化工原理_17换热器的传热计算
- 格式:ppt
- 大小:531.00 KB
- 文档页数:34
化工原理の传热实验一、实验目的1、学习传热系数的测定方法;2、学习传热膜系数及其准数联式的测定方法。
二、实验原理本实验有套管换热器4套,列管式换热器4套,首先介绍套管换热器。
套管换热器管间进饱和蒸汽,冷凝放热以加热管内的空气,实验设备如图2-2-5-1(1)所示。
传热方式为:冷凝—传导—对流 1、传热系数可用下式计算: ]/[2k m W t A qK m⋅∆⋅=(1)图2-2-5-1(1) 套管换热器示意图 式中:q ——传热速率[W] A ——传热面积[m 2] △t m —传热平均温差[K] ○1传热速率q 用下式计算: ])[(12W t t C V q p S -=ρ (2) 式中:3600/h S V V =——空气流量[m 3/s]V h ——空气流量[m 3/h]ρ——空气密度[kg/m 3],以下式计算:]/)[273(4645.031m kg t R p Pa ++=ρ (3)Pa ——大气压[mmHg]Rp ——空气流量计前表压[mmHg] t 1——空气进换热器前的温度[℃]Cp ——空气比热[K kg J ⋅/],查表或用下式计算:]/[04.01009K kg J t C m p ⋅+= (4) t m =(t 1+t 2)/2——空气进出换热器温度的平均值(℃) t 2——空气出口温度[℃]②传热平均面积A :][2m L d A m π= (5)式中:d m =传热管平均直径[m]L —传热管有效长度[m ]③传热平均温度差△t m 用逆流对数平均温差计算:T ←——T t 1——→t 2 )(),(2211t T t t T t -=∆-=∆2121ln t t t t t m ∆∆∆-∆=∆ (6) 式中:T ——蒸汽温度[℃]2、传热膜系数(给热系数)及其关联式空气在圆形直管内作强制湍流时的传热膜系数可用下面准数关联式表示:nr m e P R Nu 0α= (7)式中:N u ——努塞尔特准数R e ——雷诺准数 P r ——普兰特准数αo ——系数,经验值为0.023 m ——指数,经验值为0.8n ——指数,经验值为:流体被加热时n=0.4,流体被冷却n=0.3 为了测定传热膜系数,现对式(7)作进一步的分析:λαdNu =(8) α——空气与管壁间的传热膜系数[W/m 2·k] 本实验可近似取α=K[传热系数],也可用下式计算:)(m W i t t A q -=α (9)A i ——传热管内表面积[m 2] t W ——管壁温[℃]t m ——空气进、出口平均温度[℃] d ——管内径[m]λ——空气的导热系数[W/m ·k],查表或用下式计算:λ=0.0244+7.8×10-5t m (10) μρdu =Re (11)u ——空气在加热管内的流速[m/s]μ——空气定性温度(t m )下的粘度[pa ·s],查表或用下式计算:μ=1.72×10-5+4.8×10-8t m (12)d ,ρ——意义同上。
第2章工艺计算2.1设计原始数据表2—1名称设计压力设计温度介质流量容器类别设计规范单位Mpa ℃/ Kg/h / /壳侧7.22 420/295 蒸汽、水III GB150 管侧28 310/330 水60000 GB1502.2管壳式换热器传热设计基本步骤(1)了解换热流体的物理化学性质和腐蚀性能(2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。
(3)确定流体进入的空间(4)计算流体的定性温度,确定流体的物性数据(5)计算有效平均温度差,一般先按逆流计算,然后再校核(6)选取管径和管内流速(7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核(8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍l(9)选取管长(10)计算管数NT(11)校核管内流速,确定管程数(12)画出排管图,确定壳径D和壳程挡板形式及数量等i(13)校核壳程对流传热系数(14)校核平均温度差(15)校核传热面积(16)计算流体流动阻力。
若阻力超过允许值,则需调整设计。
第2章工艺计算2.3 确定物性数据2.3.1定性温度由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。
对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。
其壳程混合气体的平均温度为:t=420295357.52+=℃(2-1)管程流体的定性温度:T=3103303202+=℃根据定性温度,分别查取壳程和管程流体的有关物性数据。
