线路传输码型,也就是四次群数字光纤通信设备与四次群 PCM 设备之间的接口码型。
1、CMI 码的特点A. CMI 码编译电路简单,便于设计与调试。
B. CMI 码的最大连“0”和连“1”都是 3 个C. 具有误码监测能力,当其编码规则被破坏,就表示有误码产生,便于线路传输中的误码监测。
D. CMI码功率谱中的直流分量恒定,低频分量小,fr(变换前的码速率)频率处有限谱,频带较宽,便于定时提取。
E. CMI 码的速率是编码前信号速率的两倍。
2、CMI 码的编码规则A. 对于二进制“0”被编码成为前后得A1和A2(A1为“0”电平,A2为“1”电平)两种幅值的电平,每种幅值占单位时间间隔的一半(T/2),即在CMI码中为“01”码。
B. 对于二进制“1”用幅值电平A1和A2来编码。
A1或A2都占满了一个单位时间间隔(T),即在CMI码流中为“00”或“11”码;对于相继的二进制“1”,这两个电平相互交替。
这也就是前一个二进制“1”编为A1,(即“00”)则后一个二进制“1”就编A2,反之,前一个二进制“1”编为A2,(即“11”)则后一个二进制“1”就编A1,即在CMI码流中以“00”和“11”信号相互交替。
3、CMI 码编码电路的方式。
CMI编码电路比较简单,CMI 码的编码规则是将二值码 NRZ 序列中的“1”和“0”状态进行分离,然后按各自的编码规则进行编码,最后由这两种状态的编码合成输出就成为CMI 码。