上课第一课时众数中位数平均数与样本频率分布直方图关系
- 格式:ppt
- 大小:1.41 MB
- 文档页数:44
众数、平均数、中位数与频率分布直方图的关系
众数、平均数、中位数与频率分布直方图的关系,这一块知识点都不难,就是我们在平时的学习过程中不重视或者说不注意所以会导致有时候没有思路,不知道怎么操作,今天给大家详细介绍一下这种关系。
1、众数
众数在样本数据的频率分布直方图中就是最高矩形中点的横坐标大家通过上述图中,应该很明显,众数就是最高矩形中点的位置即为2.25
2、中位数
在样本中,有50%的个体小于或者等于中位数,同时也有50%的个体大于或者等于中位数,所以,在频率分布直方图中,在中位数的左边和右边直方图的面积是相等的。
从而我们可以根据这个来估算出中位数的大小值。
从上数频律分布直方图中,我们可以计算出来,大致的位置。
3、平均数
平均数是频率分布直方图的重心,他等于频率分布直方图中每个小矩形的面积(即落在改组中的频率)乘以小矩形底边中点的横坐标(组中值)之和。
今天比较忙,就先介绍到这里。
中位数、众数、条形统计图和频率分布直方图中位数(Median)统计学名词。
将数据排序后,位置在最中间的数值。
即将数据分成两部分,一部分大于该数值,一部分小于该数值。
中位数的位置:当样本数为奇数时,中位数=(N+1)/2 ; 当样本数为偶数时,中位数为N/2与1+N/2的均值众数(Mode)统计学名词,在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个)。
修正定义:是一组数据中出现次数最多的那个数值,就是众数,有时众数在一组数中有好几个。
用M表示。
理性理解:简单的说,就是一组数据中占比例最多的那个数。
用众数代表一组数据,可靠性较差,不过,众数不受极端数据的影响,并且求法简便。
在一组数据中,如果个别数据有很大的变动,选择中位数表示这组数据的“集中趋势”就比较适合。
条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来。
从条形统计图中很容易看出各种数量的多少。
条形统计图一般简称条形图,也叫长条图或直条图。
条形统计图是用条形的长短来代表数量的大小,便于比较。
条形统计图又分为条形统计图和复式条形统计图,复式条形统计图由多种数据组成,用不同的颜色标出。
频率分布直方图:在直角坐标系中,横轴表示样本数据,纵轴表示频率与组距的比值,将频率分布表中各组频率的大小用相应矩形面积的大小来表示,由此画成的统计图叫做频率分布直方图。
(在图中,各个长方形的面积等于相应各组的频率的数值,所有小矩形面积和为1)把全体样本分成的组的个数称为组数。
每一组两个端点的差称为组距。
落在不同小组中的数据个数为该组的频数。
各组的频数之和等于这组数据的总数。
频数与数据总数的比为频率(总频率=各组频率之和,且它的值为1)。