2.3.2 物性参数管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】表2—2密度ρi-=709.7 ㎏/m3定压比热容cpi=5.495 kJ/㎏.K热导率λi=0.5507 W/m.℃粘度μi=85.49μPa.s普朗特数Pr=0.853壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】表2—3密度 ρo =28.8 ㎏/m 3定压比热容 c po =3.033 kJ/㎏.K 热导率 λo =0.0606 W/m.℃ 粘度 μo =22.45 μPa.s 普朗特数Pr=1.1222.4估算传热面积 2.4.1热流量根据公式(2-1)计算:p Q Wc t =∆ 【化原 4-31a 】 (2-2)将已知数据代入 (2-1)得:111p Q WC t =∆=60000×5.495×310 (330-310)/3600=1831666.67W式中: 1W ——工艺流体的流量,kg/h ;1p C ——工艺流体的定压比热容,kJ/㎏.K ;1t ∆——工艺流体的温差,℃;Q ——热流量,W 。
第2章工艺计算2.1设计原始数据表2—12.2管壳式换热器传热设计基本步骤(1)了解换热流体的物理化学性质和腐蚀性能(2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。
(3)确定流体进入的空间(4)计算流体的定性温度,确定流体的物性数据(5)计算有效平均温度差,一般先按逆流计算,然后再校核(6)选取管径和管内流速(7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核(8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍l(9)选取管长(10)计算管数NT(11)校核管内流速,确定管程数(12)画出排管图,确定壳径D和壳程挡板形式及数量等i(13)校核壳程对流传热系数(14)校核平均温度差(15)校核传热面积(16)计算流体流动阻力。
若阻力超过允许值,则需调整设计。
第2章工艺计算2.3 确定物性数据2.3.1定性温度由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。
对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。
其壳程混合气体的平均温度为:t=420295357.52+=℃(2-1)管程流体的定性温度:T=3103303202+=℃根据定性温度,分别查取壳程和管程流体的有关物性数据。
2.3.2 物性参数管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】表2—2壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】表2—32.4估算传热面积 2.4.1热流量根据公式(2-1)计算:p Q Wc t =∆ 【化原 4-31a 】 (2-2)将已知数据代入 (2-1)得:111p Q WC t =∆=60000×5.495×310 (330-310)/3600=1831666.67W式中: 1W ——工艺流体的流量,kg/h ;1p C ——工艺流体的定压比热容,kJ/㎏.K ;1t ∆——工艺流体的温差,℃;Q ——热流量,W 。
化工原理传热计算题
在化工工艺中,传热是一个重要的计算问题。
传热计算常根据热传导、对流传热和辐射传热三种不同的机制进行分析。
热传导是物质内部热量传递的机制,其计算可以根据傅立叶定律进行。
傅立叶定律表明,传导热流密度与温度梯度成正比。
传热的计算公式可以表示为:
q = -k * A * (dT/dx)
其中,q表示单位时间传导热量,k是物质的热导率,A是传热面积,(dT/dx)是单位长度温度梯度。
对流传热是指通过流体的对流传递热量的机制。
其计算需要考虑流体的流动动力学特性和换热系数。
一般情况下,对流传热可以使用努塞尔数(Nu)来描述。
根据对流传热公式,传热率可以表示为:
q = h * A * (ΔT)
其中,q表示传导热量,h是换热系数,A是传热面积,ΔT是流体之间的温度差。
辐射传热是通过电磁波辐射传递热量的机制。
辐射传热的计算涉及辐射热通量、辐射发射率和辐射吸收系数等参量。
根据斯特藩-玻尔兹曼定律,辐射传热的计算公式可以表示为:
q = ε * σ * A * (T^4-T_s^4)
其中,q表示单位时间辐射传导热量,ε是辐射发射率,σ是斯特藩-玻尔兹曼常数,A是传热面积,T是物体表面温度,T_s是周围介质温度。
在实际的传热计算中,常常需要结合以上各种传热机制并考虑物料的特性和实际条件,综合分析并得出准确的结果。
这些传热计算可以应用于各种化工工艺中,例如换热器设计、反应器的冷却等。